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ABSTRACT

The‘Compton scattering of photons by nucleons is described
in terms of an isobar model for the resonant states, using a spin 3/2
propagator and couplings at the vertices obtained from a phenomeno-
logical analysis of pion photo-production. The full Born term is
taken into account, as well as contributions from pi and eta exchange
in the t-channel.

Numerical results are obtained at 90° in the center of mass
system for the energy range 300 to 800 MeV which agree substantially
with experiment. The recoil nucleon polarization and the cross-
sections for polarized photons are also calculated over this energy

range.
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I. INTRODUCTION

The ‘scattering of light by nucleons has been investigated for
the last twelve years by both theoreticians and experimentalists.
At low energies, that is, for energies below that of the first resconant
peak, Compton scattering has afforded one of the most successful
applications of dispersion relations and the unitarity of the S—matrixl).
When it became clear that the absorbtive part of the amplitude, due to
pion photoproduction, was responsible for the large increase in the
cross~section with energy, that was incorporated into the dispersion
theory with good agreement up to 250 MeVz). Using these dispersion
relations, Jacob and Mathews3) took into account the contribution due
to the exchange of a xo meson in the t-channel (known as the Low
amplitude) and obtained a more detailed agreement with experiment

4,5)

in this sub-resonance region. Contogouris used dispersion
relations, on the basis of better data on photoproduction, to extend
the theoretical analysis beyond the position of the first resonance.
In doing so he found it necessary to introduce a small amount of
electric quadrupole to the photoproduction amplitude in addition to
the magnetic dipole amplitude used by Mathewsz). He also included a
contribution in the form of an electric dipole amplitude from the
second resonance in photoproduction. His results agreed with experi-
ment up to the resonance but were less successful at the peak and
beyond it.

6)

Hearn and Leader used the Mandelstam representation to



derive fixed-angle dispersion relations and found that all the sub-
traétipns they neceded could be gotten by applying the low-energy
limit theorem of Gell-Mann and Goldberger7). They included the Low
amplitude in their analysis but also found it necessary to add a
constant s-wave contribution up to 600 MeV and a slowly varying
p-wave contribution for energies above 500 MeV. Their resulting
dispersion relations are quite complicated and based on some prelim-

8)

inary calculations resulted in agreement up to the resonance. but,
like Contogouris, less agreement beyond it. Holliday also used

the Mandelstam representation but not including any effect of the
second resonance got poor agreement above 200 MeVg). Owing to a
controversy over the sign of the Low amplitude (to be discussed in

10)

Chapter V), Contogouris and Verganelakis considered the effect of
a t-channel 71 exchange on the cross-section for cnergies below
250 MeV.

More recent experiments have extended our knowledge of
Compton scattering beyond the energies which these theoretical
analyses describe Wellll’lz). It is therefore interesting to develop
a model which can successfully describe these results at higher
energies. Such a model has been used by Salin and Gourdinl3’14’15)
to describe pion photoproduction. They have represented the various
pion-nucleon resonances as nucleon isobars of definite spin and
isospin and with a complex mass, the real part of which corresponds

to the observed positions of the pi-nucleon resonances and the

imaginary part of which corresponds to their observed widths. Using



the appropriate Feynman diagrams they calculate pion photoproduction
cross-sections by means of propagators appropriate to particles of
spin 3/2 which have suitable couplings at the vertices yN and =nN.

By fitting their result to the observed cross-section they obtain
values for thé coupling constants at the vertices. There are two of
these at each vertex where an isobar couples to a nucleon and a

photon and one at the vertex where an isobar couples to a nucleon and
a pion., This latter coupling is found from a similar consideration of
pi-nucleon scattering.

In this thesis we shall calculate Compton cross-sections using
this model, known as the isobar model. We shall represent the total
amplitude as a sum of Feynman diagrams pictured in Figure 2:

(A) Born amplitude, arising from a single nucleon inter-

mediate state (N).

(B) Crossed Born term (N)

(C) First resonance amplitude (N%).

(D) Second resonance amplitude (N#%),

(E) Low amplitude for ﬁo exchange.

(F) Low amplitude for 7 exchange.

We shall not include contributions from higher pion-nucleon
resonances because in the energy range (300 - 800 MeV) we shall be
considering they are negligible. Also, we have not included any
25t contributions as they appear to be smalllo).

In Chapter IT the kinematics of Compton scattering is

developed, including the propagators for higher spin and cross-
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sections for unpolarized particles and for polarized particles.
Chapter III will consider the isobar contributions, Chapter IV the
Born term contribution and Chapter V the Low amplitudes. Chapter VI
will compare results of our calculations with experiment and

Chapter VII will discuss these results,



CITI. XINEMATICS

A. Preliminaries

We consider the process

Y+ -0+ M, 2.1)

where is a photon of momentum k., and polarization ¢, which is
51 P 1

1

scattered off a nucleon N, of momentum p

1 to produce a photon Yo of

1
momentum kz (and polarization 52) and a nucleon of momentum Py

It is often convenient to use the quantities

A=~ )+ £, )"
1 = "/p/"/%/z
U = '/ﬁ/ "kz/z

2.2)
where it follows that

Z

a+A+u = 2M @.3)

where M is the nucleon mass.
Calling the process described in (2.1), Channel I, we will

also consider the processes of Chanmels II and III

L+ N, —

S

* /b; (Channel II) 2.4)

/\// + /vz — x + }/Z (Channel III) (2.5)

where NZ represents an antinucleon.



In the center-of-mass system for Channel I, pictured in
Figure 1, we comnsider the nucleon N to have a four-momentum P1

given by

£, = [O»O/’/Q/ ///”2*"’7‘),/2] (2.6)

where p is the magnitude of the nucleon 3-momentum, so that the

photon, in the center-of-mass system for Channel I has four-momentum,

k, =[o,0, p; #]

2.7,
If the center-of-mass scattering angle is 6 it follows that
7
g, = [-psme,0,-pose ; (prm)%]
(2.8)

k, = [+psine,0,+pcose; p ]

Substituting (2.6), (2.7), and (2.8) .in (2.2) we find in thecenter-

of-mass system of Channel I

y _;[Apll_/ﬁz_*szVz]z:/p*E)z:WZ
£ = -zp*(r-cos6)

VTS 2@y
W = -2p%) +c0s8) + [(p*eMY)% -p]

1/2

2 pz) , and W

where E is the total energy of the nucleon, E = (M" +
is the total center-of-mass energy of the nucleon and the photon.

From (2.9) we see that

wi- M* = ZWf

Wi+ M2 = 2WE (2.10)

n



and since experimental results are given as a function of the

laboratory photon energy we will need

wi-M* = ZMkLAB 2.11)

where klab is the momentum of the photon in the laboratory which
scatters off a nucleon initially at rest.

The S-matrix for the process may be written
S =1 + /iR (2.12)
where R may be given in terms of the Feynman amplitude F,

Rz(ZA:-T)Z(4ﬂo ﬂo élokzo)-yzg(ﬁ'ﬁz +kz'kz)F (2.13)

In each of the channels we can write the Feynman amplitude in
terms of the spinors and polarization vectors of the initial and
final nucleons and photons; the subscripts 1 and 2 refer, as before,

to initial and final states

(CNLFL o N,

&8 U ) Fuv U (H) € pp

(2.14)

I

GMIFILGLN) =€), @ (B)Fu U (H)Ep

<XIYZ [~ M"Z) '—'627:/ 172/'fz}5‘1’ «, /ﬁjézu

The spinors uq and u, satisfy the Dirac equations

(Ay-p +M)u, (p)= 0



(AY-p +M)U(p.) =0 (2.15)

Since the nucleon has two possible spin states and the photon
has two possible polarization states it would seem that there would be
2 x 2 initial states and 2 x 2 final states making a total of 16
possible independent amplitudes. However, comnsideration of symmetry
under time reversal and space reflection reduces the number of
independent amplitudes to 6. The function va in (2.14) has been
decomposed into many different sets of invariant amplitudes by

3,4)

different authors, at first in terms of Pauli spinors and later

in terms of Dirac spinors with requirements that the amplitudes be

. . . - . . . . 6,9)
free of kinematical singularities for use in dispersion relations .
In what follows we shall use the helicity amplitudes as developed by

. . 16) . .

Jacob and Wick . Since, for purposes of comparison of our results
with other authors, it may be necessary to transform into other sets
of amplitudes we have included in Appendix I the equations relating

our amplitudes to several other sets.

Following the formalism of Jacob and Wick we define

Dr=(Aw, Ay, | T1 Ay A, D (2.16)

A=l....6

where

M
T =zmw F

(2.17)

and sz, %yz, KNl, Y are the helicities of each of the particles,

1



helicity being defined as the projection of the spin of the particle
along its direction of motion, A = 0'57‘51. Thus for the nucleon we
have AN = « % and Ay = * 1 leading to 16 amplitudes of which 6 are

independent. We shall choose as the 6 independent helicity ampli-

=3 HITHE D
= -7 =TI+ 1)
4+ -11TlLf 1)
(-
( 7
(-

N
{i il

= (I Tl= 1) (2.18)
/
- -/ T+ =)
I TE =)
In Table I are given the remaining helicity amplitudes in terms of

these 6, obtained from considerations of svmmetry under time

reversal and space reflection.

B. Cross-Sections

In terms of the scattering amplitude T, the differential

cross-section Yy + N1 —>y2 + N2 is given by

Zl( NITIJC/\/,>IZ (2.19)

where E in the case of unpolarized particles means we are to

average over the initial spins and polarizations and sum over the
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final spins and polarizations. In terms of the helicity
amplitudes we have then, for unpolarized particles

old , 2 R . .,
m:.—é ¢'2+Z¢3+¢s~z “ g, 24+, (2.20)

The simplicity of this expression for the cross-section is one of the
advantages of using helicity amplitudes. There are no 'hidden"
energy or angular factors, as there are for the other amplitudes
which have been used, for which the expressions for the cross-section
contain energy and angular dependent factors.

Recently, it has become experimentally feasible to produce
enough polarized photons to be able to measure separately the
cross-sections for photons polarized either parallel or perpendicular

17)

to the plane of scattering It is therefore interesting to
compute differential cross-sections for polarized photons.

We define the polarization four-vectors for photons of

definite helicity traveling in the 4+ z direction

Epe

/ s .
*'—,;_-//)-,(,0) o
(2.21)
Fad et +_’. — __,. *
6/_4, ’/Z'/ // /(/O) O)
corresponding to left-handed and right-handed circular polarization.
Therefore, a photon traveling in the + z direction and polarized in

the x direction (parallel to the scattering plane) is described by

Sy = -5 (5 - £3)
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and a photon polarized in the y direction (perpendicular to the plane

of scattering) by

*

Eu, = +2Z /(&0 + &L ] (2.23)

Then we have for the T matrix elements for scattering from an

initial photon state ¢, or ¢ (nucleon spin indices are suppressed
p 1 “ PP )

(x| T | €)

u

“E [T (1 T
(2.24)

(I TIE) = i B [(ITI+) o (I TI-)]

Calculating now the cross-sections,

410”4__ / /ot * Y

kA (8 | T1EL) (xB [ T1E A 2 .25)
<'FB

where B,B' are the nucleon spin indices which we average over the

initial state and sum over the final state as before, and we sum over

the final helicity a',

5_0_12_2/_ [/‘74+9’53/2 Wi e
/¢3 +¢;/z +/¢Z+¢4_/2]

which, using (2.20) may be written in the form

(2.26)
AT Ao
C’[——ﬁ ) ‘;EUNPamsz: fe [é;‘ (¢/ i ¢f] +<é"*(¢}2+¢5)](2-27)

da,
Similarly for Eﬁi 3
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5%’ :zi[/?ﬁ/ “¢3/Z */¢4“¢5/2 /8 -& ) "/¢2‘¢4/2] (2.28)

which may be written

0( 4 e ¥
0_[‘-?2: ) %VNMLAKIZE; I€€ [% /¢/ i ¢;) ’ ¢4 /¢Z+¢5}] (2.29)

From (2.27) and (2.29) we see immediately that

/ 115253 + A0
2 |\ 0 A1 (2.30)

dor

A1

UNPR,

as expected.

Another possible quantity which has recently become possible to
measure experimentally is the polarization of the recoil nucleon, in
the direction perpendicular to the scattering plane. Calling this
quantity P, and defining P to be positive if the final state nucleon

—

-
is polarized in the direction kl pid k2 » we obtain

Im[ 6,5 (¢, +85) + (2, +8.)" 3]
Ao (2.31)
T,

P =

where only terms involving the product of amplitudes in which the
spin of the nucleon changes with amplitudes in which the spin does

not change occur. We notice that in (2.29) no such terms occur.

C. Higher Spin Propagators

In order to evaluate matrix elements for the N% and N** we

will have to use the propagator for a particle with spin 3/2. We
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shall use the Rarita-Schwinger formalisml8) for particles of
arbitrary spin and represent the particle with a wavefunction wv

which satisfies the wave equation

[ Yudu *M )Y, =0 (2.32)

with M being the mass of the particle. The wavefunction is subject

to the conditions

X/“ }/U“ =0 a/usf//“ =0 (2.33)

The propagator may be determined in a number of ways, the simplest
seems to be to write down an expression involving Pp (the particle's
four-momentum) and y matrices of the most general form, with

arbitrary coefficients,

Fuv = A8 *Bony, +ClYuh -1, Fa) + DRA 230

and using (2.33), require that

YulFav=0 Fulfr =0 (2.35)

in order to obtain the coefficients A, B, C, D. This will determine
the propagator va apart from the question of normalization and this

is obtained by requiring

Z%% = —2M (2 .35a)

SPINS
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in the rest frame where it is easy to evaluate. The result for spin
3/2 is ,

M= 4P /
Bu= 2775 G 5 dud
/A«V MZ+PZ 14 3 /“ 4

£ 2 (2.36)

R - o+ =

‘5l Wh LR * 55 B

which agrees with the propagator used in (13).

Using this method we have also calculated the propagator for
a spin 5/2 particle and the result will be found in Appendix II.
We shall not use this result here but if one wanted to take into
account the third pion-nucleon resonance which has spin 5/2, this
propagator could be used. Its complexity, however, would seem to

preclude its utility.
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ITTI. TISOBAR CONTRIBUTIONS

In the isobar model, as used by Salin and Gourdin in their
analysis of photoproduction13’14’15) we consider the diagrams
illustrated in Figures 2C and 2D and calculate their contribution to
the amplitude by the usual Feynman rules, We use for the N¥* and N¥*
propagators the spin 3/2 propagator derived in Chapter II and take
into account the fact that these are actually not particles of

definite mass but are resonances of the pion-nucleon system located at

some energy MR in the center-of-mass system and with a phenomeno-

logical width 1.

A. TFirst Resonance (N¥%)

At the N N* y vertex we have an interaction Hamiltonian

— (3.1)
H/v/v*y - /‘/3 +H4 +’L7/5

H, and H. given by

with H3, 4 5

G| 27 . ”
e | Y Yt o B0 Y |

X

_ _ €l p) -
K AN R R AR R
o (3.2)
M =+ S L vy Tl v F
5 %ﬁf C)%“ V¥ 5y P _fcgza% N eV

where wN is the wavefunction of the nucleon, V¥, is the wavefunction

Vv

for the N%, m is the pion mass, e is the electric charge and va is
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the electromagnetic field tensor

Aw dAv

J %, D Zu (3.3)

Fuw

which makes the Hamiltonian gauge invariant.
Since for Compton scattering the photon is a free particle,

it follows that H4 = H5 so that for Compton scattering we have

fiNN‘y = ﬁ43 + Z.fi; 3.4)

and there are just two constants needed to describe the interaction.

This is analogous to the NNy coupling where two constants F1 and

F2 are needed (see Chapter IV). Any other type of coupling can be shown

to reduce to some linear combination of these, upon application of

the condition

dFuv
3 }af‘ = 0 (3.5)

In the case of electroproduction, where the photon is a virtual

particle it would be necessary to include both H4 and HS.

The constants C3 and C5 are determined by analysis of

photoproduction data. This was done by Salin and Gourdin who

13,14,15)

used this model to make a phenomenological fit and they found

C; = 0.37
C?5- = - C>'C>C)4Lé;

using a phenomenological width in the laboratory system of 160 MeV.

i

(3.6)

With these parameters they are able to fit the photoproduction data

very well up to 500 MeV including such features as the correct
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shifting of the maximum to lower energy due to interference of the
isobar with the background and the angular distribution of the
differential cross-section. Also the constants they obtain from ﬂo
photoproduction data agree with those obtained from ﬂ+ photoproduction
data. Their analysis was less successful with increasing energy
because beyond the first resonance the second resonance plays an
increasingly important role and we have reason to believe that their
analysis of the second resonance is not correct. This will be
discussed in part B of this €hapter.

In addition to the fitting of photoproduction, the isobar
model of Salin and Gourdin, using these values for the constants, has

been appliedlg)

to electroproduction where the pion producing photon
is virtually produced in the scattering of an electron by a nucleon
Here we must, as pointed out previously, retain the H4 term inde-
pendently in 3.1 and three parameters are needed. However, the

constants C3 and C5 were used to obtain a good fit,

20)

Mathews, in discussing the decay of the has used values
somewhat different than those used here. By considering detailed
balancing he relates the area under the total cross-section curve to
the magnetic dipole width in photoproduction, and also to the total
width times the cross-section at maximum assuming a Breit-Wigner form
for the total cross-section curve. He then assumes that the resonance

is pure magnetic dipole, setting I, = 0, and obtains

E2
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C](M«#Aewr} X My

Cs = ey = 0.30
. C m‘L
| =5 (Mathews) X Pl (3.7)
C} =7 / BeV?Z = ~-0.0/7

Even allowing for a discrepancy in the widths used, there still

remains a difference in these two results. (Mathews uses a center-
of-mass width of 110 MeV while Salin and Gourdin a laboratory width of
160 MeV corresponding to a center-of-mass width of 120 MeV but this only
increases the Mathews result to 0.33 as opposed to S & G's 0.38.)

The difference may be due to the assumption of a Breit-Wigner form of
Mathews and we have chosen to use the Salin and Gourdin result, for

the reasons cited above. The discrepancy in C5 is more understandable
and is due to the sensitivity with which C5 depends on the ratio of

the electric quadrupole to the magnetic dipole amplitudes. In

obtaining CS’ Mathews sets this ratio equal to O while Salin and

Gourdin find it necessary to have this ratio p equal to .045. From

C;//a) 4MI?
Sl e 2 I —iep .
C, (peo) P Mo~ M (3.7a)

we see that a 4.5 percent admixture of electric quadrupole leads to
C5 = (-.017)(.28) = - .0048 which agrees with Salin and Gourdin.

We now proceed to evaluate the N* contribution using the
interaction Hamiltonians H3 and HS' Using primes to denote final states

and unprimed quantities initial states we have
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HIH = Hy Hy s 4HE Hee 2(HT Hye HEH) o

and substituting from (3.2)

Ezcz w/ PRy
HH, = S [ T m T Y]

mzE
b, L oG [ ¥ (3.9)
Ha Hs“ n* L/L;/* %/%%E«v%%%au
ik x
where EHV is the propagator (2.36). Writing Av =€, e o where

is the photon polarization four vector and ka the four momentum

€y
we have YaFav =i (¢ kv - K ev) and
t 6’1(}2 —~ oy ,*
HyH, = o [uf(ffé/u, WAL AL B N ] (3.10)

where ug and u, are the final and initial nucleon Dirac spinors of

momentum p&, Pe

Similarly,

4 HiHs = 5 | Y th (Gatibagl )"
5B % (Sk-ka)p | e

4q Hng: - [szfﬁg/é Péf/u«/
X //)u (f’é'/é fa,ég,,)u] (3.12)
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By T B ]
If we define
Aw =l —f e
Bu = (f.g/,é/w-/f'/é)g/& (3.14)
yfﬁ”%" = éu
then
H-7 [T A Ba, + HE s B
z,‘;;@ (5/: ;,;AV _ A;,.f:’.,;By) ” (3.15)
and we define M by
H'H = 2 M (3.15a)

We will evaluate this in the center-of-mass system, choosing

coordinates so that



- 921 -

Agﬁo = / o, O, /é J Aé )
tu =10, 0 -k ; (£+m)*)

e =(& 6 0)
g =(& 0)
/@.5:/6"8 =Q

Kt =K -7 — Koo
Av =g Ke — K Epe
Bu = kW Eu (3.16)

Substituting (3.16) into (3.15) leads to
il = 2 *
M=a?A.B, A, +6R W Fa €

t ol kWi /cc/w /4 A/u L&) (3.17)

where * is a complex conjugation. We define the quantities

C. Ce

M, M 7

Substituting (2.36) in (3.17), replacing the denominator by its value
in the center-of-mass system, using MR in place of M for the mass of

the isobar, and inserting the phenomenological width T
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p . _ 2 a
MZtPE—> M- - iMe = A - G.19)
we obtain after some algebra

A BB A, = 2[ (-MewE-wim) et €] 1
Z[ (Mewm + wiE) e € | B
[(MMe + Ww2) ke ] zg‘
[((MMe+ W ke ] 4
[(-wM-wme)k-€" ] Aﬁ;f.“
b [(-wm-wmg )RS ]
| M kb + EWEME +$ wEM FWEE, 2 WAM] £f

+

2 7 ,
Wk -G WMMe - i RN 2y 2 W gy

(3.20)



Now we must sandwich M between spinors representing initial and final
nucleon states and since we are using helicity amplitudes we must
calcuiéte tﬁe matrix elements of the Dirac matrices between helicity
spinors. Since these may be of possible general use they are given in
Appendix III,

The photons must also be represented in helicity eigenstates.
There are two such states, corresponding to the two directions of
circular polarization as previously noted. We have, as in (2.21) for

a photon traveling in the + z direction

& (o) = %(/, i, 0 ;0)
ny (3.21)

. (0) = 7 (1,-4,0; o)

where the gauge is chosen so that fourth component of Gp is 0. For
the final state we have a photon scattered by an angle & from the

initial photon and thus

/% +

&S0 =% (cos8, ~i, ~5s1mb ; 0)

. (6) =;—2—L(C0$6’, + A -siné; 0) (3.22)

or leaving the helicity as a free index & = £ 1,

EL(0)= = (~x,-4,0;0)
(3.23)

é;/,,# 5/(9) =/—_é-_-/—0<COSH/ L, &xs5m8; o)
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In this coordinate system

/é-‘-‘ (O’, O,é;/é)

= (kSiné, 0, kcos8; k)

so that

I

grel g 5 ([ + x’x COS5 B )
£ 4 = = (x'k s/ 6)
k£ 2‘/—2&—/——«&9/49)
v k*(CcosO—1)

(3.24)

1

Using Appendix III we obtain for ﬁfMui the contribution of the first

isobar to the total amplitude

t, Me=gla* APA + BEW* ' PE +abkW: (¢PA-APE

- [W (1 +x’eccos@) + (W +MMg)(

&+ of + 20
—————)(1-cos8)
??AZA/ A=
[WM/a (1 +x'a Cos6) + (WMg + M) “—2FZ2 N1 +cos6)
+ (WE + MM R)w(/—cose)
+ (EMg +MW) C/—NZZ—(I—“)(M cosé)
- (WE - 2Me?) (/+wz{/+c\') cos £

) (3.25
2 (-1 +o)
\ Mg) (w?- Me T 4‘M,e —ZMM,Q,—'MZ)"‘——'—“Z }S/ﬂzg

A N Pau= 55 ) (MMe-WE] (1 + x'mcosg— 2D )05 2

(MW —EMg) (1 +ox’x o5 — W?——M)f/ng
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| @Azz' (S'/BA-A%;E)%?%Z Me [ “/Z-“)(/-COSGJ cos §

-

w( > )1+ Cose)S/ngg

where Az M_R2 - Wz -1 M.R I

total energy in center-of-mass system

=
1l

k = photon momentum in center-of-mass system
8 = center-of-mass scattering angle
_E = center-of-mass nucleon energy

M = nucleon mass

MR= mass of N¥* isobar

@', @ = final and initial photon helicities

ecs . 2ec5

a=mm b=
m mﬂZ

and the upper expression in each bracket is to be used when the nucleon
helicity changes sign and the lower expressions when the helicity
remains the same. This expression for M vanishes for k = 0 so the
isobar does not contribute at all in the low energy limit. 1In

Ref. (14) this k dependence was ignored znd consequently their fit is
not good in the very low energy range. Substituting appropriate
values for &' and O we obtain the contribution to our 6 helicity
amplitudes as a function of energy and scattering angle and tabulate
the result of a numerical calculation at 90° for different energies

in Table II.
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B. Second Resonance (N¥%)

. We proceed as for the first resonance and write

HNN"‘*7 = 63 + 64. + 65 (3.26)

However, since the parity of the N#% is opposite to the parity of

the N* we now have for the interaction Hamiltonians:

1

~el
<;3 - C€lz

V(%

- -

QN
o
AN
4
N
DN
NS
W

_ €D+ 1y 2 2 7
64-‘771”2 %J %+2_%% CZV

%&0 ] (3.27)

_ eDs
Gy = e

) v (2
AR A2

As before, Gﬁ and GS are equivalent for a real photon and we may write

HN,V**-, = G; +2 Gy (3.28)

For the coupling constants D3 and D5 we will not use the
values given by Salin and GourdinlS) for reasons given below, but

will instead use the phenomenological analysis of Walkerzz) who from

an analysis of pion photoproduction found

E,_.=-1270 M,. = ~0.3/2 (3.29)

To relate these results to the coupling constants which we will need to

make use of the isobar analysis of photoproduction for the 2nd
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resonance. Using the notation of (15) we have, with appropriate

isospin factors,

M.

il

7 L=
(3.30)
E,. =5(2L-1,)

where L1 and L2 are the numerator functions in the isobar analysis

and are given by

_ —zWé# e
L, M A

[

L — —-ZszZ'z /\ D € (3.31)
Z (E1+MME2+M) 272 e |
where El and E2 are the initial and final nucleon energies, k and q
are the photon and pion momenta, W is the center-of-mass total
energy, Xz is the pion-nucleon-N%* coupling constant found from pi-
nucleon scattering to be 2.07, and p is the pion mass. By this we can
evaluate D1 and D2 which are the coupling constants using non-gauge-

invariant Hamiltonians and by means of

123 = Z?z
- = __7_7.13:_ DzW?‘M
Dy =Dy, = w;-Mzb?(/_"’ﬁ_

D/ W’T

(3.32)

obtain D4 and DS’ From (3.29) and (3.30) we have

L, = —/58 L,= -0¢2 (3.33)
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and from (3.31), evaluating the energy dependent part at the mass of
the second resonance, we obtain

D

The reason for not using the second resonance parameters given

+C.009F

by Salin and Gourdin is that they do not give the observed small cross-
sections for forward angles in the second resonance region. This was

21)

first pointed out by Beder At 00, the photoproduction cross-

section may be written

do

” Q—I =% - %l (3.34)
e

If one looks at the contributions to the imaginary part of the
amplitude at the position of the resonance one finds a large
contribution only from the amplitude due to that resonance so we

. o
may write, at 0,

N

£,. + 3M,.

(3.35)
;;; = 0 + égfmfz—
so that
do|  _ z
A7 | £;- = 3M,. (3.36)

If one uses the parameters of Salin and Gourdin one obtains

E2_ ~ 1.4 and MQ_ ~ 0 so that
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Ao
.

while with parameters dictated by Walker's result and which are used

here, one obtains

Ao

o (7

X 0./
00

which is 20 times smaller giving a forward angle cross-section of
0.1 nb as opposed to the 2 pb of Salin and Gourdin. Since 0.1 ub
is about what is observed it seems more reasonable to use the Walker
results.

We proceed now as for the first resonance and calculate the
contribution to the amplitude from Figure 2D using the interactions
defined in (3.27). We write

_ e ze Dy
< o A my

(3.37)

and we obtain the result

M= APA+ L4  PE+de kWi(€PA-APE)

= o Mol S 1-cos8) cos &
2 N (€ PA-APe)z~ % ’

M ,
W(“;“}(Hcom)smf
(3.38)
)(r4at)
(WE+MMg) (] +axccose - (1tec)lrre) )CGS‘ZQ

3
(1=o’J(1+%)

= )sin €

(~-MoE-MW)(/ +xxcosé -
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ZfA?A’/SAu? ,f; [-—Wz (1 + o’o CO58) +(W2"MM,Q)/M)//—'(059)

ol m+2x

Mol (I +'a coSO)+ (~w Mg +MW)[ N1-+co58)

7+t +a)
+{WE- MMR){’—"—/— MNir-cos8)

+(~EMer M) ZLL )1+ cos6)

2
P2 (2mMe-wE)

o572

(1 +e 1 4%) P
()]

et
S(Mﬁ ([A/z &% +4‘M;—2MM,Q+M2}/(£~E——*)] S//’Z‘g

where as before the upper expressions in the brackets are for non
spin-flip and the lower expressions for spin flip amplitudes.
Substituting for eéch of the six helicity amplitudes appropriate
values of &', we obtain the N*¥* contribution as a function of
energy and angle and have given in Table IIT the result at 90°.

In Table VIIT is given a summary of the properties of the

N* and N*% including the interaction parameters which we have used.
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IV. BORN TERM CONTRIBUTION

To calculate the contribution to the amplitude of the one-
nucleon intermediate state diagrams, or Born term, (Figures 2A and
2B, the uncrossed and crossed diagrams) we use, at the yNN vertices
the usual electric and magnetic form factors Fl(kz), Fz(kz), including
the full proton anomalous magnetic moment, Since the photons in
Compton scattering are real and not virtual we have kz = 0 so that we

need only use the values of the form factors for k2 = 0:

F=Fl=e  F=Ffl)=AL

where p' is the anomalous part of the proton magnetic moment. Then

we have, at each vertex, the matrix element

(NIRIZNY =(p" IR | kp) =

(4.2)

-M . ,
2 g% w8 - o ke, up)

where p" is the momentum of the intermediate nucleon and

_1 , - :
OVu =3 (YVYH - ypyv). With this, we evaluate the diagrams and

adding them together cobtain the full Boxn term

T ¢,

TP = (B BE - cost) 1) (uter)

8TW b3 _ ™M 2 wo_ 2
—er = (~E)0-cose) + (o) - 1)

t



gmvsé,— —(— ~ L 1-cose) + ()& - (w* 1)

57rl/v¢

z /E /// (059}”/4“/1/_ - /%:T

4.3

Em v @4 :
s =[- EM)//—COSQ)+(/f+/)%“//‘2")g+2%f
8FW¢

6 _/ + /ﬁﬂ/// cos8) * (>~ f)/

P 5:5//2% C = 505‘.5,2.

7)

Now, Gell-Mann and Goldberger ‘ have shown that in the limit of
small p the Compton amplitude must reduce to the classical result up

to terms linear in p. This result, up to terms linear in p is given
by
Fz ~, z " A A
F:-L . —-Z/—’ +/‘—';/7b,zr,[(px€2)><(fx5,)]
Lt HHa)ap LT plhre) & +opxe, peg

EE (4..4)
“r-p’/fz xE, )€ +opxE, pie]- AP ATERE,

We can check our result by finding its low energy limit and comparing
it with (4.4). The low energy limit of (4.3) is given by

67rh/¢@

P ——-’—/—co59+—-/u// Cos6)
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S Y3
er
S ¢
ere
ST P2 j
i Tt/ ~cos¢ +,ﬁ [/—/al-/a//—wsé’/}
STwée
e*s
8w Pe
e*s

-~/ 4+ cosO +M/3 (/—/u‘}

— ~[ —Cos5F ~ AZ;/“ //’6055}
(4.5)

>t/ + Cos &

—t/ -6059—5 (/—/uz—/u//-—cajé’)]

If one evaluates (4.4) between our helicity states one finds that
the zero order term agrees but that it is necessary to add to (4.4) an

additional term F'
/ ez f’ A A
= M ',;‘"(ffz)(;b’f/) (4.6)

This term arises from the fact that the low energy limit derived

by Gell-Mann and Goldberger is in the laboratory system while our
result is in the center of mass. The additional term (4.6) comes in
when we transform (4.3) into the center of mass and is required in
order to insure that the photon polarization four-vector keeps its
time component equal to zero. With this in mind we obtain for the

low energy limit

87TPVQZ.

i —— -/~ C059 +_5,u (1- cose)
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—e s M

STWP 4y - C059+)§ [/_-,u"._/u-{/—cw&)]

which agrees with (4.5).

If we evaluate the Born term at 90° we obtain the result
given in Table IV. To see to what extent the Born term contributes
to the cross-section, apart from interference effects, we have plotted
in Graph 2 the cross-section due to it alone. This is the Powell
cross-section and its increasing with energy is due to the proton
anomalous magnetic moment as can be seen by comparison with the
Klein-Nishina cross-section which is obtained from (4.3) by setting
p =1 and is also plotted on Graph 2. Both agree at p = 0 (being

2

2
equal to % (Z%ﬁ) ) which is expected since the effect of

magnetic moment interactions go like v/c.



V. LOW AMPLITUDES

Thé importance of t-channel (Channel IIT) processes in
Compton scattering was first noted by Low23). The diagrams of this
t&pe which we will consider are depicted in Figures 2e and 2f,
corresponding to the exchange of a ﬁo and an 7 meson. Since both
these particles are pseudoscalars, the only difference being the no is
isovector and the 1 is isoscalar, the analysis of the two diagrams

is the same.

0
For the = we have at the ﬂONN vertex

(nf;)/R/m):Zn,;j;j;o?oyz TV ulp) G0

2
where g 1s the strong coupling constant (5—~= 15) and q is the momentum

4y
four-vector of the intermediate state. The Yg in the coupling is due

0
to the fact that n 1is a pseudoscalar particle.

At the ﬂoyy vertex we have

. / F(t)
(% %nlR /"(7—)):377'/2 (ko Fr090) % 5/t 527;‘

X éipcyfvo“ (A% +’£} %a (Aé “/é} Af

(5.2)

where F(t) is the Goldberger-Treiman24) form factor which at the mass

of the pion assumes the value

F(m;)EF=“3/7;31T7)//Z (5.3)
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where ¢ is the pion decay lifetime.
Calculating the diagram, using these vertex functions we

obtain for éach of the six helicity amplitudes,
¢/:¢5’:¢4: =0

.4
g mmg, = 2p sin s A ‘
2 " 8w £ -mn

2 iy’
where t = - S—*—é———l— (1 - cos 8) and

2W

/\ = ’4—;/ (77777,7/2*)1/2: =2.1 MeVv

taking for the pion lifetime the current value of 1.9 x 10_16 seczs).

The contribution of this diagram to the amplitude is given in Table V
at 90° as a function of energy. Although it is comparitively small,
the ﬂO is important through interference with the other terms.

There has been some controversy in recent literature as to
the sign of F. It is clear that all that matters is the sign of F
relative to g which is arbitrarily made to be positive. Goldberger
and Treiman's result is that Fg is negative, which was obtained by
using dispersion relations at the ﬁoyy vertex. A perturbation theory

3)

calculation, used by Jacob and Mathews in their calculation of the
contribution of the Low amplitude to Compton scattering at low

energies has the opposite sign. Jacob and Mathews were able to

obtain agreement with experiment at low energies with their choice of
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26 .
sign, while Lapidus and Chou Kuang Chao ) found that using the sign
predicted by Goldberger and Treiman made the agreement with experiment
worse. Several authors since then have avoided the issue by using

4,27) while others have chosen either one or the others’g).

both signs
In any case, both calculations take into account only NN intermediate
states and it is possible that other baryon-antibaryon intermediate
states may be important. Furthermore, the prediction of the ﬂO decay
lifetime using Goldberger and Treiman's dispersion relations gives a
result very different from that observed experimentally. For these
reasons and for the reason that we can get good agreement in Compton
scattering at low energies, we shall use the sign of Jacob and Mathews.
In any case, at the energies being consideredhere and with the
experimental uncertainties being what they are, this term will not
play a very big role.

The contribution from the n-exchange diagram is calculated in
exactly the same way. However, here we are on uncertain grounds as
we know very little about the strength of the qNﬁ coupling or the
decay lifetime of the 7. It is possible however, to make a
theoretical estimate of these quantities by appealing to the results
of unitary symmetry and the eight-fold way. The coupling gﬁNﬁ is
given by gﬁJE’_ gD//giand if we use a D/F ratio of 3/2 predicted
by SU(6) and verified approximately by the neutron and proton

magnetic moments we find gnNﬁ = %’Mgzg. At the mnyy vertex we have

0
conservation of U-spin, so that only the U = O state of the s and 7
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can decay into two photons. Therefore the matrix element

1 0 1 . , y
<§ o+ Jgin[2y> = 0, implying that {(n|2y) = - 1/~3 (r0|2y).
Combining factors we get for A in this case a value
P ] v O
(1/5»/3)(—1[/3) = - % that for n exchange. In addition, the mass of

the 1 now appears in the denominator so that the :j-exchange contri-

bution is much smaller than the ﬂo—exchange and will be mneglected.
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VI. CALCULATION OF CROSS-SECTIONS AND COMPARISON WITH EXPERIMENT

Using the amplitudes we have calculated and tabulated in

Tables II, IIL, IV, and V, we proceed to add them together to obtain

Table VII, the total amplitude. In order to show the effect of the

Low amplitude, in Table VI is found the contribution due to the

Born term and the isobar terms only. Using the expressions for the

cross-sections obtained in Chapter II we calculate and plot the

following gquantities:

Graph 1

Graph 2 a)
b)
c)
d)

Graph 3

Graph &

- (all at 90° am)

do

i unpolarized

dc
o

unpolarized

with and without the Low amplitude

do

unpolarized

for the Born term alone (Powell amplitude)

do

4

unpolarized
for the Born term with p = 1
(Klein-Nishina amplitude)

iy

dQ df)

dc

unpolarized

P, the recoil nucleon polarization.
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The experimental data as of January 1966 consist of the

following groups:

1) 0-100 MeV Work done prior to 1960 and not applicable to

this thesis,

2) 100 - 290 MeV  Illinois group of Bernardini et a1.29) at CM
scattering angles of 90° and 135°,

3) 275 - 425 MeV  Cornell group of Dewire et al.30) at 90°. Also
angular distribution at 312 MeV for 600, 750,
90°, 120°

4) 300 - 700 MeV Nagashima ) at 90°.

5) 500 - 850 MoV  M.I.T. group of Stieming et al. ™ at 90°.

6) 450 - 1350 MeV Cornell group of Rust et al.lz) at 90° (most

recent results).

The paucity of experiments on Compton scattering above the
pion threshold is due to the great difficulty in performing them.
Above the threshold the photoproduction of mneutral pions produces

photons via the process
/{77’-7——*704-77‘0 — b r27r

with a cross-section about a hundred times greater than the Compton
process itself, It is necessary to discriminate between these
different events and this is done by measuring the nucleon recoil
energy which is less for the photoproduction recoil protons than for

the Compton recoil protons. This lowers the experimental efficiency
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considerably so that most of the experiments have been done at 90°
in the_CM which is an angle which tends to minimize the difficulty.
So far, no experiments have been performed using polarized photons
nor has the recoil nucleon polarization been measured.

On Graph 1 we have plotted the 90° results of these
experiments for comparison with the theoretical prediction of this
thesis. In the region we are concerned with here the experimental
errors are large so that we can only hope to make a general comparison
and do not attempt to obtain fits nearly so accurate as those

obtained with dispersion relations in the lower energy region.
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VII. DISCUSSION

 Using an isobar model we have obtained a theoretical Compton
scattering cross~section curve which fits the main features of the
experimental evidence. This agreement is semsitive to the accuracy
of the model in the following ways:
1) There is good agreement with the value at the maximum of the
first resonance. This depends very much on the accuracy of the value
for C3 and C5 which we are using, as the cross-sections depend on
the fourth power of these parameters. There is also a considerable
contribution from the Born term which raises the peak by about
2.5 x 10-32 cm? over that due to the resonance alone.
2) At the second resonance there is disagreement between the results
of Reference (11) and those of References (12) and (31) and our
result favors the latter.
3) The positions of the maxima are shifted to lower energy for both
resonances. This comes from interference between the real part of
the resonance and the real background but its magnitude depends upon
the large imaginary amplitude coming from the resonance which dominates
the behavior of the cross-section at the peak. For the first resonance
this background is mostly the Born term because the second resonance
is weaker and has little effect at the position of the first. TFor the
second resonance the tail of the first resonance is still large so that
the back g round consists of both the Born term and the first resonance.

The direction of this shift depends on the relative signs of the real

part of the background and the imaginary part of the resonance at
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energies just above and below the mass of the isobar. (See

Appendix IV), TIn both cases our model predicts a relative sign which
is poéitive.so that the maxima are shifted to lower energies, more so
for the second resonance because there the background and the resonance
coﬁtributions are comparable,

4) The model exhibits the characteristic shallowness of the trough
between the resonances. This comes from constructive interference
between the resomances and would not occur if the relative signs of

the amplitudes for the two resonances were not as they are. Also the
Born term we have used (Powell amplitude) becomes even more important,
as Graph 2 indicates it contributes more than two-thirds of the
cross-section at the minimum.

5) The uncertainties in our model are larger than the contribution
from the Low amplitude for ﬁo exchange so that this would not be a

very good way to measure the ﬂO lifetime, If the 1 term which we have
neglected were to be appreciable, that is if its lifetime were much
shorter than we haﬁe supposed, its effect would be to raise the cross-
section at the second resonance, lower it in between the resonances

and raise it below the first resonance. If the M.I.T. datall) turn
out to be correct, this may be the reason why our model does not agree

with it, another reason of course, being that the parameters D,, D

37 75
which we have used are too small.
We conclude now with some observations about the results we

have obtained for the recoil nucleon polarization and the cross-

section for polarized photons.
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1. Referring to Graph 4 we see that the recoil nucleon has positive
polarization (in the y-direction see Figure 1) over the entire energy
range.SOO - 800 MeV and has a peak at about 600 MeV, of about 25 percent.
The recoil nucleon polarization will be large and positive at energies
where the amplitudes QB*, ®4 have large imaginary parts and the
amplitudes ®2 + 66, ¢1 + ¢5 have large real parts of the same sign or
vice~versa. This condition holds between the resonances and hence

we have the peak there., Note that the dashed part of the curve is an
extrapolation down to O where we know that P is 0 since the Born
amplitudes are all real. It is possible that P becomes negative for

a while but we have not made any calculations in the sub-resonance
region.

2. The Low amplitudes do not enter into the polarization because for
these amplitudes we always have ¢2 = - 96 and we only have terms

QZ + ¢6. Thus, the effect of a larger Low amplitude than we have
considered would not change the general features of the curves (such
as their sign) but would only increase or decrease them depending on

whether the Low term subtracts from or adds to the unpolarized cross-

section.
do do
3. L ——ﬂ exhibits a negative peak at the position
dq df
do
an

unp.
of the first resonance and a positive peak at the second. This
general feature depends only on the parity of the resonance as this

is what mostly determines the relative signs of the amplitudes at the
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resonance. An inspection of Tables II and III at the resonant
energies shows that the signs observed with the fﬁll amplitude are
those we get considering the resonances alone so that in our model the
interference terms are not enough to change these signs. This would
incidently, afford a means of determining the parity at a resonance

if it were not already known.

Compton scattering may also be analyzed in terms of the
multipole amplitudes of Chew, Goldberger, Low and Nambu32) and this
leads to a simple prediction for the angular dependence of the cross-
section at resonance which is different from the result of the

isobar model. This analysis will be found in Appendix V.,
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APPENDIX I. TRANSFORMATIONS BETWEEN AMPLITUDES

Eorlconvenience in comparing these results with those of other
authors who use amplitudes other than helicity amplitudes, we are
including here some other sets of amplitudes and the transformations
from the helicity amplitudes used here.

A. Jacob and Mathews>) use Pauli spinors:

(CNIRIZN) =g, &-& + 2. (k-5 )(K &)
+?3,zﬂ‘£‘xé‘ #;? ,(f./{’xk
* G5 i [E ks E xky —E; Ky € X K,)

(AI.1)

+ 9, i [E b Eyxky, — &yl € XK

M
fis Zﬁz 2

The momenta are unit vectors.

26)

B. Lapidus and Chou Kuang-Chao use Pauli spinors:

(N, [RIGN) =R, &€ +R, 5,5 +/R0:6x¢
iRy S, x5, +i Ry [T fo, Sy & ~0iky 5°6)
+ iRy (ke 5,08, ~ Tk, 56 -2
S, = XE  S,=k,x &

The momenta are unit vectors.
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6)

C. Hearn and Leader use Dirac spinors.

Defining

fi; = ?é_ Cf@u,"fzyu-) /(;,’: jé—(,KZu -'AE/‘)

1

A

Y

Rope * Ko

Nu =€uspr £ Ko Qp

They write the amplitude in terms of invariant amplitudes

h (af/vz/F/oi/V,)=€2’Liz(—ﬁ)5v%/ﬂ)€w
(T =z F )

/% Nt 4 (G- Ne)
F "'A (5 /1‘ ) - Z NZ /43 (P/z.N:.)'/Z "}./5"
Pl P v [Py + Bl M) (-2
T~ v Nuthy . VY 7 N
+A4 P2 AQ/K”‘A; /Czyx )//\/ +A6 (,D’z/vz)’/z 13’5‘,6 r K

The Ai are expressed in terms of the Ei as follows:
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\S\\\ﬁi ZﬂQi 2ﬁ¢3 21¢5 2n¢2 21r(2)4 2ﬁ@6
Ai pc pc pc pPs ps ps
A M i -2M | M Wl 2w | -w
A, -M 2M | -M W | -2w -W
A, 0 0 0 w 0 -W
A E 2E E JMop g 2M M
4 P p P p P p
E 2E | E |_ X 2M | _M
A - = SIS - -
5 p ) p |3 p P
Ay -1 0 1 0 0 0

The fi are expressed in

terms of the Qi as follows

(AL.4)
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(AI.5)

(o soo-1)¢ (g s02+7) ¢ (g soo+1)7 | (5 S0°-1)T 9
0 = — 0 kS
1- 1- i T

(g s00-T)% (g s02+T) T ; (g soo+1)w | (0 S92-1)T 1 - S

0 SO0D 4+ g 800 = 7/1 g 809~ 5 S0D ki v
v/1 - Z/1 - v/1 - ¥/1 - Z/1 - ¥/1 - 3
#/(0 soo+g)- | z/(g s02-1) | #/(p s00-1) | #/(p s0°-¢) {g/(6 S02+T) - |7/(6 SO°+1)~ ©3
(9 s02+1)T (g soo-T)¢ rA
/1 - ~—Q5 so5-1 7/1 - /T - 5505 /1 - 3
¢\Am s00-T)- | ¢/(g s02-1)- 1%/(0 s0o-1)- | /(0 s0°+1) | ¢/ (g s02+1) | /(6 SOO+T) L

3
ds/% ds;"g ds/%g da/%g do/%y a3,
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The fi are expressed in terms of the Ri as follows:

tl = - Rl - R2 cos O

f2 = R2

f3 = R3 + R4 cos 8 + (R5 + R6)(l + cos 8) - (R5 - RB)(l - cos B)
£, = R

Ao (AL.6)
£5 = R4 + R5

f =R
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APPENDIX II. SPIN 5/2 PROPAGATOR

P = L M- 17 X
G5BBy o M 4 pP
52 (5 5 + 5 5 %5 5 )
OBy By By By 5 G, BB,
4
+ =5 (p., P, Py Pp )
W O % BBy
+ 2(3 Py P, *+ 5 P, P, -2398 P, Pn - 285 ., P, P, .
G By By BBy OBy % By G870 By
-2 )

) g, P, - 28 P, P
OBy By OBy Oy By

-
+M 8 (v,pPy - P, Y, )+ 5B (v, P, =D, Y )
"o By OBy T8, OB By OBy
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TABLE OF MATRIX ELEMENTS BETWEEN HELICITY STATES

APPENDIX TII.
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APPENDIX IV, SHIFTING OF RESONANT PEAKS

In general, near a resonance, the background is real and

slowly varying so we may write for some amplitude

X +48

FE) =B+ gy

For the cross-section we will have terms

/ 2«83
-+
x?—_‘_ﬁﬁ X2+ﬁ1

gJ(E)N/%(E)/Z =[B*+

To find the maximum we set ¢'(E) = O using the fact that in the
neighborhood of the maximum & << B and we can also neglect the

derivative of B. Then we have

a"(E)z—% + g,;%.=0
so the maximum occurs wnen O = BZB or in the direction from the
original peak where B and ¢ have the same sign.

For the first resonance in Compton scattering we see that
for all the amplitudes except ®3 we get a positive sign at lower
energies so the peak shifts to the left. Similarly at the second
resonance we find that ﬂl, ®3, ¢4, @6 give positive contributions

and ¢3, ¢4 negative, but with a resultant shift to the left.



APPENDIX V. MULTIPOLE ANALYSIS

In this section we shall decompose the Compton helicity

amplitude into partial waves and relate the imaginary part of these
to.photoproduction partial wave helicity amplitudes via unitarity. We
shall compare this at the first resonance where the amplitude is
predominantly imaginary, with the result of the isobar model.

The six helicity amplitudes ¢i can be decomposed into

partial waves

_ =t J J
L= P12 Z (2741) @5, Ay, @) (av.1)
J

= AN - _ J
where xl = Xkl Kyl, Xz = th kyz, the ¢k1K2

helicity amplitudes describing a transition from a state of helicity

are the partial wave

kl and total angular momentum J to a state of helicity kz and total
J
MM

angular momentum J, and d

by Jacob and Wicle).

(9) are the well-known functions given

Now, since the S matrix is unitary
te _
5'S =1 (AV.2)

we can relate the imaginary part of the Compton scattering amplitude
to the pion photoproduction amplitudes. These four amplitudes can

also be expanded into partial waves,

(6' = %Mz :2-——/7’7),/22 (27+1) ffli 0(/‘::2 (4) (AV.3)
. J



where q is the pion momentum. From AV.l, AV.2, & AV.3 it follows that

J J ¥
]m?ﬁu =5 £ % (AV.4)

/ 2
,\:i’.’.
2

We now make the usual assumption that at the position of the

resonances only the partial waves with J = 3/2 occur in AV.4 so that

N

32 _3hax 3/
o+

3/2*}0{) A {9) (AV.5)

Now we shall turn to the expression of the photoproduction
partial wave helicity amplitudes in terms of the electric and magnetic
multipole amplitudes of Chew, Goldberger, Low and Nambusz), obtained
by evaluating equation (7.2) of Reference (32) between photoproduction

helicity states and using (7.3) - (7.6) of (32). The result is

Zz.-

%2/1 :'(tzz) M/+ +3E/+ +3M2— "Ez-J

£
22 L

901/2:" =(é£)yz ‘r MI+ +3E/+ '_3/\//2— "'Ez—:

%3—; :(%t)’/zﬁ[/\%,L “E,, ~M,. - Ez—; (AV.6)

@ "/—[ I+ +El+ MZ— 2‘

Now the first resonance proceeds mostly via Ml+ with a small amount
of El+ and likewise the second resonance proceeds via E and Mé

Therefore, at the first resonance we have
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2 Y2
Im & =2 IM, +36.1% A . . (&)

3

[m¢z =2/ My +3E/+/z o[g/j_z (6)

—

2 2

Im @y = 243 [ (M, +3E,, )My~ ,+)/aé ,;/a)
(AV.7)
[m ¢+ Z/?//M/,e. +3[f-/,¢)//1///+ /4) /oé.__ ; (‘9)

[/’V¢5‘:6 /M/,«. 57‘/ 0{—_-—-— {5/

1l

i

[/""566 é//\7/.,1- E/.f./ 043_3 (6)

where a constant in front has been omitted as we are interested in
the angular dependence. If we assume pure magnetic dipole by setting

El+ = 0, and substitute the values for the d-functions we obtain

Im ¢, =1 M./ - 3C059)C05' ; Im b= ‘//‘7;,‘/%3‘(/14(0519}(05{
Im ¢2 /M/+/2 [/+3C056}S‘//Z [m% /M/f'/f;(/—(o:ﬁ}S/ﬂZﬁ

Im ¢35 =IM,, 1’301~ cosg)cos £ v.8)

Lon bg=— /\7,+/23//+c059}5/n§

At 90° 319,/ =3/F2]=/b5/ = [bs/=IDs) =95/

Since at the resonance Re ¢i is almost zero we can use (AV.8) to
calculate the cross-section at the resomnance as a function of angle

since the same factor EMH_lz appears in each helicity amplitude,.

The result is
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jg !M,,J (7 +3c0s%6 ) (AV.9)

At the second resonance we must retain E and Mé

In#,=2 1 3M -Eo- " oZs s (0)

Im #s = <2/ 3M,. - £ 1" d2s , 18)

Im ®3 =243 1(3My- £, )(-M,. -F,.) /0(32{2_5/6)
Im 94 = 245/ (3Mynby J-My~E, ST sy ) 4710
In®s =2 /-Myu-E12d %5310

Im @ =-2/-M,.-E, | J”” (6)

and with the assumption that E2 dominates

In & =1 E,- [*(1-3c056) cos % Im¢=1E, | zﬁ’(—/—(oSﬂ)Coszf
Im b, =/ E,_|*(~1-3c050)sinl Tty =IE,.I" 30~cos8)sin %
Im 93 2/52-/23/"/"(”59)C05’§ (AV.11)

Im #2 =/E, 23(1+cos8)sins
A 90°: 318,1= 3P =18,] <1y =] by /=1

so that the cross-section at the second rescnance becomes
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A I (7 4 3c0s%0) ey

4

which has the same angular dependence as the first resonance.

Let us compare this result mow with that obtained for the

angular distribution by the isobar model. Considering only the isobar

terms we have, for the first resonance, setting W = MR, E=E

and k =k, a great simplification of (3.25): ’
4¢ = —[a (¢ Mg} b ke M-t Ez"’,\',,M]}L(Bcose-l)cosg

UG5 =|aks w5 rabky 5 -cost) cosd

I, %z[az/./e‘ E”} LI ME E"’ }(/+6059}6052

A4 %7:;= 2z L . ~bkeMg ‘?,\_,,M] $(3c056+1) sing @13

A4 - [k + RMEET v ab k2 8] (1s cost)sin £

gr [ . M £,
A2¢6?z= az(—k;ﬁe +bl/<; M?E£ M](/ cose)sng

where we observe that each amplitude has the angular dependence of the

appropriate d-function. WNumerically, the terms with b are negligible

2
compared to the a~ term so we have

¢§N.._

Z

/3(059 1) CoSz

o~ Kk 3(/——C05‘6’}c05‘2’ (AV.14
by ~ -k;lMe 3(/+<0s6) cos €
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b, ~ MR

(3cos6 +1)sins

Py~ £ 3(/+cos6)sin¥

qé e Me
¢ T m
Comparison with (V.7) and (V.8) shows that instead of the single

¢
3(1-co58)sin5

factor [Ml+l2 as in (V.8) we have three different non-angular factors
as in (V.7) with that for ﬂl equalling that for ﬁz, ¢3 = ¢4 and
¢5 = ¢6' We can identify the three factors in (V.14) with those
in (V.7)
. 2 k;M
/ A%O+ +“3éf/+-/ - Mg

//‘4/+ _E/+/z /é'jwMR

\

(AV.15)

/(MH +3E+///V//+‘”E/+}*/ _"'é;

so that it becomes obvious how our analysis by isobars has included
an electric quadrupole part. In fact, we can estimate immediately

how much electric quadrupole is included by satisfying (AV.15) with

M/+ -£i = /A:,'@/MM +3F4) (AV.16)

so that
5,,4/ / M—Mx
== - | R | A~ 5.57
/° /M/* M+3M,q/ S (AV.17)

If we substitute numerical values in (AV.13) we obtain for the

cross-section at the first resonance as a function of angle due to



the N¥%* alone

73

A2 ~ (115 +‘7“7C0529)"/0_32cm7' (AV.18)

Mﬂ =M/V*

as compared with the angular dependence 7 + 3 cosZG obtained from the
multipole analysis, assuming pure magnetic dipole. These two angular
dependencies have been plotted as Graph 5 where experimental points
at the nearest available energy arc shown. The magnetic dipole and
isobar angular distributions have been normalized to give the 90°
cross-section from experiment at MR and the vertical numerical scale
should not be taken seriously as for both these curves the non-
resonant contributions have been neglected. What the graph does
illustrate is that the isobar model reproduces the sharpness of the
experimental angular distribution much better than the 7 4+ 3 cosze and
a more careful angular distribution experiment would be able to decide
the extent to which electric quadrupole is important.

In a similar manner we obtain from the N*¥% isobar an angular

distribution at 750 MeV,

0(0"/ ~ 2
o(_ﬂ' X /7 +3/cos%8 AV.19)

Mﬁ = M/v#m

as compared with the 7 + 3 c0529 assuming only E The big difference

o

here comes from the large amount of MZ- we have included. There are no

. . [OR . .
experimental points at angles other than 90  in this region.
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TABLE I

HELICITY AMPLITUDES

KNZ Kyz kNl Xyl kl Kz Name
1/2 1 1/2 11-1/2 - 1/2 ¢1
- 1/2 1 1/2 1]-1/2 - 3/2 ¢4
1/2 -1 1/2 1]-1/2 3/2 ¢3
- 1/2 -1 1/2 11-1/2 1/2 ¢2
1/2 1 1/2 -1 3/2 -1/2 @B
- 1/2 1 1/2 -1 3/2 - 3/2 ¢6
1/2 -1 1/2 -1 3/2 3/2 @5
- 1/2 -1 1/2 -1 3/2 1/2 ¢4
1/2 14-1/2 11-3/2 - 1/2 -¢4
- 1/2 11-1/2 11-3/2 - 3/2 ¢5
1/2 -1)-1/2 1]-3/2 3/2 -¢6
- 1/2 - 1i-1/2 14-3/2 1/2 ¢3
1/2 11-1/2 -1 1/2 - 1/2 -¢2
- 1/2 1]1-1/2 -1 1/2 - 3/2 ¢3
1/2 -11-1/2 -1 1/2 3/2 —Qa
- 1/2 -1yi-1/2 -1 1/2 1/2 ¢l

le - MYy AN, = XNZ - Kyz
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TABLE V
LOW AMPLITUDE (90°)

(rg=1.9x 10—16 sec)
7

\\\\éfﬁff/ez”/%f 2

W
940 0
1210 .73
1220 .72
1230 .72
1240 Al
1250 .68
1260 .67
1300 .61
1400 51
1515 43

b = - 0,
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' TABLE VIII

PROPERTIES OF ISOBARS

N4§‘ Nn‘n‘
0 3, 3 3. 1
J T 2 +) 2 2 2 2
Mass 1240 MeV 1515 MeV
kylab 360 MeV 750 MeV
Width 140 MeV 140 MeV
03 .35 D3 -.048
05 -.0043 D5 -.009
a2 5.7 x 10—6 e2 MeV-2 c2 Al x 10"6 e2 MeV-2
b2 [1.65 x 1071 &2 Mev 4| a2 |8.2 x 10713 &2 eyt
ab -.97 x 1070 & Mev™> | ca -.30 x 1077 &% Mey™>
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SCATTERING PLANE

FIGURE 1 .
CENTER OF MASS COORDINATES
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GRAPH 5

ANGULAR DISTRIBUTION
AT MASS OF N*

30

0° 90°
C.M. SCATTERING ANGLE

A-MAGNETIC DIPOLE
- B-N*ISOBAR
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