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Abstract

The rheology and microstructure of complex fluids are intimately related, and this
relationship is explored to gain a deeper understanding of the physics of colloidal
dispersions, emulsions and polymer solutions.

The nonequilibrium microstructure and rheological properties of dispersions in
steady, simple shear flow are calculated by solving the Smoluchowski equation as
a function of dimensionless shear rate. The particles have a purely repulsive inter-
action with an hydrodynamic radius, a, and a thermodynamic radius, b. For hard
spheres, b/a — 1, shear thinning is caused by a decrease in the Brownian contribu-
tion since Brownian motion becomes less important with increasing shear. Shear
thickening occurs because of an increase in the hydrodynamic viscosity caused by
the increased probability of finding particles near contact with increasing shear when
particles hydrodynamically interact. The first normal stress difference changes sign
since Brownian and hydrodynamic contributions have opposite signs, while the second
normal stress difference is always negative. Scaling arguments are made 1o extend
these dilute results for concentrated dispersions. Similar calculations and analyses are
performed to study the effects of hydrodynamic interactions and varying b/a ratios
on rheology and microstructure.

Scaling arguments for the volume-fraction dependence of the bulk stress of emul-
sions al the critical capillary number are presented along with experimental evidence
using an unstabilized emulsion of polymerized castor oil dispersed in polydimethyl-
siloxane. It is shown that the droplet contribution to both the relative shear viscosity
and first normal stress difference is linear in volume fraction for a given viscosity ratio
for dilute to moderately-concentrated emulsions in steady, simple shear flow.

Stress jump measurements are performed for the first time for (i) shear startup
and (ii) polymer solutions in shear. The startup viscosity of a polymer solution

of polyacrylamide in fructose-water at equilibrium is equal to the measured high-
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frequency dynamic viscosity, as expected, since both methods measure the viscous
contribution to the viscosity associated with the equilibrium microstructure. Since
polymer solutions exhibit stress jumps different from the solvent viscosity, effects of

shear on the hydrodynamic viscosity can be investigated.
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Jomplex fluids are multicomponent systems in which there are at least two different
length scales. Often these different length scales are inherent in the components,
where, for example, colloidal dispersions consist of small particles suspended in a
fluid, where the particles have a characteristic length ~ O(10~" m) and the suspend-
ing fluid molecules are ~ O(107'° m). Alternatively, all components can have the
same characteristic length, but at least one of these components interacts in such a
way that structures with larger length scales are formed. An emulsion of two im-
miscible Newtonian fluids has components that both have the characteristic length
of a molecule, ~ O(107'° m), but droplets are formed having a characteristic length
~ O(107® m) because the fluids are immiscible.

When flowing, a complex fluid may be shear thinning and/or shear thickening,
where shear thinning (thickening) is a decrease (increase) in the steady viscosity with
an increase in the applied rate. Complex fluids may also exhibit interesting physical
behavior during flow, such as rod climbing when a single rod spins in a reservoir of
fluid and/or die swell when a complex fluid flows through and exits a die. Phenomena
such as rod climbing and dic swell are results of normal stress differences.

The main theme of this thesis is the exploration of the relationship between the
microstructure of a complex fluid and the macroscopic rheological properties in simple
shear flow. These rheological properties include shear viscosity, first and second
normal stress differences and the nonequilibrium osmotic pressure.

Colloidal dispersions arc analyzed in Chapters 2 and 3, where the microstructure
is found by solving the two-particle Smoluchowski equation and then used to calculate
the macroscopic rheological properties. In Chapter 2 the analysis focuses on behav-
ior at small shear rates while the analysis of Chapter 3 is valid for arbitrary shear
rates. In both chapters, the colloidal dispersions consist of spherical particles with a
hydrodynamic radius, a, and a thermodynamic radius, b. Three different cases are
studied: (1) b/a =1 and hydrodynamic interactions are neglected, (2) hard sphere
particles, where b/a — 1 and two particle hydrodynamic interactions are included,
and (3) steric or charged stabilized particles, where b/a is varied and two particle

hydrodynamic interactions are included. For hard sphere dispersions, shear thinning
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is caused by a decrease in the Brownian stress due 1o the decreasing importance of
Brownian motion with increasing shear rate. Shear thickening occurs at high shear
rate because there is a large probability of finding two particles near contact and
these particles hydrodynamically interact, resulting in an increase of the hydrody-
namic contribution to the viscosity. The first normal stress difference, N, is positive
at small shear rates, passes through zero. and is negative at high shear rates since
the Brownian and hydrodynamic contributions have opposite signs. At low shear
rates the positive Brownian contribution dominates while the negative hydrodynamic
contribution dominates at high shear rates. The second normal stress difference, N,
is negative for all shear rates. Lastly, since |N;/Ny| ~ O(1) and Ny < 0, there is
only negative rod climbing. The cffects of hydrodynamic interactions on rheology
and microstructure arc studied by changing b/a. There arc only minor effects on the
microstructure, but rheology is quite sensitive to the value of b/a.

Next, in Chapter 4. emulsions of two imimiscible Newtonian fluids are studied. A
scaling argument is presented for the volume-fraction dependence of the bulk stress
of an emulsion at the critical capillary number. At the critical capillary number, the
droplets are just about to burst and a small increcase in the shear rate should cause
droplet breakup. This scaling argument relies on the hypotheses that the size, shape
and orientation of the droplets are relatively insensitive to changes in volume fraction
for dilute to moderately-concentrated emulsions at a given shear rate. Experiments
are performed on an unstabilized emulsion in simple shear flow using a constant stress
rheometer, and the scaling argument for the volume-fraction dependence for viscosity
and first normal stress difference is confirmed; thus, ., — 1 ~ O(¢) and N; ~ O(n,¢)
for any value of applied stress (or rate) and for dilute to moderately-concentrated
emulsions, where 7, = n/7, is the relative viscosity. n is the emulsion viscosity, 7, is
the suspending fluid viscosity, % is the shear rate, and ¢ is the volume fraction of the
dispersed phase.

Finally, polymer solutions are discussed in Chapter 5. Linear viscoelastic and
stress jump measurements at flow startup are completed for polymer solutions of

polyacrylamide in fructose-water. Stress jumps at startup are made for the first time,
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confirming the relationship n* (¢t = 0;5) = n.,, where n(t; %) is the viscosity growth
function after flow startup at time ¢ and shear rate v, and n/_ is the high-frequency
dynamic viscosity. This relationship is valid simply because both measurements yield
the viscous contribution to the viscosity associated with the equilibrium microstruc-
ture. Furthermore, it is shown that stress jumps at startup also yield G(t = 0), where
((!) is the linear viscoelastic relaxation modulus; thus, startup stress jumps can be

used to test predictions of n/_ and G(# = 0) of different rheological models.



Chapter 2

Normal stresses in colloidal dispersions



2.1 Introduction

Colloidal dispersions — suspensions of small particles dispersed in a fluid medium
— occur in a wide variety of situations, including slurries, paints, péstes, dyes, poly-
mers, protein solutions, many foodstuffs and ceramic sols. 1n these “microstructured”
materials the suspended particles interact through hydrodynamic, interparticle and
Brownian (or thermal) forces. The balance between thermal and interparticle forces
determines the equilibrium behavior, which can give rise to a variety of states, from
dispersed amorphous gas- or liquid-like microstructures with a relatively low shear vis-
cosity to highly ordered crystalline dispersions with elastic moduli and yield stresses.
Under the action of an external driving force such as shear, hydrodynamic forces
come into play and compete with thermal and interparticle forces to set the structure
and determine properties. An cven richer variety of microstructures is now possible,
with flow-induced melting or ordering, etc., and transport properties in these highly
nonequilibrium states can be vastly different from those at cquilibrium.

Our understanding of colloidal dispersions has increased markedly in the last
decade. This has resulted from three developments: 1) The excellent experiments on
well-characterized model systems [van der Werfl & de Kruif (1989); van der WerfT el al.
(1989); van der WerfT (1990)], 2) the invention of Stokesian Dynamics as a technique
to numerically simulate suspension behavior [Bossis & Brady (1984, 1987, 1989);
Brady & Bossis (1985, 1988); Phung & Brady (1992); Phung (1993)], and 3) a new
scaling theory capable of predicting behavior near maximum solids fractions [Brady
(1993a, 1993b, 1994)]. The scaling theory successfully predicts the near-equilibrium
behavior of colloidal dispersions, specifically to first order in the perturbation of the
microstructure caused by flow. This first order perturbation is sufficient to determine
the shear viscosity, but in order to determine normal stresses, perturbations to second
order in the shear rate are required. The purpose of this paper is to extend the
perturbation theories to second order, and thereby predict normal stresses and the
shear-rate dependence of the osmotic pressure of colloidal dispersions.

To our knowledge the only analysis of normal stresses in colloidal dispersions is
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that of Blawzdziewicz & Szamel (1993), where they considered the dilute limit of
Brownian hard spheres in simple shear flow in the absence of hydrodynamic inter-
actions. By using an eigenfunction expansion they were able to compute the mi-
crostructural deformation and resultant rheology up to Peclet numbers of 12.5. The
Peclet number, Pe = ya?/ Do. measures the relative importance of hydrodynamic
shear and Brownian forces. Here, a is the particle size, ¥ the magnitude of the shear
rate, and Dp the Brownian diffusivity of an isolated particle; Dy = kT/6mna, with
kT the thermal energy and n the viscosity of the suspending fluid.

On the experimental side there have been numerous measurements of normal
stresses in polymeric fluids, and of suspensions dispersed in polymeric liquids, but
there have been very few measurements of suspensions in Newtonian fluids. Indeed,
we have found only three such studies: Al-Hadithi, Barnes & Walters (1992), Jomha
& Reynolds (1993), and Laun (1994). A very limited range of conditions were covered
in these studies and, in particular, the shear rates were too large to extract the low-
shear-limit behavior considered here.

The only other results on normal stresses in colloidal dispersions are the Stokesian
Dynamics simulations of Phung (1993) for suspensions of Brownian hard spheres.
Phung has simulation results for both the first and second normal stress differences
for volume fractions ranging from 0.316 to 0.51 and for Peclet numbers from 1072 to
101, We shall compare our theoretical predictions with his simulation results below.

Several recent papers in the literature have pointed out that the perturbation to
the suspension microstructure by flow is singular rather than regular [Ronis (1984);
Dhont (1989)]. In a linear flow there is always a region far from a particle where
the effects of convection and diffusion balance regardless how small the Peclet num-
ber [Leal (1992)]. This “outer” region occurs at a distance of O(aPe™'/?) from a
test particle and renders the perturbation singular with the appearance of fractional
powers and logarithms of the Peclet number. However, the perturbation of the pair-
distribution function by a linear flow has the character of a quadrupole, which is weak
in the outer region, and it is possible to proceed as a regular perturbation expansion

up to O(Pe?). Thus, the low shear limit of the normal stresses can be obtained as a
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regular perturbation expansion for a general linear flow.

In section 2.2 we introduce the N —particle Smoluchowski equation and reduce
it down to the equation for a pair. We show cxplicitly that the perturbation to
the microstructure proceeds as a regular expansion up to Q(Pe?) and determine
the form of this expansion for a general linear flow. We also show that the next
correction to the microstructure is Q(Pe®/?) and that this term can be obtained by
simply matching with the lowest order outer solution. In the next section we discuss
the separate Brownian, hydrodynamic and interparticle force contributions to the
stress and determine the general form of the rheological behavior to second order.
We also show that the O(Pe®/?) correction to the microstructure gives an O(Pe?/2)
contribution only to the osmotic pressure. The next term in the deviatoric stress is
O(Pe?).

In section 2.4 we present the exact results for the dilute O(¢?) contribution to the
stress, where ¢ 1s the volume fraction of the suspended particles. We also introduce
the scaling theory of Brady (1993b) which shows that the dominant contribution
to the stress as maximum packing is approached comes from the Brownian stress.
Further, this scaling theory shows that the appropriate Peclet number is that based
on the short-time self-diffusivity, D§(¢), at the volume fraction of interest, not on the
infinite dilution or “bare” diffusion coefficient Dy. The perturbation expansion now
proceeds in powers of Pe = ya?/D(¢). This theory predicts that the normal stresses
scale as Pc g(2;¢)/f)3(¢) as ¢ approaches maximum packing, ¢,, (and as Pe — 0).
Here. Di(¢) = Dg(¢)/Do. At random close packing, ¢,, =~ 0.63, the equilibrium
radial-distribution function diverges as ¢(2;¢) ~ (1 — ¢/é,,)~! and the shori-time
self-diffusivity vanishes as D§(d) ~ Do(1 — @/¢m ), so that the normal stresses diverge
as (1 — ¢/¢m) ?Pe or as (1 — ¢/¢pn)~2Pe. This scaling prediction is shown to be
in reasonable agreement with the available simulation data. This dependence of the
rheological response on Pe also explains why suspensions at higher concentrations
shear thin at corresponding lower shear rates (c.f. Brady 1993b).

We conclude in section 2.5 with a discussion of how the results we have obtained

for Brownian hard spheres can be used to predict the normal stresses in suspensions



9

where the particles interact through repulsive interparticle forces. If the interparticle
forces are short-ranged, then there is only a slight quantitative change in the normal
- stresses; the scaling relations at maximum packing still apply. For long-range repulsive
forces characterized by a length b (>> a), the scaling changes as the suspehsion 18 now
hydrodyhamiczilly dilute but “thermodynamically” concentrated. The relevant Peclet
number is now based on the length scale b, Pe, = 4b*/ Dy, with the short-time self-
diffusivity, which is a function of the hydrodynamic or truc volume fraction, given
by the infinite dilution or bare diffusivity, Dy. The equilibrium radial-distribution
function now depends on the “thermodynamic” volume fraction ¢, = 47nb*/3, and
diverges at random close packing based on b, ¢,,,. Thus, the normal stress differences
arc predicted to scale as (1 — &/, )71 Pey, as ¢ — dprm.

Finally. we also show how this perturbation approach can be extended to higher
shear rates (or Peclet numbers) to give the complete rheological response as a function
of shear rate. We also remark on a singular limit at high Peclet numbers that has
recently been worked out {Morris & Brady (1994)] which predicts finite normal stresses

in the hydrodynamic limit.

2.2 Perturbation to the microstructure

We consider a suspension of identical spherical particles of radii ¢ subjected to Brow-
nian, interparticle and hydrodynamic forces at low Reynolds number (pya?/n < 1).
The equation governing the distribution of particles — the microstructure — is the
well-known N-particle Smoluchowski equation:

0Py

2L V30 =0,
(‘)t+ an =0, (2.1)

where Py is the probability density for the N particles to be in configuration . The

probability flux g is given by

dn = UPy + Ryy-(FF — kTVIn Py)Py. (2.2)
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In (2.2) U is the velocity of the particles due to the shear flow, and in writing this
we have combined the individual particle velocity vectors (for spherical particles only
the translational velocities and the positions of the centers of cach particle need be
considered) into a single 3-N vector U. The colloidal interparticle forces are denoted
by FP, and the Brownian forces arc given by kT times the gradient with respect 1o
the configuration vector @ of the log of the probability density, —kT'V In Py. The
3N x 3N hydrodynamnic resistance tensor Rppr relates the hydrodynamic force exerted
on the particles to their velocities, and its inverse, Rz, is the N-particle mobility
giving the velocities in terms of the forces. From the Stokes-Linstein relation this

mobility multiplied by kT is the N-particle diffusivity tensor:

D = kTR}. (2.3)

With interparticle forces derivable from a potential,

FF=-VV,

the equilibrium distribution (U = 0) is given by
in=0,
which, since D is positive definite, requires that
FY = E1'Vn Py,
whose solution is the Boltzmann distribution
Py ~ exp(—=V/kT), (2.4)

where the superscript © denotes equilibrium. For the case of Brownian hard spheres,

the potential is infinite if the particles were to overlap and zero elsewhere, and (2.4)



11
gives the well-known hard-sphere distribution.

In the presence of a shearing motion, U # 0, the particle velocitics arc given by

where (I') = (E) 4 (€2), and (E) and (€2) arc the bulk or macroscopic rate of strain
and vorticity tensors of the imposed lincar flow, respectively. The hydrodynamic
resistance tensor Rpp gives the hydrodynamic forces on the particles due to the
imposed flow. In the absence of hydrodynamic interactions (i.e., Rprg = 0), the
particles would simply be advected by the imposed linear flow: U = (I')-.

The flow causes a departure of the microstructure from equilibrium, which we

write as

Py = PY[L + fn). (2.6)

The determination of fy and the resulting rheological response is the central point
of this work.

We nondimensionalize all lengths by the particle size a, all velocities by ya, where
4 = |1, and the diffusivity by Dy = k7'/67na, the isolated single particle diffusivity,
and integrate the N-particle Smoluchowski equation over N —2 particles. Neglecting
direct coupling to a third particle (which is necessary for analytical progress, but does
not affect the form of the Peclet expansion), the equation governing the perturbation

1o the pair distribution, f, becomes
V,-g(r) (D)3 Vo f = PeV,-g(r)(U, 901 + f), (2.7)
with boundary conditions of no flux at the surface of contacl of the two particles:

7 (DY, f = Pei (U1 + ) @ r=2 (2.8)



and no perturbation at large distances
f~0 as r— oo . (2.9)

In (2.7) and (2.8) U, = U,;—Uj is the relative velocity of two particles arising from the
imposed shearing motion, D, is their relative diffusivity: D, = Dy;+ Dy — Dy, — Dy,
and V, is the gradient with respect to # = 7, — #1. The unit vector along the line of
centers of the two particles is denoted 7.

The angle brackets ( )3 denote a conditional average over the equilibrium distri-

bution with two particles fixed:

1
(Up(ri,m2)); = W/Ur(rl>r2a'--er')

0 ;
X PN—2/2(7'37 c B PNITL Ty )dey -y

where P§_, , is the conditional probability for finding particles at r3,...,7x given
that there are two particles at #; and r,. The normalization factor (N — 2)! arises
because the particles are indistinguishable. We have also introduced the equilibrium
pair-distribution function P§ = n2g(r), with ¢g(r) the radial-distribution function.
Before proceeding with the perturbation expansion, we must first understand the
singular nature of the problem. This is simplest if we consider the limiting form
of (2.7) in the absence of hydrodynamic interactions because the singular region is
far from contact where hydrodynamic interactions are weak. Without hydrodynamic

interactions (2.7)—(2.9) become

2Vif = Pe(l)r-V,f, (2.10a)
P V.f = Per-(EV#(1+[) @ r=2, (2.10b)
f ~ 0 as r—oc, (2.10c)

where the factor of 2 in front of diffusive term comes from the fact that the relative

diflusivity 1s twice the single particle diffusivity, and the " denotes a nondimensional
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quantity. It is well known [Leal (1992)] that even though the Peclet number is small,
at distances r ~ O(Pe~'/%) convection is as important as diffusion in (2.10). Thus,
1/2

there is an “outer” region where r» = pPe™'/? and in outer variables (2.10) becomes

2Vif = ([)p-V,/. (2.11)

The solution to this outer equation must satisfy the outer boundary condition f ~ 0
and match the “inner” solution as p — 0.

In the “inner” region with r ~ O(1), we sce that departure of f from unity is forced
by the boundary condition at contact. This boundary condition has the character of
a quadrupole forcing — forced by the second order rate of strain tensor (E) — of

magnitude O(Pe¢), and thus the leading inner solution is
[ =-Pe —=(#(E)- 1), (2.12)

which satisfies the inner boundary condition and asymptotes to 0 at large r.
Now the inner solution (2.12) will be the leading term that must be matched with

the outer solution. Rewriting (2.12) in outer variables gives
—=(p(E) p), (2.13)

which shows that the leading outer solution must be of O(Pe®/?) in order to match
with the inner solution. Since this is of lower order than the next regular — O(Pe?)
-~ term in the inner region, the perturbation expansion can be written as a regular

series up to O(Pc®?). Specifically, we write
[ = Pefi 4 P f, + O(Pe¥?). (2.14)

To determine the normal stresses, it is sufficient to solve the regular perturbation
problem for f;. The next term in the expansion is singular and its form is determined

by matching with the O(Pe5/?) outer solution, which we shall do below.
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The first-order perturbation f; is a scalar and must be linear in the imposed flow,

SO we may write

fi = —hi(r)e(E)-7, : (2.15)

Batchelor (1977) was the first to derive the equation for k; and dctermine the shear
viscosity at Jow shear rates for dilute dispersions.
In a similar manner, the second order perturbation f; is also a scalar and must

be quadratic in the imposed flow. Thus, f; has the form

fro= =ha(r)(#(B)-#)* — hy(r)i-(B)-(Q)-#
—ha(r)i-(B)-(B)-# — hs(r)(E): (E). (2.16)

The ordinary differential equations governing h; through h; found by substituting
(2.15) and (2.16) in (2.7)-(2.9) are listed in the appendix. Note thal because of the
normalization of the pair-distribution function, from (2.6) we have the solvability

condition

/ g(r) f(r)dr = 0. (2.17)

Carrying out the angular integrations shows that f; satisfies the requirement, and for

f2 we have

7 9tr) (Bhalr) + Shatr) + hotr)) r2dr = 0. (2.18)
2

2.3 Macroscopic stress

The bulk or macroscopic stress of a suspension at low Reynolds numbers can be

written as

() = =PI+ 2(E) + (Zp), (2.19)

where (p) is a constant setting the level of the pressure, and 25(E) is the deviatoric
stress contribution from the fluid. The particle contribution to the stress (X p) is
given by

(Xp) = —nkTT+ n[(ST) + (8B) + (SP)]. (2.20)
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Here, —nkT1T is the isotropic stress associated with the thermal kinetic energy of the
Brownian particles. I is the isotropic tensor and n is the number density of particles.
The hydrodynamic, S, Brownian, S®, and interparticle, S”

, contributions to the

stress are given by

(8" = —(Rsy'Rpy-Rrp — Rsg): (E), (2.21a)
(SP) = —kT(V-(Rsu-Rpy)). (2.21b)
(S7) = —((xI+Rsy-Ry},)-F"). (2.21c)

The additional hydrodynamic resistance tensors, Rsy and Rgg, relate the particle
stresslets {symunetric first moment of the force distribution integrated over the particle
surface, which gives the stress) to the particles’ velocities and the rate of strain,
respectively. The tensors Rsy and Rgsg here are not taken to be traceless in their
first two indices as has been the convention in the past. The trace of these functions
can be used to determine the osmotic pressure. From the symmetry of the low-
Reynolds number resistance tensors, Rsy is equal to the transpose of Rpg. The
angle brackets ( } denote an average over the distribution Py.

Brady (1993b) showed that the particle contribution to the bulk stress could be

rewritten into the more convenient form

<2p> = —-nkTI- nkTaj{ngngPl/l(rglrl)ng — 7l<:l:FP>
—TL(RSU'RI_;L-RFE — RgF;> . <E>
—n{Rsv Ry [FY — kTV 1In Py)), (2.22)

where Pj;i(ra|ry) is the probability density for finding a particle at 7, given that
there is a particle at =y, and the integral is over the surface of contact of the two

touching particles; n, is the unit normal along the line of centers from particle 1 to

9

Equation (2.22) is identical to (2.20) and is the exact form for the particle stress

both in and out of equilibrium. At equilibrium, (E) = (@) = 0, F¥ = kTVIn Py,
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and (2.22) reduces to the osmotic pressure of a colloidal dispersion. The osmotic

pressure, 11, is defined, mechanically , to be minus one third the trace of (¥p):

) 1
1I = —";II <2P>-, (223)
and at equilibrium
I° i P
= 1+ 49g(2a) ~ L{a-FF/kT), 2
= 1+ 409(2a) ~ 3(@ FV/ET), (2.24)

where ¢ = 4wa®n/3 is the volume fraction of particles. The Brownian contribution
to the osmotic pressure is given by the equilibrium radial-distribution function at
contact g(r = 2a), and the interparticle forces give the familiar (z-F¥) pressure.

Introducing the perturbation to the structure (2.6) the particle stress becomes

(Zp) = —I°L+ 200, (E) — n*Tda*g(20) § ## [(r)an
—n2g! / Fir Fra(r)g(r) f(r)dr
—n({(Rsu Ry Rre — Rsp) fa)g: (E)
—nkT(Rsy-Ryh-V fn)l. (2.25)

In (2.25) TI° is the equilibrium osmotic pressure of (2.24), and we have assumed that

the interparticle forces are central and pairwise additive:
P P_ ap
F2 = —.Fl = TFIQ(T').

The high frequency dynamic viscosity, 1., is defined as the equilibrium average of

the hydrodynamic contribution to the stress:
25 (B) = —n(Rsy Ri} Rrp — Rap)S: (E). (2.26)

Note that in the surface and volume integrals from Brownian motion and interparticle
forces, knowledge of the perturbation to the pair-distribution function, f, is required,

while the other two contributions involving hydrodynamics require knowledge of the
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full N-particle distribution fx. In (2.25) d§} denotes the solid angle: dS; = (2a)?df).

In order to understand the origin of the different contributions to the stress, we

shall denote

the separate contributions to the stress in (2.25) that depend on the

deformation to the structure as (XBY), (Z2F), (XY, and (X5, respectively. In-

troducing the general form for the perturbation expansion for ), neglecting couplings

to a third particle arising from many-body hydrodynamics in (Z’ﬁ> and <Ef§2>, and

carrying out

(Z2h)
m

the necessary integrations we have to O( Pe)

36

(
+ Pe (Lhy(2
+ Pe (4,

——
“»
e
3
—_———
=
e
S
——t
——
b
()
N
S—

9 9 P/t

gﬁb X{Il <E>

+ Pe (515 + 217 + 31T) ((B): (B)T

+ Pe (17 + IF) [(B)-(B) — L((B): (B)1)

+ PelIP((B)-(Q) + (2)T- langleE))} (2.28)
4¢* Pe x {]5 /:O B(r)hy(r)g(r)ridr((E)-(B)I (2.29)

= [ (L8 + HM))E) b (r)g(ryrarl(B)-(B) — L((E): By}

St (PR

+f@ﬂf%muﬁwwv+<ﬂﬂxﬁny (2.30)
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where

/2-1):/ Fio(r)hi(r)g(r)r3dr, (2.31)

2
- B(r) is a pressure moment function introduced by Jeffrey et al. (1993),_(1,(7«))3 and

(M(r))).are the conditionally averaged hydrodynamic functions associated with the

hydrodynamic stress, and IP%(a) are given by

) = [ (A + bW B a2

Before we present results for the stress contributions, we first discuss the order
of the next correction in Peclet number to the stress. From the regular perturbation
expansion for f, (2.14), we see there will be an O(Pe¢?) contribution from the hydro-
dynamic stress, {34), involving the perturbation functions hy—h4. For simple shear
flow this hydrodynamic stress does not contribute to normal stress differences; it only
changes the shear viscosity. Although we could present this correction now, we shall
see that the Brownian (or interparticle force) contribution to the stress will also have
a correction of O(Pe?) which we have not determined.

The contributions presented above are all from the “inner” region where » ~ O(1),
and we must determine the magnitude of the contributions from the “outer” region
~1/2

with r ~ pPe™"/%. At large distances, the hydrodynamic contribution to the stress

behaves as
xf L
KT;JH ~ /:gfgerr ~ O(Pe*/?) (2.33)

since f ~ O(Pe®?) in the outer region. The two Brownian contributions can be
combined and from the form given in (2.21), we know that at large r

B

(XF)

1 1 . '
Pl / —fgrtdr ~ O(Pc?). (2.34)
Yy el r

Similar arguments would apply for the interparticle force contribution; a detailed
estimate requires knowledge of how Fy, decays with r. (This is discussed further in

section 2.5.) Thus, all contributions from the outer region are at most O( Pe®/?).
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The next contribution to the stress will come from the next term in the inner
region, which is O(Pe%?). This term will generate an O(Pe®?) correction to both
the Brownian and interparticle force contributions to the stress. However, as we now
show this next term will only contribute to the isotropic stress. The next inner term
of ()(Pés/Q), denoted by f3, satisfies a homogeneous differential equation with homo-
geneous inner boundary condition. The solution is forced by matching to the outer
problem. The leading outer term satisfies (2.11) and behaves as the quadrupole (2.13)
as p — 0. Examination of this solution as p — 0 shows that the first mismatched
term of O(L€*/?) is simply a constant C' P¢%2. The inner solution at O(£¢%2) must
asymptote to a constant at large r; thus, f3 must be proportional to €' and therefore
it has no angular dependence — it is a purely radial [unction. A disturbance in the
structure that is purely radial only generates an isotropic macroscopic stress from the
Brownian or interparticle force contributions. Thus, the Q(Pe%?) correction to the
structure contributes only to the osmotic pressure; this contribution being O( Pe®/?).
The next correction to the deviatoric stress is therefore of O(Pe?). This O(Pe?) con-
tribution comes from two sources: the O(Pe*) deformation to the structure through
the hydrodynamic stress contribution discussed above, and the O{ Pe?) correction to
the structure through the Brownian and interparticle force contributions. (Note that
the O(Pe*?) perturbation to the structure will gencrate a deviatoric contribution

from the hydrodynamic stress of O(Pe®/?).)

2.4 Results

2.4.1 Dilute suspensions: O(¢?)

The ordinary differential equations governing h, through A5 in the appendix have been
solved numerically in the dilute limit in the absence of interparticle forces. The two-
body hydrodynamic functions are used, and we solve the equations for h; through ks
by the following method: far-field asymptotic results are used to numerically integrate

inward to r = 2 using a sixth-order Adams-Bashforth integrator, supplemented with
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the proper near-field form given by an asymptotic analysis. This solution method
follows in the same spirit as that used by Batchelor (1977) to solve for hy.

Thus, correct to O(¢? Pe), the bulk stress in a general linear flow is given by

H
<‘:§> — (56 + 9.86¢2)(E) + 0.9406% Pe((E) : (B))I
—1.62¢* Pe[(E)-(B) — L((E): (E)I] — O(¢*Pe?, ¢%),  (2.35)
and
B
%ﬁ = 1.96¢*(E) — 0.532¢% Pe((E): (E))I

A

+0.378¢* Pe[(E)-(E) — L((E): (ENT]
~0.899¢° Pe((B)-(§2) + ()T -(E)) + O(0?* P2, ¢%),  (2.36)

where we have combined the Brownian contributions into a single expression and
have included the O(¢) and O(¢?) contributions from 7/, in (X%). Note that the
O(#?Pe*?) error in the Brownian stress is only to the isotropic part; the deviatoric
stress is correct to O(Pe?).

For a simple shear flow with velocity in the 1 direction, velocity gradient in the 2
direction and vorticity 3, the relative viscosity, first and second normal stress differ-

ences and the osmotic pressure are:

n o= 14 %d) +5.91¢% = O(¢?Pc?), (2.37)
N ;
L = 0.899¢%Pe + O(¢*Pe?), (2.38)
Yy
N. (

2 = —0.788¢*Pe + O(¢* Pe?), (2.39)
Y
I ‘

—= = l+46+ 0.156¢Pe? + O(oPe?). (2.40)

It is important to note that there are no contributions to the relative viscosity
from the O(Pe?) distortion of the equilibrium microstructure through the Brownian

stress, nor from the O(Pe) distortion to the structure through the hydrodynamic
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stress; so there is no O(Pe) correction to the relative shear viscosity. A second-order
analysis is not sufficient to predict a shear-thinning viscosity. The viscosity thus shear

thins in simple shear flow at O(Pe?). Note also that the hydrodynamic stress does

not contribute to the first normal stress difference for simple shear flow — only terms
proportional to (E):(2) contribute.
At present, there are no experimental nor simulation data available to compare

with the theoretical predictions for the normal stress differences for dilute suspensions

at low Peclet number. Note, however, that at low shear rates,
Ny, Ny ~ 42,

as expected. It is encouraging that N, is positive and N, necgative at small Peclet
numbers, in agreement with the results of Phung (1993) for more concentrated sus-
pensions.

As discussed by Jeffrey et al. (1993), we see that the O(Pe?) deformation of the
microstructure contributes an O(¢Pc?) term to the osmotic pressure. There is no
O($Pe) correction since I: (E) = 0 for an incompressible material.

We should also note that the solvability requirement, (2.17) and (2.18), is satisfied

by the solution for f; when matching to the outer solution is taken into account.

2.4.2 Scaling theory as ¢ — ¢,,

Brady (1993b) has shown that as maximum packing is approached, the dominant
contribution to the macroscopic stress comes from the contact integral of the Brownian

stress:

(ZBYY = —n?kT4a%g(24) ]4 i [ (r)dO). (2.41)

This result immediately shows that the stress will be proportional 1o the equilibrium
radial-distribution [unction at contact g(2a).
Now, in the pair-evolution equation (2.7), the relative diffusivity which balances

the convective motion, (D,)J, is not simply the infinite dilution value 2I (in dimen-
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sionless form), but rather twice the short-time self diffusivity at the volume fraction

of interest. That is

where Dg(o) is the nondimensional short-time sell-diffusivity at the volume fraction

®. Thus, we see the appropriate Peclet number for the asymptotic expansion is
Pe = 4a*/ D3(9). (2.42)
The perturbation expansion proceeds in powers of Pe, and we have for <21131>

Xp > 36
<77n; Lo 772 - )¢2 = {hl 2)(E)

Dg(¢)
+ Pe (302(2) + 2ha(2) + 205(2)) ((B): (BN

T ()}, (2.43)

This scaling analysis predicts that the stress scales as g(2; ¢)/D3(¢) x F(Pe), where
in (2.43) we have given the result for a general linear flow for F to O(Pe).

As random close packing is approached, ¢ — ¢,, = 0.63, the radial distribution

function at contact diverges as [Woodcock (1981))
9(26) ~ 1.2(1 = ¢/dm) ™

and the short-time self diffusivity vanishes as [Brady (1993b); Phung (1993)]
D3(#) ~ 0.85(1 = &/ ¢m).

Thus, the theory predicts the stress to diverge as (1 — ¢/¢,,)"2. This prediction

for the shear viscosity was shown to be in excellent accord with experiment [Brady

(1993b)].

To obtain a numerical prediction for the behavior near maximum packing, we need
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an estimate for h;(2). Here we shall use the simple approximation of Brady (1993b)
and estimate hi(2) by neglecting hydrodynamic interactions. The contact values of
h; are listed in the appendix.

I'or simple shear flow we have as ¢ — op,:

n o~ 13(1 = ¢/dn)"2 + O(Pe?), (2.44)
N ; _
Lo~ 0511 = /o) Pe+ O(PeY), (2.45)
n-y
N —0.36(1 — ¢/d,,) 2 Pe + O(Pe?), (2.46)
7y
Il

T~ 2901 = 0/gn) T 402701 — 0/6m) P+ O(PE). (2.47)
s

Unlike the dilute limit, we can test our theoretical predictions for the normal stress
differences using the simulation data of Phung (1993). At this point it is useful to

introduce dimensionless normal stress difference coeflicients,

N,
o= 2.48)
X1 7]‘.}’P€7 ( /
and
Ny .
, = ) 2.49
Xz nyPe ( )

These coefficients are constant at low Peclet number for a given volume fraction.
In Figures 2.1a and 2.1b we see very good agreement for y; and Y, between our
theoretical predictions and the simulation results at Pe = 0.01, the smallest value
of the Peclet number for which results are available. We also see that the results at
Pe = 0.1 are substantially less than those at Pe = 0.01, so it is not certain that the low
Pe asymptote has been reached. Note also that in terms of the “bare” Peclet number
Ya?/ Dy, the normal stress differences are predicted to diverge as (1 — ¢/¢n )73 Pe.
The requirement for the perturbation expansion is now that Pe < 1, which is a very

severe requirement as ¢ — ¢,.
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2.4.3 Structural deformation

With the solution of the ordinary dilferential equations for iy through ks in the dilute
limit in the absence of interparticle forces, the microstructure of the suspension in a
given flow can be determined. In this section we analyze the microstructure in simple
shear flow to determine how the microstructure affects macroscopic properties and to
discuss the effects of hydrodynamic interactions on the microstructure.

Figures 2.2a 2.2¢ are density plots of f for a dilute suspension in simple shear flow
at Pe = 0.1 ncglecting interparticle forces; shown are plots in the velocity-gradient.
vorticity-gradient, and velocity-vorticity planes, respectively. These density plots are
created so that the test particle at the center of each picture has a value of f = 0 and
is 50% black. The regions that are greater than 50% black are regions in which f is
positive, and the regions lighter than 50% black are regions of negative f.

In Figure 2.2a we see a slight asymmetry with respect to the extensional and com-
pressional axes. This asymmetry is due solely to the hg(?")f"(E> : (fl) F contribution
to f because this contribution is symmetric with respect to the axes in the veloc-
ity /gradient directions. All other contributions are either symmetric with respect to
the extensional /compressional axes or have an isotropic contribution in the 1-2 plane.
Thus, the first normal stress difference is determined solely by hs(r), as remarked in
section 2.4.1.

Also in Figure 2.2a we see a slight distortion of the microstructure along the
gradient axis. Previous investigators have been concerned with the deformation of
the structure along this axis [Ronis (1984); Schwarzl & Hess (1986); Dhont (1989);
Blawzdziewicz & Szamel (1993)], but only the theory of Blawzdziewicz & Szamel
(1993) predicts a distortion of the microstructure along the gradient axis. They show
that the deformation is small for shear rates up to Pe = 0.5. From our analysis we

find the dcformation along the gradient axis in simple shear flow to be

fr;2 —azis) = — (ha(r) — ha(r) — 2hs(r)) Pe.

| =

We see that the deformation is O(Pe?) which explains why Blawzdziewicz & Szamel
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(1993) report only a small distortion for small Pe.

Since the O(Pe) deformation only distorts the structure in the velocity-gradient
plane, the structural changes in the vorticity-gradient, Figure 2.2b, and velocity-
vorticity, Figure 2.2c, planes are O( Pe?). Although there is an O(Pe?) deformation
to the microstructure in the vorticity-gradient plane, this contribution does not lead
to a shear-thinning viscosity in the absence of hydrodynamic interactions, as was
postulated by Blawzdziewicz & Szamel (1993). As discussed earlier, it is the O(Pe®)
deformation to the structure that leads to a shear-thinning viscosity. It should be
no surprise that structu.ral changes in the vorticity-gradient plane are not correlated
with shear-thinning since Bossis & Brady (1989) report a shear-thinning viscosity in
monolayer dispersions.

Since we have solved for the structure of a dilute suspension at low Peclet number
both with and without hydrodynamic interactions, we can assess the contribution
to the structure solely due to hydrodynamic interactions. These contributions are
plotted in Figures 2.3a-2.3c at Pe = 0.1 for the velocity-gradient, vorticity-gradient
and velocity-vorticity planes, respectively. As before we use the test particle in the
middle at 50% black; so hydrodynamics have a negative eflect in lighter regions and
a positive effect in darker regions.

In the velocity-gradient plane (Figure 2.3a) at large distances, we see that hy-
drodynamic interactions increase the particle density along the extensional axis and
decrease the density along the compressional axis, but the opposite occurs very near
the particle surface. This sign change is an O(Pe) eflect given by h; (c.f., (2.14)
and (2.15)), as shown below. The value of h; at contacl is h; g(2) = 0.71 and
hinu(2) = 0.67 for the cases of two-particle hydrodynamics and no-hydrodynamic
interactions, respectively; therefore, h; gy — hiyy > 0 very near the particle sur-
face. Far away from the particle, hy g(r) ~ 4.46/r® and hy yg(r) ~ 5.33/r; thus,
hy g — i ve <0 as v — oc and hydrodynamic interactions have opposite effects on
the microstructure in these two limiting cases.

We shall first analyze the compressional axis to describe why this sign change

occurs. Far from the test particle, hydrodynamic interactions tend to hinder a second
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particle from approaching; so we expect a negative contribution from hydrodynamic
interactions élong the compressional axis at large distances. Close to the test particle,
however, the second particle is trying to diffuse away from the test particle while the
external flow tends to push the particles together; external flow dominates near the
pa.rticle,. resulting in a build-up of particles near the surface along the compressional
axis. Along the extensional axis the situation is reversed: hydrodynamic interactions
tend to stop the particles from moving apart at large distances, leading to a positive
hydrodynamic contribution far from the test particle. Near the test particle, the sec-
ond particle is diffusing away and the external flow is pulling the particles apart, and
there is a negative hydrodynamic contribution near the particle along the extensional
axis.

We can confirm this physical picture by solving the differential equation for h; for
a suspension of particles that interact with a hard-sphere potential characterized by
a length b (> a). The appropriate length scale for the pair-evolution equation (2.7)
is now b, and the no-flux boundary condition (2.8) is applied at a distance 2b from
the particle, while all hydrodynamic interactions remain scaled by the particle size,
a. As a result of this scaling, we can solve the differential equation for hy, as it is
presented in the appendix with Pe replaced by Pe, = 6%/ Dy, and we simply apply
the no-flux boundary condition at » = 2b/a. Since b/a > 1, lubrication effects are
eliminated but both the far-field hydrodynamic interactions and the balance between
convective and diffusive fluxes at the hard-sphere surface are retained; therefore, the
effects of hydrodynamic interactions near the hard-sphere surface are a result only of
the no-flux boundary condition. The results of this study are valid for Pe, < 1 and
for suspensions that are dilute based on the thermodynamic volume fraction, ¢;.

Before presenting the results of this study, we analyze two limiting cases, b/a — 1
and b/a — oo. For the case of b/a — 1, both the hydrodynamic and thermodynamic
length scales are identical, and we recover our previous results for Brownian hard
spheres in the absence of interparticle forces. If 5/a — oo, hydrodynamic interactions
are negligible and we recover the solution for the case in which hydrodynamics is

neglected with Pe replaced by Pey; thus, hydrodynamic interactions have a negligible
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cffect on the microstructure as b/a — oc. When b/a ~ O(1), we find that h; g —hy nvp
is positive near r = 2b/a and negative at large distances for 1.25 < b/a < 9, and we
see that the sign change in h; y — hy np is caused by the balance of the convective
flux and diffusive flux at r = 2b/a and not lubrication. It is interesting to note that
there is a maximum value of hig — hyng at 7 = 2b/a for b/a = 4, and we conclude
that lubrication has the expected effect — a reduction in the particle density near the
test particle along the compressional axis. but the effect is quantitative rather than

qualitative.

2.5 Conclusions

In this paper normal stresses in a suspension of Brownian hard spheres at low shear
rale have been determined theoretically. An evolution equation for the pair-distribution
function was developed, and it was shown that the perturbation to the microstructure
is regular to O(Pe?) for a general linear flow with the next term being O(P¢/?). The
bulk stress for a dilute suspension in a general linear flow was determined to O(¢* Pe),
and normal stresses in simple shear flow were determined to be: N|/ny = 0.899¢%Pc
and N, /1y = —0.788¢% Pe for Pe < 1.

A scaling theory was presented for concentrated suspensions using the corrected
time scale; a?/ D§(d), and the appropriate Peclet number, Pe = Yya*/ Di(¢), replacing
Pe = 4a®/ Dy. This scaling theory predicted that the stress diverges near maximum
packing, ¢, as ¢g(2; cf))/f)f)(d)) because the dominant coniribution to the stress comes
from the Brownian stress. lence, normal stress differences in simple shear flow diverge
as N;/ny ~ Pe g(2; B)/ Di(¢) ~ (1 — ¢/¢m) ?Pe as & — on, and Pe « 1. This
scaling theory does not rely on any of the assumptions made in deriving the evolution
cquation for the pair-distribution function (e.g., neglect of third-body interactions)
and relies on the use of the appropriate time scale, a?/ Dj(¢). In addition, the scaling
theory emphasizes the importance of both thermodynamic and hydrodynamic effects
on rheology since both contribute to the divergence of the normal stresses — there is

a thermodynamic contribution of (1 — ¢/¢,, )1 through the divergence of g(2; ¢) and
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a hydrodynamic contribution of (1 — ¢/¢,,)" since f)g(¢>) vanishes as ¢ = on,.

With knbwledge of this scaling theory and the similarity between the Brownian
and intérparticle force contributions to the stress, we can analyze Brownian parti-
cles that interact through interparticle forces. If the range of the colloidal force is
compardbl(: to the particle size, both hydrodynamics and thermodynamics are im-
portant, the scaling does not change near maximum packing, and the normal stress
differences diverge as N;/ny ~ (1 — ¢/dy ) ?Pe as ¢ — ¢,n. On the other hand, if
the particles interact through long-range repulsive forces, the thermodynamic volume
fraction, ¢ = 4rb®n/3. is much greater than the hydrodynamic volume fraction,
the stress diverges only through ¢(2;¢;) as random close packing of the thermody-
namic volume fraction is approached, and the normal stress differences diverge as
N;/ny ~ (1 — ¢y/ Gpm )  Pey as ¢ — dpm, where Pey = ¥0?/ Dy.

A natural extension of this work would be to include conditionally averaged hydro-
dynamic interactions to extend the results to mildly concentrated suspensions at low
Peclet number. The conditionally averaged hydrodynamic quantities can be obtained
quite simply from Stokesian Dynamnics because they depend only on the equilibrium
distribution of particles at a given volume fraction, ¢, and the separation between
two particles. Despite the simplicity of these functions, this approach may prove to
be inadequate because the evolution equation for the pair-distribution may no longer
capture the proper physics due to one or more of the closure assumptions (e.g., neglect
of third-body interactions and/or breaking of non-linear averages, (fg) = (f)(g))-

This work may also form a starting point for an extension to higher Peclet numbers
by expressing the pair-distribution function in terms of an eigenfunction expansion.
A similar method was used by Blawzdziewicz & Szamel (1993) for the case of a dilute
suspension in simple shear flow in the absence of hydrodynamic interactions where
the pair-distribution function is expressed as a linear combination of multipoles using
the Elrick solution. Although the Elrick solution provides the correct eigenfunctions
for this particular system, an expansion that uses general eigenfunctions may be re-
quired to include hydrodynamic interactions, external flows other than simple shear

flow, and mildly concentrated suspensions. For suspensions near maximum pack-
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ing, the expansion used by Blawzdziewicz & Szamel (1993) should give reasonable
approximat;ibns by using the scaling theory presented here.

One important rheological feature that we would like to predict through an eigen-
function expansion is the sign change in the first normal stress difference. It has
been found by Phung (1993) and Laun (1994) for simple shear flow, that at low
Peclet number N; > 0 and at high Peclet number Ny < 0 with the sign change oc-
curring around Pe = 1 — 10. From the data of Phung (1993), there is a positive
Brownian contribution that decays ~ 1/Pe¢, and a hydrodynamic contribution that
is negative and approaches a constant valuc as Pe — oo. At low Peclet number the
Brownian contribution dominates, yielding a positive Ni; while at high Peclet num-
ber, the hvdrodynamic contribution dominates and N} < 0. Thus, the hydrodynamic
contribution must be predicted.

We would also like to use this method to confirm the theoretical findings of Morris
and Brady (1994) for normal stress differences at high Peclet number. By performing
an asymptotic analysis of the microstructure of a suspension as Pe — oo, they have
been able to determine that N; and N, ~ ¥ as Pe — oo. This scaling has been

numerically confirmed by Phung (1993).
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Appendix A

The equations governing the perturbation functions k; defined in (2.15) and (2.16)

arc found by substituting f from (2.14) into the steady pair-evolution equation (2.7).

We make use of the following definitions for the relative diffusivity and velocity:

Labi(r) = =3 = b (1 = (A 20
Laba(r) = (W) = 1+ (BOIR) g(r)hir)
(1 - (A ),

Lghg(?‘) = —hl(’f‘),

Layha(r) = —SEETZQEM(T) + (1= (B(r))S) ha(r),

Lohs(r) = —2 Wy o)

2

with the operator, L, defined by

r2 dr

ch = ii (7Zg(r)<(;(r)>(2)%) _ Oz((,! + 1)9(7')(7}-](7'»2 i

and with (W(r))J given by

W) = 3 ((BONE — (Ar)3) — r 2T

(2.52)

(2.58)

All five ordinary differential equations have the same boundary condition at large

hi(r) ~0 as r— oo,

(2.59)
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but they have different inner boundary conditions @ r = 2:

(G (r) = —(1—(A(r)%), | (2.60)
(Gr)Shy(r) = ha(r) (1= (A(r)3), (2.61)
(G(r))zhs(r) = 0, (2.62)
(G(r)ghy(r) = 0, (2.63)
(G(r)3hs(r) = 0. (2.64)

Note that when complete hydrodynamic interactions are used, the inner boundary

conditions are all the same:
(G(r))5hi(r) =0 @ r=2, (2.65)

The functions (A(r))3, (B(r))y, (G(r))S, and (H(r))9, are nondimensional effective
hydrodynamic functions between two particles in the suspension. These functions
depend only on the equilibrium distribution and the relative separation between two
particles. In the dilute limit, the effective hydrodynamic functions are simply equal to
their two-particle values (i.e., (A(r))3 = A(r)) and have been well-studied [Batchelor
& Green (1972); Kim & MifHlin (1985); Yoon & Kim (1987); Kim & Karrila (1991)].

For future use, we record here the solution to h;-As in the absence of hydrodynamic

interactions:

) = 55 m@)=3 (2.66)
hy(r) = 5; G - i(’) ha(2) = 0 (2.67)
hs(r) = % G - %) ;o ha(2) = ;7— (2.68)

I'rom the above solutions for h,-hs, we see that the solvability condition (2.18)
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1s apparently not satisfied by the 1/r terms in hs-hs. This slowly decaying function
must be matched to an outer solution, and when this is done, the full uniformly valid

expansion for f satisfies the solvability condition (2.17).
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Figure 2.1: Comparison of the theoretical predictions for the dimensionless normal
stress coefficients, (a) x1 and (b) —x2, for Brownian hard spheres in simple shear flow
with the Stokesian Dynamics results of Phung (1993), where x; = N;/nvPe. The
dotted lines are the theoretical predictions for dilute suspensions, Equations (38) and
(39), and the solid lines are the scaling theories, Equations (45) and (46), as random
close packing, ¢,, ~ 0.63, is approached. The symbols are the results of Phung (1993)
for N =27 at: Pe = 0.01 (solid circles) and Pe = 0.1 (solid diamonds).
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Figure 2.2: Density plots of the perturbation quantity f in the (a) velocity-gradient,
(b) vorticity-gradient and (c) velocity-vorticity planes for a dilute suspension in simple
shear flow with two-particle hydrodynamic interactions in the absence of interparticle
forces at Pe = 0.1. The test particle at the center is at 50 percent black, darker
regions have positive f while lighter regions have negative f.
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Figure 2.3: Density plots of the contribution to the perturbation quantity f from two-
particle hydrodynamic interactions in the (a) velocity-gradient, (b) vorticity-gradient
and (c) velocity-vorticity planes for a dilute suspension in simple shear flow in the
absence of interparticle forces at Pe = 0.1. The test particle at the center is at 50 per-
cent black, where there is no effect from hydrodynamic interactions; hydrodynamics
has a positive effect in darker regions and a negative effect in lighter regions.
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Chapter 3
Colloidal dispersions
at arbitrary Peclet number

in simple shear flow
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3.1 Introduction

The nonequilibrium microstructure and macroscopic propertics of hard-sphere col-
loidal dispersions in simple shear flow are predicted by solving the twc;—particle Smolu-
chowski equation for a range of Peclet numbers and evaluating the bulk stress. Dilute
results are extended to higher concentrations by using the scaling theory of Brady
(1993b). ‘The colloidal particles have a hydrodynamic radius, a, and a thermody-
namic (or effective hard sphere) radius, b, allowing hard sphere (b/a — 1), sterically
stabilized (b/a < 1.1), and charge stabilized (b/a > 2) systems to be studied while in-
cluding two-particle hydrodynamic interactions. The Peclet number associated with
such systems is Pe, = 6mn,yab*/kT, where 7, is the Newtonian viscosity of the sus-
pending fluid, 7 is the shear rate, & is the Boltzmann constant, and 7' is the absolute
temperature.

In section 3.2, the nonequilibrium microstructure is expanded in terms of surface
spherical harmonics and the resulting two-particle Smoluchowksi equation and its
boundary conditions are derived in a form that can be used for any linear flow.
Symmetry arguments are made for simple shear flow to reduce the number of coupled
ordinary differential equations. The solution method is discussed and compared and
contrasted with the work of Lionberger (1998), who uses approximations for the outer
boundary condition. These approximations are not used in the current work.

After finding the nonequilibrium microstructure, the macroscopic properties are
calculated by using the equations for the bulk stress in section 3.3. The equations for
the hydrodynamic, Brownian and interparticle force contributions to the bulk stress
are valid to O(¢?). where ¢, = 47nb3/3 and n is the particle density, and are derived
in a general form for arbitrary values of b/a for spherical particles. The bulk stress is
not traceless and the nonequilibrium osmotic pressure is calculated.

Section 3.4 is split into three parts. In part 3.4.1 the particles have b/a = 1 and
hydrodynamic interactions are neglected. In the next part, part 3.4.2, the particles
hydrodynamically interact with b/a — 1. Finally, in part 3.4.3 sterically stabilized

and charge stabilized dispersions are studied by varying the value of /a while keeping
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two-particle hydrodynamic interactions.

When hy‘drodynamic interactions are ncglected and b/a = 1 (section 3.4.1), nu-
merical results are obtained for Pe < 20. At large Peclet number, the interparticle
force stress has a viscous scaling, ~ O(7ns7), and the viscosity, normal stress differ-
ences and osmotic pressure all have non-zero asymptotes in the limit e — oc. These
non-zero asymptotes are caused by the formation of a boundary layer at particle con-
tact in the compressional zone in which the probability of finding a second particle is
~ O(Pe). Atlow Peclet number, the relative shear viscosity is constant and then shear
thins with a term that is ~ O(¢?Pe?). Dilute results for viscosity are extended to
higher concentrations and compared with Brownian Dynamics [Foss & Brady (1999)]
with reasonable agreement at small volume fractions but poor agreement at high
volume fractions. The poor agreement is caused by a relaxation time that is depen-
dent on the volume fraction [Bergenholtz (1999)], while the scaling theory of Brady
(1993b) predicts a single relaxation time for Brownian Dynamics, independent of vol-
ume fraction. A Cox-Merz rule is shown to be valid over the range volume fractions
for which the relaxation time is independent of volume fraction, and a Padé approx-
imate is formed for the numerical results of this study. Normal stress differences at
low Peclet number have the form, N;/n,% ~ O(Pe) + O(Pe®?). The O(Pe®/?) comes
from the O(Pe™/?) deformation of the microstructure since the O(Pe?®) deformation
yields contributions only to the isotropic and shear stresses. The scaling theory of
Brady (1993b) is used and the dilute results qualitatively predict the behavior of
Brownian Dynamics simulations [Foss & Brady (1999)]. Furthermore, the normal
stress differences only cause negative rod climbing, as shown by using the heuris-
tic argument of Lodge, Schieber & Bird (1988), since |N;/Na| ~ O(1). Finally, ch6
osmotic pressure has the form, II/nkT — 1 — 49 — (16/45)pPe? + O(Pe®/?), at low
Peclet number, as shown by Brady & Vicic (1995). The coefficient of the O(Pe®/?)
term is predicted by matching the O(Pe®/?) isotropic term of the inner expansion with
the first mismatched term of the outer expansion, and the coefficient is in excellent
agreement with the numerical results. The results are extended to higher concen-

trations by a scaling theory [Brady (1993b)] and are in reasonable agreement with
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Brownian Dynamics simulation data [Foss & Brady (1999)].

In section 3.4.2 two particlés hydrodynamically interact and b/a — L. The limit
of b/a — 1 is used instead of b/a = 1 to avoid closed streamlines; to account for
surface roughness or the presence of a steric stabilizer, and to avoid a singularity in
the prob’lem since the radial component of the relative diffusivity vanishes at particle
contact when b/a = 1. The shear viscosity is constant at low Peclet number, shear
thins, reaches a constant value and then shear thickens at high Peclet number. Shear
thinning is caused by a decrease in the Brownian viscosity due to the reduced impor-
tance of Brownian motion as Peclet number increases in agreement with experiments
[Kaffashi et al. (1997)] and simulations [Foss et al. (1999)]. Shear thickening occurs
because of an increase in the hydrodynamic viscosity, again in agreement with exper-
iments [Bender & Wagner (1995); O'Brien & Mackay (1996)] and simulations [Foss
et al. (1999)]. The root cause of hydrodynamic shear thickening is the formation
of a boundary layer in the compressional zone at particle contact and the presence
of hydrodynamic interactions, resulting in an increase in the hydrodynamic contri-
bution to the viscosily with increasing rate. The constant viscosity at intermediate
Peclet numbers occurs simply because the hydrodynamic viscosity is incrcasing at the
same rate that the Brownian viscosity is decreasing. Scaling theory ‘Brady (1993b)]
is used to extend these results to finite concentrations. The scaling theory collapses
experimental and simulation data to a single master curve, but the dilute results are
in only qualitative agreement.

The same interplay between the Brownian and hydrodynamic contributions is also
evident for the first normal stress difference. At low Peclet number the first normal
stress difference is positive, but it is negative at high Peclet number. The sign change
occurs because the Brownian and hydrodynamic contributions have different signs,
and the Brownian contribution dominates for Pe <« 1 while the hydrodynamic con-
tribution dominates at Pe > 1. The sign change occurs near Pen’, = 10, where 7. is
the nondimensional high-frequency dynamic viscosity, and the dilute theory properly
predicts the sign change for Stokesian Dynamics simulation data [Foss et al. (1999)]

after using the scaling theory [Brady (1993b)]. The hydrodynamic contribution to
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the first normal stress difference is O(Pe®/?) at low Peclet number and arises from the
O(Pe®?) term of the outer exbansion. Also, the first normal stress difference at high
Peclet number is negative because the boundary layer extends into the extensional
zone with a relatively small downstream shift of the maximum contact value in the
boundary layer..

Since both the hydrodynamic and Brownian contributions are negative for all
Peclet number, the second normal stress difference is always negative. The dilute re-
sults correctly predict a maximumnear Pen/ = 4 when compared to scaled Stokesian
Dynamics results [Foss ¢t al. (1999); Brady (1993b)]. This dilute theory also predicts
that only negative rod climbing should occur, and this fact has been experimentally
confirmed by Leighton (1997) in the high Peclet limit.

Next, in section 3.4.3 the value of b/a is varied. Shear thickening occurs at larger
values of Pe, as b/a increases, and the degree of shear thickening decreases since
lubrication interactions are eliminated and the effects of far-field hydrodynamic in-
teractions are reduced as b/a increases. At some large value of b/a, the hydrodynamic
viscosity will appear only as a small constant value for all Peclet numbers since hy-
drodynamic shear thickening is slight. The shear viscosity decreases with a decrecase
in the thermodynamic radius, b, for a system in which the particle radius, a, and par-
ticle volume fraction, ¢,, are kept constant. Physically, this situation is achieved by
adding salt to a charge stabilized system; thus, reducing the Debye length. The the-
ory predicts the same behavior as seen in experimental systems [Mallamace, Micali &
Vasi (1990)]. The shear viscosity increases as the hydrodynamic radius, a, decreases
for a system in which the Debye length and the hydrodynamic volume fraction, @,,
are held constant; thus, shear viscosity increases as b/a increases when ¢, is constant.
Experiments [Ogawa ef al. (1997)] confirm this behavior.

Not only does shear thickening occur at higher Peclet numbers as b/a increases,
but the sign change in the first normal stress difference also occurs at higher Peclet
numbers as b/a increases. The Brownian and interparticle force contributions have
the same sign, different from the sign of the hydrodynamic contribution. As b/a

increases, the effects of hydrodynamic interactions are reduced and the hydrodynamic
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contribution to the first normal stress difference decrcases. At some large value of
b/a, there will no longer be a sign change in the first normal stress difference since
the hydrodynamic contribution will be nearly zero.
Finally, in section 3.5 it is shown how the method presented here can be extended

to other flows, other interparticle forces, and other spherical bodies, such as droplets.

3.2 Nonequilibrium microstructure

The microstructure of a dispersion of equal-sized, spherical particles subjected to
Brownian, interparticle and hydrodynamic [orces with small particle Reynolds num-
ber, pya?/n, < 1, is governed by the N-particle Smoluchowski equation,

0Py

= T Vv =0, (3.1)

where Py is the probability density for the N particles to be in configuration @, and
p is the fluid density.

The probability flux g5 is given by
v = UPy + RuL-(FF — kTV In Py) Py, (3.2)

where U is the velocity of the particles due to the external flow, F is the total
nonhydrodynamic interparticle force, and KTV In Py is the Brownian force. In addi-
tion, Rpy is the hydrodynamic resistance tensor that relates the hydrodynamic force
exerted on the particles to the particle velocities. Its inverse, Ry, is the mobility
tensor relating the velocities to the forces. By multiplying the mobility by £7', the

Stokes-Einstein relation yields the particle diffusivity,

D = kTR (3.3)
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The particle velocities are non-zero in the presence of an imposed flow, and
U=z (T)+ Ry Rip: (E), (3.4)

where (T')=(E)+(2), and (E) and (£2) are the bulk rate of strain and vorticity
tensors of the external flow, respectively. The hydrodynamic resistance tensor Rgg
gives the hydrodynamic forces on the particles due to the imposed flow. In the absence
of hydrodynamic interactions (i.e., Rpg = 0), the particles would simply be advected
by the imposed lincar flow: U=a-(T').

The N-particle Smoluchowski equation, integrated over N — 2 particles and ne-

glecting three-body effects, becomes
V,'D, V.g(r) = PeV, (U.g(r)), (3.5)

where ¢ (r) is the nonequilibrium pair-distribution function. In equation (3.5) we
nondimensionalize all lengths by the effective hard-sphere radius, b, the relative ve-
locity, U,, by b¥, the relative diffusivity, D, by Dy = kT/67n,a, the bare-particle
diffusivity. The Peclet number, Pe, = (6*/Do)/(1/%) = 6mn,vab?/kT, is the ratio
of the diflusive and convective time scales. In terms of two-particle hydrodynamic

functions, the relative diffusivity and relative velocity are written,

D, = 2(G(r&) st + 1 (r2) (1- 1)), (3.6)

U, = r(T)—r(E)- (A (rl) 2t + B (r}) (I - ), (3.7)

where V. is the gradient with respect to the interparticle separation, r = ry — ry,
t is the unit vector along the line of centers between the two particles, I is the
isotropic tensor, (¢ (r%) and H (7%) are the radial and tangential components of
the relative diflusivity, D, =Dyy+D;— D3~ Dy, and A (r%) and B (r%) are radial
and tangential components of the relative velocity, U, =U,—Uj, due to the imposed
flow [Batchelor & Green (1972a); Batchelor (1976)]. Note that all of the two-particle

hydrodynamic functions include b/a in the argument because r is nondimensionalized
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by the thermodynamic radius, b, but the hydrodynamic functions are evaluated based
on the hydrodynamic radius, a.

The no-flux boundary condition for two particles at contact is

I
B

7-D,-V,g(r)= Pe,#-U,g(r) @ r \ (3.8)

and there is no deformation of the equilibrium structure at large distances,
g(r)~1 as r— oo. (3.9)

Since the nonequilibrium microstructure decays to unity at large separations, this
behavior is subtracted so that the deformation function, f, decays to zero for large
values of |r|. In addition, the deformation function, f, is a convenient choice for
reporting results for the microstructure since the surface value of f scales with Pe,
for both Pey « 1 [Brady & Vicic (1995)] and Pe, > 1 Brady & Morris (1997)]. We

introduce the deformation of the equilibrium microstiructure,
g(r; Pey) =1+ f(r; Pesy), (3.10)

and expand f in terms of surface spherical harmonics,

J(r;Pey) = > By (r; Pey) Yo (0, 0) (3.11)

¢
lm|<2

where the surface spherical harmonic, Y;..(6, @), is defined [McQuarrie (1983)],

24+ 1(4— 1m.})!>1/2

Yem (0’“’):( 47 (£ + |m])!

P[Imt (cos i4]) exp [imyp], (3.12)

and P7"(cos[f]) is the Associated Legendre Polynomial [McQuarrie (1983)],

m?)mﬂ d" Py (z)

dz™

P (x) = (1~ , (3.13)
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where P;(z) is the £ Legendre Polynomial. The expansion for f, equation (3.11), is
substituted into the Smoluchowski equation, equation (3.5), and boundary conditions,
equations (3.8) and (3.9), to obtain a series of coupled, ordinary differential equations

by using the orthogonality property of surface spherical harmonics,
[ Yem ¥, d = Gty (3.14)

where Y " is the complex conjugate of the surface spherical harmonic Y, ;, d is the

differential surface area and ¢;; is the Kronecker delta function,

1, ife=y;
8 = (3.15)

0. otherwise.

The resulting ordinary differential equation for B, ,(r; Pey) can be written for a

general linear flow,

a

(*(.b) @By, + (QG(TS) + G (72)) dBye plp+1)

el g2 r dr

= %PebW (rt) 5

ryPe S (W8 B (1- 4 () Bz

tlml<e dr

+ (1= B(rt)) (8 + 84) B + (Bs + o) Bem (3.16)

with the no-flux boundary condition at particle contact,

) dB,,

G (28) =22 = Pey (1 - 4 (2}))

a

ﬁl+ Z [32,711»’32

£,|mi<s

Q r=2, (3.17)

and the boundary condition of no deformation at large distances,

Byy~0 as r — oo. (3.18)
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The constants, [3;, in these equations are dependent on 4, m. p, and ¢ and cause the

ordinary differential equations for B, , to be coupled,

B = /(f-(E)-i')Y;qu, (3.19)
8, = / (#+(B)-£) Yo Y7 dO, (3.20)
b = [ (#(®)-0) ago’mvpfqda, (3.21)
g = [ (29 O?émY;qu, (3.23)
Bs = /(f-(ﬂ)-@)Si:w]ag:’om};:qdﬂ. (3.24)

In these integrals ¢ and ¢ are the unit vectors in the - and ¢-directions for spher-

ical coordinates, and the partial derivatives of the surface spherical harmonics are

evaluated using
Yo rm
d9

=1mYym, (3.25)
where i = v/—1 and

OYem
O

= |m|cot[0]Yem

2¢ - — |m| =D\ ?
- ([e—lrn|m+nm|+11)‘“(”““ Im| ”')

Ar (£ 4 |m| +1)!
X Pflml-l-1 (cos [0]) exp [imep] . (3.26)

We can immediately reduce the number of equations in (3.16) by using the fact
that f is real as well as using symmetry arguments for different lincar flows after
choosing a coordinate system. For all flows, the deformation function, f, must be

real,

By (r; Pey) = By (73 Pey) (3.27)

reducing the number of equations by approximately half. Turthermore, for simple
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shear flow, if (I') = %2, then
Bim (r; Pep) = 0 when £ is odd, (3.28)

based on symmetry of the imposed flow. Similar arguments can be made for planar,
uniaxial and biaxial extensional flows. For uniaxial and biaxial extensional flows, if

the coordinate system is chosen so that f is independent of the p-coordinate, then
B¢ = 0 when |m| > 0, (3.29)

and the number of equations in (3.16) is drastically reduced. In addition for exten-
sional flows, 34=/3s=0 since (2)=0.

The integrals for ;. equations (3.19)-(3.24), are numerically evaluated using the
rate of strain and vorticity tensors for the given external flow field. The integrals with
respect to i are simple and are completed by hand using orthogonality. The integrals
with respect to 0 are numerically evaluated using the equation in Appendix A for
integrals of the product of two Associated Legendre Polynomials and most powers of
sin[f] and cos[6].

To numerically solve the ordinary differential equations, the domain is transformed
from 7 € [2. 00) to t ¢ [0,1] by using the transformation variable ¢ = 2/r. By using this
transformation, the outer boundary condition, equation (3.18), is exactly applied since
the infinite r-domain is transformed to a finite {-domain. The ordinary differential
equations are transformed into finite difference cquations using an O(A*) scheme and
equal-spaced intervals in the ¢-domain. By using equal-spaced intervals in t-space,
a greater density of points occurs near r = 2 than at » — oo. Stretched coordinates
were used with little success—memory requirements dictated the number of total
intervals and placing more intervals near particle contact within the boundary layer
didn’t allow accurate calculation of O(1) variations of f far from particle contact.
The local behavior of the finite difference scheme is used to form a band diagonal

matrix for an arbitrary choice of the maximum value of 4, £,,,., in the expansion for
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f. The band diagonal matrix is then solved using a direct, LU-decomposition method
[Press et al. ( 1992)].

The main disadvantage of this method is the large, internal memory requirement
for st,drage of the band diagonal matrix. The band diagonal matrix, as constructed,
includes 'a largé percentage of zeroes, but no direct scheme could be found to further
reduce the memory requirement for matrix storage. This disadvantage means that
there is a maximum value for ¢,,,,, which is dependent on the spacing in the finite
difference scheme, for which the internal memory is fully utilized. The main advantage
of this scheme is that the method is direct. A number of indirect methods were tested
with limited success for Pe, > 1 and with no success for Pe, > 5. These indirect
methods relied on an iterative scheme, but did not converge for Pe, > 5 even with an
excellent initial guess by usiné the boot-strapping method. Since the current method
is direct, a solution can be obtained for the truncated set of equations for any value
of the Peclet number. Of course, as Pe; — o0, the truncated set of equations no
longer provides a meaningful approximation to the real solution of the Smoluchowski
equation since ., — 00 as Pey — oc.

Because of the limitation on 4,,,,, it is necessary to define a convergence criterion
that must be satisfied in order for the solution to be accepted as a good approximation
to the real solution. Idecally, one would like to extrapolate to ¢,,,, — oc using the
results for different levels of truncation, but a meaningful method of extrapolation
could not be found. Plots of By (r = 2; Pey) versus {,,,, for a given number of
intervals did not yield power law nor exponential behavior for Pe, ~ O(1). Instead,
the solution is accepted ai £,,,, if the solution at the next highest level of truncation

in ¢ provides a solution for which the rheological properties do not vary by more than

0.1%.
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The numerical technique of Lionberger (1998) is similar to the method indepen-
dently develbped in this study, but with some major differences which are discussed
herc. Lionberger {1998) does not transform the unbounded domain to a bounded
one and uses the outer boundary condition, equation (3.9), at some value of 7 rather
than at r — co. He realizes that an outer solution exists and chooses the value of r

2 : . .
/2 the proper scaling for the outer region where convection and

based on r = Pe;
diffusion are both important for Pe, < 1. He compares solutions {from this method
to a second solution method in which the pair-distribution function is matched to the
outer solution of Elrick (1962) to first order and finds insignificant differences between
the two methods in this limit. But by applying the solution at finite r or matching
the solution to the outer solution to first order, an approximation is introduced into
the system of equations. No such approximation is made in the current study since
the transformed domain is bounded and the outer boundary condition can be exactly
applied. Even though the approximation for the outer boundary condition in the
work of Lionberger (1998) is valid for Pe, < 1, it fails at high Peclet numbers in
the extensional zone. For Pey > 1, Brady & Morris (1997) show that the boundary
layer length scales as ~ O(Pe;'). Thus, r= Pe;1/2 is larger than ~ O(Pe; ') when
Pey, > 1, and Lionberger’s outer boundary condition is valid in the compressional
zone where the boundary layer forms. Outside the compressional zone the boundary
layer separates and the probability density is convected downstream forming a wake
on the downstream side of the test particle. In the extensional zone the length of the

wake region, L;, is ~ O(Pey) since

L1/Uy ~ L}/ Dy,

In (L\2 (U,
b (T) (Dm)’
L, /L

o (—2)2}“ ith 22~ o)
b p ) e with 55~ 0),

where 1 is the velocity direction and 2 is the gradient direction in simple shear flow.

Immediately, we see that r= Pe;1/2 is much smaller than ~ O(Pe;) when Pe, > 1,
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and Lionberger’s method fails to properly calculate the microstructure in the exten-
sional zone because of the approximate boundary condition. Based on this analysis,
Lionberger’s results for the microstructure and rheology are valid for Pe, < 1 but not
for Pe, > 1. The approximate boundary condition has a greater effect on the bulk
stress at high Peclet numbers for the case of two-particle hydrodynamic interactions
than for the case of no hydrodynamic interactions. For the case of two-particle hy-
drodynamics, O(1) variations in the nonequilibrium microstructure result in an O(1)
contribution to the bulk stress; whereas, for the case of no hydrodynamic interactions.
only the surface values of the nonequilibrium microstructure are required to calculate
the bulk stress. Note that these surface values arc still affected by the approximate
boundary condition, but the effect is not expected to be as great. Finally, Lionberger
(1998) uses s shooting method, an indircct method, and apparently finds that no
solution can be found for Pe, > 8 since that is the largest value for which data is

reported.

3.3 Bulk stress
The bulk stress of a suspension at low Reynolds numbers can be written as,
(L) =={p) 1+ 2n:(E) + (¥p), (3.30)

where (p); is the average pressurc in the fluid, which is arbitrary if the fluid is incom-
pressible, and 21,(E) is the contribution to the deviatoric stress from the Newtonian

suspending fluid. The particle stress, (¥'p), is written [Brady (1993a)] as,

(Xp) = —nkTT+n[(S7) 4 (SP) + (§TY), (3.31)
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where nkT1 is the isotropic, kinetic contribution to the particle stress and n is the
number density of particles. The remaining contributions to the stress are the hydro-

dynamic, Brownian and interparticle force stresslets, respectively,

(s = —(Rsv-Ry, Rrg — Rsu): (E), (3.32a)
(S®) = —kT(V-(Rsu-REy)), (3.32h)
(8") = —((xI+ Rsu-Rpp)-F'), (3.32¢)

where Rsy and Rsg are hydrodynamic resistance tensors relating the stress to the
velocity and rate of strain, respectively. These two hydrodynamic tensors are not
traceless, and the contribution to the osmotic pressure due to hydrodynamic interac-
tions are calculated [Jeffrey, Morris & Brady (1993)).

The particle stress contributions can be rewritten in a form that is valid for a

system of two particles,

TI:(SH> - 5‘15117]3./’( > 5G§27’5‘7<E>

vt () 0 [ ) e

= 2B (rt) (% — 41): () )g(r)dr, (3.33a)

WS") = b o [W () (i~ 31) g (x)ar
- %benw%A (28)1 / ¢(2)dQ, (3.33b)
n(S") = —%q’)bnkT (1-4 (25))/f-f~g(2)dﬂ

- %gbbnk-T (A (28) - %%A (23)) I/g(z)dQ. (3.33¢)

The interparticle force is taken as the hard-sphere force, FF=1kT§(r—2), where
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é(r—2) is the delta function and the factor of 1/2 is required to give the proper
value for the equilibrium osmotic pressure. This set of equations [or the bulk stress.
when nondimensionalized by 7%, is correct to O(¢?), where ¢ = 47nb®/3, and the
equations are valid {or arbitrary values of b/a. In these equations, K(r%), L(rf)
and M(r%) are the two-particle hydrodynamic functions associated with the hydro-
dynamic stress [Kim & Mifflin (1983); Kim & Karrila (1991)] and A(r) and B(ri)
are pressure moment functions used to calculate osmotic pressure [Jeflrey, Morris &
Brady (1993)].

As a check on the set of equations for the bulk stress, we first calculate the
equilibrium osmotic pressure and then briefly analyze the behavior of the different
contributions to the bulk stress for varying b/a ratios. The osmotic pressure, II, is

mechanically defined [Brady (1993a)],

1 .

Jeffrey, Morris & Brady (1993) show that there is no contribution to the equilibrium
osmotic pressure from the hydrodynamic stress since the material is incompressible.

FFurthermore, by applying equation (3.34) to equations (3.33)-(3.33),

0

nkT

=1+ 4§bbgeq (2 Qb) s (335)

where g, (2; @) is the contact value of the equilibrium radial-distribution function.
The equilibrium osmotic pressure always has this simple form since the contributions
from A(r2) exactly cancel for all values of b/a.

If the particles have thermodynamic and hydrodynamic radii that are nearly equal,
b/a — 1, then the contribution to the bulk stress from interparticle forces vanishes
and is transferred to the Brownian stress since A(2) — 1 and A(2) — 3/2, and the
contributions from the interparticle force to the traceless stress and osmotic pressure
both tend to zero. Furthermore, if the system has b/a > 1, the hydrodynamic stress

decays quite quickly since the particle acts like a point particle in a hydrodynamic
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sense, and we see that the hydrodynamic stress scales as (a/b)? if the integral remains
O(1) with respect to chaﬁges in b/a, but the integral is actually O(a/b)® and the
hydrodynamic stress scales as O(a/ b)®. Finally, the interparticle force contribution
to the bulk stress, nondimensionalized by 7,¥, retains a factor of a/b in front of

the surface integral when the proper Peclet number, Pey = 6mn,yab?/kT, is used, in

agreement with previous work {Brady (1993b); Brady & Morris (1997)].

3.4 Results

For simple shear flow (I') = Xz is used as the rate of strain tensor. Rheological

propertics and the osmotic pressurc arc defined,

Yo = Lo = 209(En) = 2p(E,,), (3.36
M =1/7s,

N =% — =23, — S0,
Ny =gy — ¥ag = Sgp — T,y (3.39

1
= —zI:(Zp), (3.40

where &;; is the 15'"-component of the bulk stress, E;; is the ij*-component of the
rate of strain tensor, and the subscripts used for ¥ and (E) denote the flow direction
(1), the gradient direction (2) and the vorticity direction (3). In addition, n is the
shear viscosity, 7, is the relative shear viscosity, NV; is the first normal stress difference,
~and N, is the second normal stress difference.

This section is broken into three parts with each part addressing the follow-
ing cases: (i) the thermodynamic and hydrodynamic radii are the same, b/a = 1,
and hydrodynamic interactions are neglected or, alternatively, b/a — oo with two-
particle hydrodynamic interactions, (ii) the thermodynamic and hydrodynamic radii
are nearly equal, b/a — 1, and two-particle hydrodynamic interactions are included,
(iii) the ratio of the thermodynamic and hydrodynamic radii is varied, 1.01 < b/a < 5.00,

and two-particle hydrodynamic interactions are included. For each case, previous in-
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vestigations in, theory, simulations and experiments are first discussed, then a few
general notes about the soiution procedure are made. Finally, the results of this
study are p_résented for the micrpstructure, relative shear viscosity, normal stress dif-
ferences and osmotic pressure. During the discussion of the individual rheological
properties, a scaling argument for the volume-fraction dependence of the bulk stress
is used to eXtend the results for the rheology of dilute dispersions to concentrated

dispersions and comparisons are made to existing data, if available.

3.4.1 No hydrodynamic interactions, b/a =1

In this section the Smoluchowski equation, equation (3.16), and its boundary con-
ditions, equations (3.17) and (3.18), are solved with b/a = 1 while neglecting hy-
drodynamic interactions, G(r)=H(r)=1 and A(r)=B(r)=0. Since b/a = 1, then
¢y =¢o=¢ and Pe, = Pe. When calculating the particle stress to O($?) using equa-
tions (3.33)-(3.33), K(r)=L(r)=M(r)=A(r)=B(r)=0 since hydrodynamic inter-
actions are neglected.

There are a number of theoretical works in which the microstructure and/or rhe-
ology are predicted for colloidal dispersions when hydrodynamic interactions are ne-
glected. Most of these analyses focus on solving the Smoluchowski equation in the
low Peclet limit [Dhont (1989); Brady & Vicic (1995)], the high Peclet limit [Brady
& Morris (1997)], or for arbitrary Peclet numbers [Blawzdziewicz & Szamel (1993);
Lionberger (1998)], while other works solve a fluctuating convective-diffusion equa-
tion instead of the Smoluchowski equation [Ronis (1984, 1986)]. Ronis (1984, 1986)
- and Dhont (1989), solving different equations, both argue that the structure factor,
and hen(;e the Qiscosity, is nonanalytic in shear rate in the limit of vanishing shear
rate. They_ predict a first correction to the low shear Newtonian viscosity scales as
~ O(¥7'/?). The nonanalytic character of the perturbation expansion for low shear
rates is correct [Brady & Vicic (1995)], but the first nonanalytic term in the inner ex-
pansion is shown to occur at O(Pe/?). The expansion is regular to O( Pe?) and Brady

& Vicic (1995) show that the O(Pe) deformation yields the low shear Newtonian vis-
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cosity while the O(Pe?) deformation yields normal stress differences and the first cor-
rection to the equilibriuin dsmotic pressure. At high Peclet numbers, where Brownian
motion is we%ak, Brady & Morris (1997) show that the surface value of the nonequilib-
rium radial-distribution function scales with the Peclet number, 9(2) ~ O(Pe). Since
only the surface value is required to calculate the bulk stress for a system in which
hydrodynarhic interactions are neglected, it is shown that the particle stress has a
viscous scaling, |Xp| ~ O(n,¥). Furthermore, Brady & Morris (1997) show that the
perturBation expansion for the nonequilibrium radial-distribution functions proceeds

in powers of Pe~!

and they solve the Smoluchowski equation in the limit Pe — oo
by neglecting the angula,f velocity terms within the boundary layer. At arbitrary
Peclet number Blawzdziewicz & Szamel (1993) and Lionberger (1998) both solve the
Smoluchowski equation and find the resulting rheological properties for Pe < 12.5
and Pe < 5, respectively. The rheological results of Blawzdziewicz & Szamel (1993)
and Lionberger (1998) are used to as a check on some of the results of this work.
All of the theoretical results discussed thus far focus on dilute dispersions. Brady
(1993b) and Brady & Morris (1997) show how the results of the two-particle problem
can be used to predict the rheology of concentrated dispersions for all values of Peclet
number. The scaiing argument is simplified when hydrodynamic interactions are ne-

glected since the particle stress scales simply with the contact value of the equilibrium

radial-distribution function, g.,(2;¢),

Y
%—% ~ g0y (2:6), (3.41)

and the Peclet number remains the proper parameter for the scaling since the nondi-
mensional short-time self-diffusivity, D§ (¢), is unity when hydrodynamic interactions
are neglected. Brady (1993b) further shows that the particle stress diverges near close
packing since the equilibrium radial-distribution -function diverges near close packing

[Woodcock (1981)],
9(29)~ (1= ¢/¢m)™", (3-42)

where ¢,, is the maximum packing fraction and ¢, ~ 0.64 for hard spheres [Nolan &



57
Kavanagh (1992)].

There are no experimental conditions which can be directly related to complete
neglect of hydrodynamic interactions. For charged colloidal dispersions, the ratio of
thev thermodynamic radius to the hydrodynamic radius can be greater than one (i.e.,
b/a > 1), but analysis of these experiments is delayed to the subsection in which b/a
is varied.

Even though no experiments exist, Brownian Dynamics simulations are plentiful.
In Brownian Dynamics simulations, hydrodynamic interactions are neglected but the
hydrodynamic drag on a single particle is included in the simulations through the
bare-particle diffusivity, Dé. This assumption is the same as the assumption used in
this section when solving the Smoluchowski equation. The majority of these simula-
tions were performed by Heyes’ group [Heyes & Melrose (1993); Heyes et al. (1994);
Mitchell, Heyes & Melrose (1995)] and more recently by Rastogi, Wagner & Lustig
(1996) and Foss & Brady (1999). There are two problems with Brownian Dynamics
simulations. First, the signal-to-noise ratio at low Peclet number is small and rheolog-
ical properties are difficult to measure for Pe < 1. Secondly, at high Peclet numbers,
the dispersion undergoes a shear-induced phase transition into a hexagonal shear-
string phase. The predictions made in this section are only valid for a well-dispersed
Brownian suspension and, thus, disagreement between theoretical predictions and
Brownian Dynamics simulations are expected for Pe > 30.

Results for the nonequilibrium microstructure are numerically calculated by solv-
ing the Smoluchowski equation for a range of Peclet numbers to Pe = 20. The macro-

_scopic properties at higher Peclet numbers do not meet the convergence criterion, but

all macroscopic properties converge at lower Peclet numbers by using 60 intervals with

lrar = 10 for Pe <1 and 4,4, = 18 for 1 < Pe < 20.

Microstructure

In Figure 3.1 the deformation parameter is scaled by the Peclet number, f/Pe, and
plotted in the velocity-gradient plane for different Peclet numbers. Since there is no

change in the equilibrium microstructure for r < 2 (i.e., g(r < 2)=g., (r < 2) = 0),
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the excluded volume region sets the color for regions where there is no deformation
of the equilibrium microstructure, f=0. As the color tends from cyan to red to
yellow, the value of f/Pe increases. The spectrum of green denotes f/Pe < 0. At
small Peclet numbers, the quadrupole structure of the O(Pe) perturbation to the
microstructure is distorted by the O(Pe?) deformation, as shown by Brady & Vicic
(1995). As the Peclet number increases, the region with f > 0 is compressed toward
particle contact and a boundary layer forms in the compressional zone at high Peclet
numbers. Also at high Peclet numbers, a wake region downstream of the test particle
is formed, similar to that scen in uniform flow past a sphere at high Reynolds number.
In this wake region, [ — —1 since the probability of finding the second particle in
the wake region tends toward zero, g — 0. In the density plots the size of the wake is
deceivingly small at high Peclet numbers since f/Pe ~ O(Pe™') in this region. The
scaling f/Pe is maintained though because the main feature of these density plots
is the formation of a boundary layer with increasing Peclet number. For the largest

Peclet number, Pe = 20, there are two important features near the surface of the

particle — the value of f inside the boundary layer is not symmetric with respect
to the compressional axis and the point of separation occurs within the extensional
zone. |

The asymmetry and point of separation can better be seen in Figure 3.2, in which
the contact value of f/Pe is plotted in the velocity-gradient plane. The numerical
data in Figure 3.2 is the same as the upper part of the plots in Figure 3.1 with the
angle 8 measured from the velocity direction, z, and ¢ = 0. The compressional axis is
‘at § = 3m/4, but the maximum value of f/Pe is at 8., & 2.26-radians for Pe > 1,
slightly lower than & = 37 /4; thus, the structure at the particle surface is slightly
asymmetric. This asymmetry leads to a non-zero first normal stress difference, as
seen later. In addition, the point of separation .occurs approximately at 8 ~ 1.26-
radians instead of § = 7/2, where £-(E)-t = 0 [Brady & Morris (1997)]. The point
of separation occurs at a point further downstream than 7 /2 because of the angular

velocity within the boundary layer caused by the rotational component of simple

shear flow. Since the point of separation is in the extensional zone, a non-zero, first
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normal stress difference develops. Finally, the prediction of Brady & Morris (1997)
is included in Figure 3.2 in the compressional zone to cmphasize the difference in
symmetry and the point of separation between the numerical results of this work and
the high Peclet, approximatc asymptotic analysis when the angular velocity within
the boundary layer is neglected [Brady & Morris (1997)].

Even though the results of Brady & Morris (1997) are only approximate, the
results are in excellent agreement with the numerical results along the compressional
axis, as shown in Figure 3.3b, where f/Pe is plotted as a function of the boundary
layer coordinate,

2+ (r — 2)Pe. (3.43)

Based on the collapse of the numerical data, it appears that the high Peclet asymptote
has been nearly reached and the extrapolation of rheological properties to Pe — oc
might be warranted. But recent results of Bergenholtz (1999) show that extrapolation
of these results to high Peclet numbers, especially the first normal stress difference,
yield incorrect asymptotes. The formation of the boundary layer is better seen in
Figure 3.3a, where the numerical results for f/Pe are plotted as a function of particle
separation, r, along the compressional axis. It is seen that the surface value of f/Pe is
fairly insensitive to Peclet number, but the formation of the boundary layer is evident
as the Peclet number increases.

Finally, Figure 3.4a shows that the wake region includes points for which f — —1
as Pe — oo and that a large region in the extensional zone exists for which f > 0. At
small Peclet numbers the value of f along the extensional axis is always negative, and
" there is always a smaller probability of finding a second particle along this axis than
at equilibrium. At high Peclet numbers the surface value of f along the extensional
axis tends toward —1, and there is nearly zero probability of finding a second particle
at this point. But at larger particle separations, r > 2.8, for Pe = 20, the value of f
is always positive along the extensional axis. The fact that f > 0 for » > 2.8 can be
understood by analyzing the two-body problem in the limit of weak Brownian motion,

as shown in Figure 3.4b. A test particle with unit radius is placed at the origin and a
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second particle of unit radius is placed upstream in the velocity-gradient (z-x) plane
at (z,0,—oc) with 0 < z <'2 in simple shear flow. The upstream particle is advected
toward the test particle, makes contact with and is swept over the test particle, and is
advected downstream where it passes the extensional axis at r = N2~ 2.83, which
is approximately the value of r at which f > 0 for Pe = 20 in the numerical results

of this work.

Shear viscosity

In Figure 3.5 the O(¢?) contribution to the relative shear viscosity is plotted as a
function of Peclet number. The numerical results are in excellent agreement with the
low Peclet asymptotic result, 5, — 1 — 2.5¢ = (12/5)¢?, of Brady & Vicic (1995). The
high Peclet asymptotic result of Brady & Morris (1997) provides a good approxima-
tion to the numerical results despite the fact that Brady & Morris (1997) neglect the
angular velocity within the boundary layer in their analysis. But the most striking
feature of Figure 3.5 is the fact that there is a residual contribution to the shear
viscosity at infinite Peclet number. As Brady & Morris (1997) discuss, there is an
O(1) contribution to the shear viscosity because the surface value of the nonequilib-
rium microstructure grows as O(Pe) and the integral for the particle stress, equation
(3.33), is preceded by a factor of Pe™'. The numerical results are compared with
the results of Blawzdziewicz & Szamel (1993) and found to be in excellent agreement
over the whole range for which they obtain results, Pe < 12.5. The numerical results
are also compared to the results of Lionberger (1998) and are in excellent agreement
at low Peclet numbers, but the results of Lionberger are uniformly smaller than the
results of this study at intermediate Peclet numbers. This difference in results is most
likely caused by the approximation Lionberger (1998) used for the outer boundary
condition.

There is some debate about the first correction to the zero-shear, Newtonian vis-
cosity. Ronis (1984, 1986) and Dhont (1989) both predict an O(Pe'/?) correction
while Brady & Vicic (1995) show that the O(Pe®) deformation of the equilibrium mi-

crostructure yields an O(¢*Pe?) contribution to the relative shear viscosity. In Figure
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3.6, the value of the relative viscosity is subtracted from the zero-shear, Newtonian
value to find that n =1+ 2.5¢ + (12/5)¢* — 0.62¢* Pe? for Pe < 1. The O(¢?Pe?)
contribution is in agreement with the prediction of Brady & Vicie (1995). In the
Brownian Dynamics simulations of Rastogi, Wagner & Lustig (1996), a Yukawa po-
tential is used with 5/ o ~0.50/0.267 or b/a~1.23. Even though b/a # 1, the results
are qualitatively analyzed since hydrodynamic interactions are neglected and there
is only an interparticle force contribution to the stress. Rastogi, Wagner & Lustig
(1996) claim that the first correction to the low shear viscosity is not O(¢? Pe?) based

on their results, but instead they fit a Ree-Eyring model,

sinh™'[12.86 Pe]
12.86 Pe ’

n—1—2.5¢=12.84 (3.44)

to the data for the interparticle force contribution to the viscosity. There are two
problems with their conclusion that the next correction is not O(¢?Pe?): (i) the
Peclet numbers are not small enough to accurately determine the correction and the
error for data at small Peclet numbers is quite large and (ii) the Ree-Eyring model
asymptotes to,

1
n, — 1 — 256, = 12.84 — g12.84(12.86‘13e)2, (3.45)

and the model used to fit their data does, in fact, have an O(¢? Pe?) term as the first
correction to the Newtonian, low-shear viscosity.

The scaling argument of Brady (1993b) predicts that

B 1= 26~ (2 6). (3.46)

This scaling argument is applied to the results of the Brownian Dynamics simulations
of Foss & Brady (1999) and compared to the numerical results of this study in Figure
3.7. The Carnahan-Starling equation [Carnahan & Starling (1969)],

11

Jeq (2;0) = (1—_~¢—)3, (3.47)
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is used to approximate the value of g,(2; ¢). There is reasonable agreement between
the simulations and the numerical results at intermediate Peclet numbers. At low
Peclet numbers, there is reasonable agreement for smaller volume fractions, but the
low-shear viscosity appears to increase faster than predicted by the scalihg argument
of Brady' (1993b). At high Peclet numbers, the system undergoes a shear-induced
phase transition for Pe > 30 and the lack of agreement is not surprising since the
theory is only valid for well-dispersed systems. In a recent analysis by Foss & Brady
(1999) of startup flow using Browniaﬁ Dynamics, it appears that a metastable state
appears at approximately one strain unit where the system is still well-dispersed and
reaches a constant value for the stress before the dispersion undergoes a shear-induced
phase transition. Results of this analysis of Foss & Brady (1999) show that there is a
residual viscosity at high Peclet numbers, as predicted by the numerical results of this
work. Foss & Brady (1999) have not yet completed the full analysis, but a sample of
these results is included in Figure 3.7.

One reason for the failure of the scaling theory of Brady (1993b) at large volume
fractions is that the characteristic relaxation time is no longer independent of vol-
ume fraction as it is at smaller volume fractions. Brady (1993b) predicts that the
relaxation time is b2/ f)g(gb), but for Brownian Dynamics simulations the short-time
self-diffusivity 1s simply equal to the bare-particle diffusivity, ﬁg(qﬁ) = Dy, since hy-
drodynamic interactions are neglected. Thus, Brady (1993b) predicts a relaxation
time that is independent of volume fraction. If the relaxation time is independent
of volume fraction, then a plot of the reduced dynamic viscosity versus nondimen-
sional frequency should have the same behavior for all volume fractions. In Figure
3.8, the results of Bergenholtz (1999) for the frequency response of a Brownian dis-
persion is plotted. Bergenholtz (1999) calculated the frequency response by using
the Green-Kubo method and the Brownian Dynamics algorithm of Foss (1999). The
most striking feature about Figure 3.8 is that there is a single relaxation time for vol-
ume fractions less than ¢ = 0.40, but the relaxation time increases for larger volume

fractions. These results show that the scaling theory of Brady (1993b) fails at large

volume fractions. -
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Next, the existence of a Cox-Merz rule is investigated. It has been proposed
for other syétems, such as polymer melts, that the shear viscosity in steady flow is
equal to the dynamic shear viscosity in oscillatory flow when 4 =w. One would not
expect such a relationship to be valid since the microstructure changes with shear
rate for .stea,dy‘ flow, but only the equilibrium microstructure is probed in dynamic
measurements. But there is one common thread for steady and oscillatory data — as
4 and w increase, the relative importance of Brownian motion decreases. A Cox-Merz
rule for colloidal dispersions has been verified using Brownian Dynamics simulations
[Heyes et al. (1994), Heyes & Mitchell (1995)] in steady and oscillatory shear flows as
well as using the Green-Kubo method for ¢ = 0.300, 0.400, and 0.472. Theoretically,
a Cox-Merz rule is also verified, as shown in Figure 3.9, by plotting reduced viscosity

versus Peclet number. The reduced viscosity is defined,

«_ _n(Pe) = n(Pe — o)
o 'I](I)(ﬁ = 0) — 77(])(3 —r OO)

7 (3.48)

The results of this study are compared to the theoretical prediction of Brady (1993b)
for the dynamic shear viscosity and found to be in excellent agreement despite the fact
that the reduced steady viscosity is ~ O(Pe¢™!) but the reduced dynamic viscosity
is ~ O(Pe %) for Pe>> 1. As an aid for future use, the results for the reduced
steady viscosity are fil to a Padé approximate to capture the first correction to the
zero-shear Newtonian viscosity which is O(Pe?) and the O(Pe™!) behavior for large

Peclet numbers,
_ 1+2.22Pe
~ 1 +2.22Pe + 0.62Pe?’

*

Ui

(3.49)
This Padé approximate is included in Figure 3.9 and is an excellent approximation
to the shear thinning curve for the reduced steady shear viscosity.

Normal stress differences

In Figures 3.10 and 3.11, the O(¢?) contribution to the nondimensional first and
second normal stress differences. are plotted as a function of Peclet number. The

numerical results are in excellent agreement with the low Peclet asymptotic results,
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Ny /ns% = (16/15)¢? Pe and N3/n,y = —(16/21)¢* Pe, of Brady & Vicic (1995). For
the second normal stress difference, the high Peclet asymptotic result of Brady &
Morris {1997) provides a good approximation to the numerical value. But Brady &
Morris (1997) predict that Ny = 0 as Pe — oo since the angular velocity terms in
the bouﬁdary laver are neglected and the resulting microstructure is symmetric with
respect to the compressional axis. The importance of the rotational component of the
external flow is even seen at low Peclet numbers where Brady & Vicic (1995) show that
only the (E): (€2) term is responsible for a non-zero, first normal stress difference. But
even when the angular velocity terms are kept in the analysis at high Peclet number,
the first normal stress difference is nearly zcro as Pe — oo [Bergenholtz (1999)].
The numerical results of Blawzdziewicz & Szamel (1993) and Lionberger (1998) are
found to be in cxcellent agreement with the results here. The maximum in the
nondimensional first normal stress difference is not seen in the results of Lionberger
(1998) since the calculations were terminated at a Peclet number lower than the
Pcclet number at which the maximum in N; occurs; thus, Lionberger’s extrapolation
to Pe — oc is incorrect and his use of the Ree-Eyring model is invalid.

In the work of Brady & Vicic (1993), it is predicted that the next correction to
Ni/ns¥ is O(d? Pe?), arising from the O(Pe®) deformation of the microstructure. In
Figures 3.12 and 3.13, the next corrections are numerically calculated and found to be
O(¢* Ped/?) instead of O(¢? Pe?). The fact that the O(P¢®) deformation contributes to
the shear viscosity but not the normal stress differences can be explained by analyzing
the vector invariant form for the O(Pe®) perturbation for the inner solution.

The inner expansion for the deformation to the equilibrium microstructure can be

written,

f = fiPe+ faPe*+ f3Pe™? + P In[Pe] + fs Pe® + fo Pe™/? — O(Pe* In[Pe]), (3.50)
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where f; and f; can be written in a vector invariant form and f3 is simply a constant
for a general‘linear flow [Brady & Vicic (1995)]. If we assume that the next term in
the inner expansion is O( Pe?), we find that f5 has a particular solution that includes a
term proportional to In[r]. If fs is expressed in terms of the outer variable, p = r Pe!/2,
then f5P‘€3 includes a term that is O(Pe? In[Pe]). Since no part of the outer solution
matches such a term, an O(Pe®In[Pe]) term is required in the inner expansion and
fa #0. The O(Pe’In[Pe]) term of the inner expansion yields only a contribution
to the osmotic pressure since fy satisfies a homogeneous differential equation with
a homogeneous boundary condition at particle contact. To completely specify the
general solution, the result for f; is matched with the portion of f5 that contains
In[r], just as for the case of mass transfer from a single sphere [Acrivos & Taylor
(1962)]. The O(Pe?) perturbation, f5, must be a scalar quantity that is cubic in the
imposed flow and must vanish for pure rotation, and the quantity may only include
combinations of #, (E) and (€2). There are only 14 linearly independent, non-zero

terms for an incompressible system,

(Eij Ejebors) o (Ei EjQi) 5 (B Qe Qi) 5 (i Ejeli)
(P Eigs) s (Fi By Egpy) (7 Bigfy) (7 BigQes) (Fi By )
(7ol Qikt) (P Eigts) s (B Bji) (P Bijts) o (04 Q0) (R L)
(FiEi EjkExt) , (F8; Ejp Eaty) , (FQ Qe Entt) , (7% EQuty) .

The first four of these terms contribute only to the isotropic pressure and are of no con-
sequence for normal stress differences. It can be shown that the remaining 10 terms,
when substituted into equation (3.33), yield contributions only to the isotropic stress
or to the shear viscosity; thus, the O(Pe*) deformation of the equilibrium microstruc-
ture does not contribute to the normal stress differences. The O(Pe™/?) deformation

does contribute to normal stress differences and yields an O(Pe®?) contribution.
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Once again, the scaling argument of Brady (1993b),

Ni ) )
=~ P Geg(2; ), (3.51)
Ns™

is used with the Carnahan-Starling equation, equation (3.47), and the Brownian Dy-
namics simulations of Foss & Brady (1999). The scaling argument collapses the data
of Foss & Brady (1999) quite nicely, as shown in Figures 3.14 and 3.15, but there is
only qualitative agreement between the theoretical prediction of this work and the
data of Foss & Brady (1999) for the scaled first normal stress difference. The theory
overpredicts the maximum value of the nondimensional first normal stress difference
by a factor of two and the theoretical curve is shifted toward slightly higher values of
Peclet number. Note that the Brownian Dynamics simulations do show a maximum
value for the nondimensional first normal stress difference at a Peclet number smaller
than Peclet numbers for which the dispersion exhibits a shear-induced phase transi-
tion. The agreement between the simulations and the theoretical prediction is more
quantitative for the nondimensional second normal stress difference. It is difficult to
ascertain whether the simulation data exhibil a maximum value or not because the
maximum occurs at a Peclet number at which shear-induced phase transitions occur.

One of the more traditional measures of the effect of normal stress differences is
the Weissenberg effect, or rod climbing. In this experiment a cylindrical rod, with its
axis parallel to the direction of gravity, is submerged in a fluid contained in a coaxial
cylinder. The radius of the rod is much smaller than ihe radius ol the container so
that wall effects are eliminated. Lodge, Schieber & Bird (1988) present a heuristic
argument for such a system when the effects of surface tension and centrifugal force
are negligible in the absence of secondary flows,

Op..
ar

dNy
dXiy

T

= Ny 42Xy,

In their analysis there is a frictionless horizontal plate above the fluid. If 1his plate is

removed and r%’j—z > 0, then the fluid will climb the rod since r > 0 and the pressure
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on the plate, —p.., increases as the radius decreases. Equation (3.52) tends to agree

with the results of most, but not all, experiments and is rewritten for this work,

,. ; 7 ; 2V
rdpm/ar _ N 9 Ny _QPebd(NQ/(nsf)’@b))'

: = — = 2— 3.53
YDy NP NsYOR dPe; (3.53)

If the left-hand side of equation (3.53) is positive, then rod climbing should occur. If
the left-hand side is negative, then negative rod climbing—-depression of the surface
of the fluid that 1s not caused by centrifugal forces--occurs. The left-hand side of
equation (3.53) is plotted as a function of Peclet number in Figure 3.16 and only
negative rod climbing is found for all values of Peclet number for a dispersion in
which hydrodynamic interactions are neglected and b/a = 1. Negative rod climbing
occurs because the value of the first normal stress difference is the same magnitude
as the second normal stress differcnce for dispersions, which is different from many
other systems, such as polymer solutions, for which —N,/N, < 0.25 al small shear

rates and rod climbing occurs [Lodge, Schieber & Bird (1988)].

Osmotic pressure

The O{@Pe) contribution to the osmotic pressure is shown in Figure 3.17. There
1s excellent agreement between the theoretical results and the low Peclet asymp-
totic result, II/nkT—1—4¢=(16/45)¢Pe?, of Brady & Vicic (1995). Even though
the angular velocity ‘ucflns in the boundary layer are neglected by Brady & Morris
(1997) in the high Peclet limit, the asymptotics provide an excellent approximation
to the numerical results as Pe — o0o. Neither of the other two numerical investi-
gations [Blawzdziewicz & Szamel (1993); Lionberger (1998)] predict the shear-rate
dependence of the osmotic pressure.

The next correction to the nondimensional osmotic pressure is predicted to be
O(pPe"/?), arising from the first mismatched term of the outer solution [Brady &
Vicic (1995)]. When the O(Pe®?) term of the expansion in the inner region is matched
with the Elrick (1962) solution for the outer region [Leal (1992)], the next correction

to the nondimensional osmotic pressure is found to be 0.286¢P¢®/2. This prediction
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is numerically confirmed in Figure 3.18 where the correction to the osmotic pressure
exhibits oscillafuory behavior with respect to Peclet number at small Peciet numbers
~ due to numerical error.
Brownian Dynamics simulation data [Foss & Brady (1999)] are compared with

the results of this work in Figure 3.19 by using the scaling theory of Brady (1993b)

H/nkT — (I1/nkT)o ~ ¢Pege,(2; P). (3.54)

where (11/nkT )y is the equilibrium value of the nondimensional osmotic pressure. For
simulations, data is only included for volume fractions for which the osmotic pressure
is measured at equilibrium. The scaling argument collapscs the simulation data quite

nicely and the numerical results are in reasonable agreement.

3.4.2 Two particle hydrodynamic interactions, b/a — 1

In this section the Smoluchowski equation, equation (3.16), and its boundary condi-
tions, equations (3.17) and (3.18), are solved with the thermodynamic and hydrody-
namic radii nearly equal. Since b/a — 1, then Pey = Pe and ¢, = ¢ =¢. Even though
the Peclet number and volume fraction take their limiting form, the two-particle
hydrodynamic functions are evaluated at 72

There are four reasons why the limit b/a — 1 is taken rather than simply letting
b = a. Physically, closed streamlines form at large Peclet numbers if b = a [Batchelor
& Green (1972b), but if b/a > 1.0001, then closed streamlines are destroyed [Brady
& Morris (1997)]. From a practical point of view, Smart & Leighton (1989) show
that for noncolloidal particles, b/a > 1.001 in most cases because of surface rough-
ness. For colloidal particles, a similar phecnomenon occurs when the particles are
sterically-stabilized, where the stabilizer acts like a porous medium and only a finite
force is regnired for the particles to thermodynamically contact. We take the min-
imum value for b/a as 1.001 for colloidal particles as well. From a numerical point
of view, the tangential components of the radial velocity and the radial mobility,

B(r%) and H(rt%), have slow decaying 1/In[r—2] behavior as r2 — 2. For example,
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B(2)=0.4056 but B(2.002)=0.2792 and B(2.004)=0.2662; thus, the surface value of
the La,ngentiél component of the relative velocity changes very little as v — 2 when
o % ~ 1.001 comparcd to its variation when b = a. Note that two of the hydrodynamic

functions, L(r%) and M(r-&), in the hydrodynamic contribution to the stress also

a
have 1/ ln[r&—?] behavior. Finally, if b = a, then a singularity is introduced into the
Smoluchowski equation, equation (3.16), through the relative radial mobility of the
two particles since

G(ré) ~ 2 (7‘9 — 2) as r — 2, (3.55)

a a

the coefficient in front of the second derivative is exactly zero and LU-decomposition
fails. There are methods to eliminate the singularity, but in view of the above evidence
regarding b/a ratios, these are not pursued. All of the results in this section are
obtained by using b/a = 1.001.

Most of the theoretical descriptions are concerned with the case of b/a = 1, and
these theorics are described here. At zero Peclet number, Batchelor & Green (1972b)
show that the equilibrium microstructure yields an O(1) contribution to the hydro-
dynamic stress, resulting a nonzero viscosity but no normal stress differences. At
low Peclet number, Batchelor (1977) extends these calculations to include the first
order perturbation to the equilibrium microstructure and calculates the O(1) con-
tribution to the Brownian stress, yielding the total low-shear, Newtonian viscosity
for colloidal dispersions. Continuing the work at low Peclet number, Brady & Vicic
(1995) calculate the hydrodynamic normal stresses from the O(Pe) deformation of
the microstructure, determine the O(Pe?) deformation of the microstructure, and
calculate the Brownian normal stresses from the O(Pe?) deformation, yielding the
low-shear normal stress difference coefficients and osmotic pressure at small Peclet
numbers. Additionally, it can be shown that the O(Pe?) deformation yields an O( Pe?)
contribution to the hydrodynamic stress, resulting in an O(Pe?) contribution to the
hydrodynamic viscosily. For Pe ~ O(1) Lionberger (1998} solves the Smoluchowski
Equation in the singular limit, b/a = 1, for Pe < 8 using an approximation for the

boundary condition at large separations, calculates only viscosity and normal stress
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differences, and predicts a shear thinning hydrodynamic viscosity for Pe ~ 1 in con-
trast to the monotonic increasing hydrodynamic viscosity with respect to increasing
_rate, as calculated in Stokesian Dynamics simulations [Foss et al. (1999)]. At high
Peclet numbers, Batchelor & Green (1972b) show that in the limit of no Brownian
motion, the noﬁequilibrium microstructure is isotropic and calculate the viscosity for
pure straining flow. Results for simple shear flow cannot be obtained in this limit, and
Brownian motion or three particle interactions are required to eliminate closed stream-
lines. By including Brownian motion, Brady & Morris (1997) analyze the boundary
layer in the compressional zone in which Brownian motion and hydrodynamic shear-
ing forces balance, resulting in an anisotropic microstructure. The boundary layer
has a length that is ~ O(1/Pe). Furthermore, Brady & Morris (1997) show that the
case b/fa =1 is a singular limit when Pe > 1 since the nonequilibrium microstruc-
ture drastically changes its scaling with respect to Peclet number for small changes in
b/a, g ~ O(Pe®™) when b/a = 1 but g ~ O(Pe) when b/a — 1. One main effect on
rheology is that the nondimensional Brownian stresses are ~ O(Pe™%%?) for b/a = 1
but ~ O(1) for b/a — 1. As discussed earlier, the singular limit is not investigated
and we investigate the limit b/a — 1.

These predictions for dilute dispersions can be extended to higher concentrations
by using the scaling argument of Brady (1993b) as shown by Brady & Vicic (1995),
Brady (1996), and Brady & Morris (1997). Since there are hydrodynamic interactions,
a particle does not diffuse with its bare-particle diffusivity. Rather, it diffuses with

the short-time self-diffusivity, and the scaled Peclet number is

S Pe
Pe = .
)

(3.56)

Additionally, the particle stress no longer has just a simple scaling with the equilib-
rium radial-distribution function, as shown in the previous section. The Brownian

stress,

(BB) 20 (29)
Y Dye) (3-57)
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and the nonequilibrium hydrodynamic stress,

<2H> ’ 2ch (Z’d))
— 41—, ~0 3.58
s / Dy (¢) (5.58)

include factors-from both the structure, the radial-distribution function, and parti-
cle dynamics, the short-time sell-diffusivity, where 7’ is the nondimensional high-
frequency dynamic viscosity. A value of unity from the nondimensional contribution
of the solvent viscosity to the bulk stress is included on the left-hand side of equation
(3.58) since 7. also includes a contribution from the solvent viscosity.

The short-time self-diffusivity is not a rheological quantity, and ideally, for a
rheological model, all quantities should be able to be measured or deduced simply
from rheometiry. Since the short-time self-diffusivity is only a function of hydrody-
namic interactions of the equilibrium microstructure, it should be somehow related
to the high-frequency dynamic viscosity which is also a function of hydrodynamic
interactions {or an equilibrium microstructure. A relationship was first proposed by
Beenakker (1984) and later shown by Brady (1994). More recently, Bergenholtz ¢t al.
(1998) measured both the short-time self-diffusivity and the high-frequency dynamic

viscosity for the same dispersion to confirm that,
DE(d) = 1/n.. (¢). (3.59)
Using this relationship, we find that the scaled Peclet number can be written,
Pe = Pen (¢), (3.60)
and the Brownian and nonequilibrium hydrodynamic stresses scale,
~ O Ges (2:0) 15 (9) - (3.61)

As a supplement to the first of these theoretical investigations, a number of nu-

merical simulation techniques have been developed to study the microstructure and
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rheological properties of colloidal dispersions at finite concentrations in flow while in-
cluding hydrbdynamic interactions between particles. These methods include Stoke-
~sian Dynamics [Brady & Bossis (1987)], dissipative particle dynamics [Boek et al.
(1997}], discretized Boltzmann methods [Ladd (1993, 1994a. 1994b)], and Brownian
l)ynamiés with approximate methods of including mean-field hydrodynamic interac-
tions [Rastogi & Wagner (1997); Heyes & Mitchell (1997)]. Only results from the
Stokesian Dynamics method [Foss ef al. (1999)] are analyzed here since the method
fully accounts for hydrodynamic interactions and calculates both the hydrodynamic
and Brownian contributions to the particle stress separately. Stokesian Dynamics
results [Foss el al. (1999)] show that the Brownian viscosity shear thins for all Peclet
numbers, qualitatively like the interparticle force viscosity for Brownian Dynamics.
In addition, the hydrodynamic viscosity is constant at small Peclet numbers, appears
to be a monotonic increasing funclion with respect to Peclet number. and increases
rapidly for large Peclet numbers. These Brownian and hydrodynamic contributions
yield a total viscosity which is constant at low Peclet numbers, then shear thins due
to the decrease in the Brownian viscosity, reaches a constant value when the rate of
decrease of the Brownian viscosity equals the rate of increase of the hydrodynamic
viscosity, and shear thickens at high Peclet numbers as the hydrodynamic viscosity
increases. Stokesian Dynamics results further show that the first normal stress dif-
ference is positive at small Peclet numbers, zero at intermediate Peclet numbers and
negative at large Peclet numbers. The sign change in the first normal stress difference
occurs since the Brownian contribution is positive and the hydrodynamic contribution
is negative. At low Peclet number, the Brownian contribution dominates, yielding
a positive first normal stress difference; whereas, at high Peclet number the hydro-
dynamic contribution is dominant and the first normal stress difference is negative.
Furthermore, Stokesian Dynamics shows that the second normal stress difference is
negative for all values of the Peclet number. The full stress tensor is not yet calculated
in Stokesian Dynamics since the pressure moments [Jeffrey, Morris & Brady (1993)]
have not yet been included, and the osmotic pressure is not calculated.

Some of the rheological behavior observed in Stokesian Dynamics simulations is
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experimentally confirmed. Shear thinning [Krieger (1971); de Kruif et al. (1985);
Jones et al. (1991)] and shear thickening [Boersma, Laven & Stein (1990); D’Haene
(1992); Laun (1994)] of the total viscosity of hard-sphere colloidal dispersions have
been observed for years, but recent advances in rheology allow the individual contri-
butions 1o the shear viscosity to be determined. Optical dichroism is related to the
thermodynamic contribution to the total shear viscosity for hard-sphere colloidal dis-
persions through a system-specific, stress-optic coeflicient [Bender & Wagner (1993)].
In the case of colloidal hard spheres, the thermodynamic contribution is simply the
Brownian contribution. (For a general system, the thermodynamic contribution is the
sum of the interparticle force and Brownian contributions.) Simultaneous measure-
ment of optical dichroism and total shear viscosity allows the same microstructure to
be probed by both techniques, and these measurements confirm that shear thickening
is related to an increase in the hydrodynamic contribution to the shear viscosity [Ben-
der & Wagner (1996)]. Additionally, stress jumps—mechanical measurements using
a conventional rheometer equipped with a torque rebhalance transducer—can be used
to measure the viscous contribution to the shear viscosity for the microstructure at
the time of flow cessation since the viscous contribution immediately decays when the
flow is stopped [Mackay, Liang & Halley (1992)]. The viscous contribution is simply
the sum of the hydrodynamic and solvent contributions to the total shear viscosity.
The total viscosity is also mechanically measured and is simply the value of the vis-
cosity just prior to cessation: thus. the total viscosity and its viscous contribution
are both measured for the same microstructure. Stress jump measurements confirm
that shear thinning is caused by a decrease in the Brownian viscosity [Kaffashi et al.
(1997)]. Additional stress jump mecasurements show that shear thickening is caused
by an increase in the hydrodynamic viscosity, at least for the case of continuous shear
thickening [O'Brien & Mackay (1996)]. There is at least one measurcment for which
the thermodynamic contribution discontinuously increases and causes discontinuous
shear thickening of the total viscosity [O'Brien & Mackay (1996)].

Even though much progress has becn made in measuring the shear viscosity, and

its individual contributions, for a hard-sphere colloidal dispersion, little progress has
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been made in the measurement of normal stress differences. There are few measure-
ments of the first normal stress difference for a well-characterized, hard-sphere col-
~ loidal dispersion dispersed in a Newtonian fluid [Laun (1994); Aral & Kalyon (1997)]
even though there are a number of measurements for other particulate systems [Wil-
ley & Macosko ‘(1978); Chan & Powell (1984); Poslinski et al. {(1988); Ohl & Gleissle
(1993); Jomha & Reynolds (1993)]. Additionally, the first normal stress difference
measurements that are available are only in the limit when Pe > |. In this case it is
found that the first normal stress difference is negative and approximately scales with
nsY. as cxpected. The main difficulty in measuring the first normal stress difference
is the fact that V; = 0 when Pe ~ O(1) due to the dillerence in signs of the hydrody-
namic and Brownian contributions. Ny = 0 is a problem in mechanical mecasurements
because the total thrust on the upper tool in a cone-and-plate geometry is directly
related to the first normal stress difference, and forces near zero must be measured.
Measurements at small rates, where N; > 0 are difficult for two reasons—the force
is small, ~ O(n,¥Pe), and the required rates are often smaller than the lower imit
of a standard motor for a rheometer. Since the Brownian contribution to the first
normal stress difference is always positive, regardless of the value of Peclet number,
one would expect optical measurements to be useful to al least measure one of the
contributions to the first normal stress difference. An additional advantage of an opti-
cal measurement is the increased sensitivity compared to a mechanical measurement.
Wagner (1998) finds that it is difficult to make optical measurements of the Brownian
contribution to the first normal stress difference since a stable and meaningful signal
cannot be obtained for concentrated dispersions.

There are no measurements of the second normal stress difference for a well-
characterized hard-sphere suspension in the literature, but Leighton (1997) approx-
imates the values of the second normal stress difference for non-Brownian suspen-
sions. Leighton uses viscous resuspension data in Couette flow [Acrivos, Mauri &
Fan (1993)], normal force measurements in parallel disk flow [Gadala-Maria (1979);
Leighton (1997)], and the fact that there is no particle migration in parallel disk flow

[Chow et al. (1994)] to determine the individual normal stress differences. Leighton
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(1997) finds that N; ~ O(n,¥), N2 <0, Ny <0, and No/N; = 3 for Pe > |.

Another WdV to measure the effect of normal stress differences is to perform rod
- climbing experiments, which are commonly done for polymer solutions. There are
no published data for rod climbing experiments for well-characterized hard-sphere
suspensibns, but Leighton (1997) has performed rod climbing experiments on non-
Brownian particles in a Newtonian suspending fluid. He finds that there is negative
rod climbing, as expected, since N; < 0 for Pe > 1.

There are no mecasurement of the nonequilibrium osmotic pressure for any system,
but recently Kalogrianitis & van Lgmond (1997) developed a system to optically
determine the full stress tensor for the thermodynamiec contribution to the particle
stress.

In this section the Smoluchowski cquation is solved using #,,,. = 10 and 400 in-
tervals for each ordinary differential equation when Pe < 1. The value of 4,,,, is the
same as that used for the case of no hydrodynamic interactions when Pe < 1, but the
number of required intervals is much larger for the case of two-particle hydrodynamic
interactions. A greater number of intervals is required since rheological properties
arc dependent on values of the nonequilibrium microstructure far from particle con-
tact; whereas, only the surface values are required to calculate the rheology when
hydrodynamic interactions arc neglected.

All macroscopic properties, except for the hydrodynamic contribution to the os-
motic pressure when Pe > 1, meet the convergence criterion. The fact that more
moments in the expansion and a finer grid resolution are required to achieve accurate
calculation of the osmotic pressure, as compared to other rheological properties, is
also seen at low Peclet numbers. For Pe > 1 the Smoluchowski equation is solved
with £,,,, = 16 and 160 intervals, but only the viscosity and normal stress differences
are reported since the hydrodynamic contribution to the osmotic pressure does not

converge. Calculations are completed for Pe < 10.
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Microstructure

The descriptions of the meaning of all microstructure plots in the previous section
apply to this set of microstructure plots as well.

Qualitatively, the density plots in Figure 3.20 for the case of b/a — 1 look re-
markably similar to the density plots for the case of no hydrodynamic interactions,
I'igure 3.1, when comparing plots at the same Peclet number; thus, qualitative anal-
ysis of the plots is not necessary. Note that the legend for the colors is identical for
both figures. There are only two noticeable differences—the red portion in the com-
pressional zone is slightly smaller and the downstream portion of f/ > 0 near particle
contact more closely follows an undisturbed streamline than the extensional axis in
Figure 3.20. The slightly smaller portion of red is indicative of smaller values of f in
the boundary layer when hydrodynamic interactions are present. This observation is
consistent with the concept that lubrication forces tend to keep two particles apart
in the compressional zone, and onc would expect that there is a lower probability of
finding the second particle in the boundary layer when hydrodynamic interactions arc
present than when they are neglected. Additionally, the presence of hydrodynamic in-
teractions makes it more difficult for two particles to separate in the extensional zone
and one expects a higher probability of finding a second particle along the extensional
axis when hydrodynamic interactions are present than when they are neglected.

This effect of hydrodynamic interactions is better seen in Figure 3.21, where the
contact value of f/Pe is plotted in the velocity-gradient plane. We see that the
separation point, [ = 0, occurs at an angle less than 6 =~ 1.12-radians. It’s difficult
to ascertain whether this is the true separation point since higher Peclet numbers
are not included, but this value is a maximum value for the separation point. Note
that the angle of the separation point, €,,,, = 1.12-radians, occurs more downstream
when including hydrodynamic interactions than when hydrodynamic interactions are
neglected, where 0,,,, = 1.26-radians. The point of separation is further downstream
because lubrication forces tend to keep the two particles together in the extensional

zone and a second particle can more easily move tangentially than radially with re-
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spect to the test particle. Additionally, the maximum contact value occurs slightly
more downstfeam within the boundary layer for the case when hydrodynamic inter-
actions are present, but the actual value of the maximum is quite similar for the two
cases.

At first glan{:(a the fact that the maximum contactl values are approximately equal
for both cases scems to contradict the observation of the smaller region of red in the
density plot for the case in which hydrodynamic interactions are preseni. But. in
fact, the smaller region of red indicates that the probability decreases more rapidly
with respect to particle separation along the compressional axis, and this fact is seen
in Figure 3.22b when comparing to Figure 3.3b.

In the previous section, a simple geometric argument was used to predict the
value at which f =0 along the extensional axis, and it was found that f =0 at
r 2 2.83. In Figure 3.23 we see that at Pe = 10, f = 0 at r ~ 2.41, closer to particle
contact than the case of no hydrodynamic interactions. There are two reasons for the
smaller value of r—the separation point is further downstream and hydrodynamic
interactions. Since the separation point is further downstream, the region of f > 0
would cross the extensional axis al a smaller value of r if the particle is simply advected
by the external flow as in the case of no hydrodynamic interactions. But the second
particle does not follow an undisturbed streamline and the presence of hydrodynamic

interactions reduces the velocity of the second particle along the extensional axis.

Shear viscosity

All three contributions to the O(#?) contribution to the rclative shear viscosity are
shown in Figure 3.24. As expected, the interparticle force contribution is negligible
since the interparticle stress is ~ O(b/a — 1). The total viscosity is constant at low
Peclet number. shear thins, has a constant value near Pe¢ = 6 and shear thickens
at high Peclet numbers, in qualitative agreement with simulation and experimental
results. Furthermore, shear thinning occurs because of a decrease in the Brownian
contribution, and shear thickening occurs because of an increases in the hydrodynamic

contribution. agreeing with experiments and simulations. It is difficult to see in the
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figure, but the hydrodynamic contribution is @ monotonic increasing function of Peclet
number, in agrecment with the results of Foss et al. (1999), but in disagreement with
the results of Lionberger (1998). Lionberger (1998) calculates an initial decrease in
the hydrodynamic contribution to the shear viscosity with a minimum at Pe ~ O(1)
and shows excellent agrecment with the Stokesian Dynamics results of Phung, Brady
& Bossis (1996). Unfortunately, the results of Phung, Brady & Bossis (1996) predict
a minimum in the hydrodynamic viscosity only because of structure formation which
is caused by an error in the code, as corrected by Foss et al. (1999). The data
from the correct simulation conditions do not show a minimum in the hydrodynamic
contribution to the viscosity since long-range structure no longer forms.

Shear thinning of the hydrodynamic viscosity, as calculated by Lionberger (1998),
could be due to one or more miscalculations. In equation (27) of Lionberger (1998),
the coefficients preceding the integrals do not have the same power of 7 for integrals
with similar integrands. Additionally in equation (27), there are two integrals for
H;y, (and Hjg)—one integral with M in the inlegrand and another with L in the
integrand. The two integrands should combine to L + %M as seen in equation (29)
of Lionberger, equation (29) of Brady & Vicic (1995) and the results of this work.
Finally, the effect of the approximate outer boundary condition cannot be tested be-
causc of these errors, but the monopole of the spherical harmonic expansion, By,
should be affected most by the outer boundary condition, as seen for osmotic pressure
when hydrodynamic interactions are neglected. Since the calculation of the hydrody-
namic viscosity includes an integral using the monopole, this calculations is sensitive
to the behavior of Byg at large separations.

The actual cause of shear thickening is currently a controversial subject in the liter-
ature [Hoffman (1998),. There are two schools of thought —shear thickening is caused
by cluster formation and the resulting increase in the hydrodynamic stress [Bossis
& Brady (1984); Phung, Brady & Bossis (1996); Bender & Wagner (1996)] or shear
thickening is caused by destruction of order [Hoffman (1998)]. Both mechanisms may
lead to shear thickening, but the results of this work show that destruction of shear-

induced order is not required for shear thickening to occur, as has been suggested. In



79

fact, shear thickening occurs in this case because of the formation of the boundary
layer in the compressional zone in the presence of hydrodynamic interactions. There
is an O(Pe) probability of finding two particles near contact and the values of the
hydrodynamic functions reach their maxima near particle contact because of lubrica-
tion; thus, it seems that the hydrodynamic stress can be calculated solely from the
boundary layer. This hypothesis 1s tested for Pe = 10 by calculating the hydrody-
namic viscosity in two parts. The first part is simply the contribution over all space
from the equilibrium microstructure. The second part is the contribution from the
nonequilibrium microstructure near particle contact, within the boundary layer. |
used an outer limit of (r — 2)Pe < 6 for the boundary layer calculation. The result
of this calculation is shown in Figure 3.24 and is in close agrecement with the value
that is correctly calculated by using the nonequilibrium microstructure throughout
all space. IEven though O(1) variations of f contribute to the hydrodynamic viscosity,
this contribution appears to be negligible when calculating the hydrodynamic shear
VISCOSILY.

The corrections to the low-shear, Newtonian viscosity contributions are shown in
Iigure 3.25. As expected, based on the analysis of the previous section, the first cor-
rection for the Brownian and interparticle force contributions to the shear viscosity is
O(Pe?) at low Peclet number, arising from the O( Pe?) deformation of the microstruc-
ture. As shown by Brady & Vicic (1993), the first correction to the hydrodynamic

viscosity is also O(Pe?), but arising from the O(Pe?) deformation rather than the

O(P¢*) deformation.
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These results can be extended 1o higher concentrations by using the scaling theory
of Brady (1993b). Since the Brownian and nonequilibrium hydrodynamic stresses

have the same scaling, equations (3.57) and (3.58), a scaled viscosity; 57, is formed.

T]r:]-—"nH_i'nBa
M — Moo = 1+ 0 — Moy + 118,

Tr — Moy ™~ & Geq (2; ) 1, ().

T = oo 2 6
0t = - —. 3.62
L 20, (2, 0) 1L (9) (3.62)

By plotting the scaled viscosity, n*, versus the scaled Peclet number, Pen!_(¢), a
universal curve for the shear thinning behavior of a dispersion should be found. Such
a plot is made and compared with the Stokesian Dynamics results of Foss et al. (1999)
in Figure 3.26. The value of 1 (¢) is approximated by taking the low Peclet limit
for the hydrodynamic contribution to the shear viscosity. The value of g., (2; ¢) is
approximated by using the Carnahan-Starling equation, (3.47). The collapse of the
data to a single master curve is remarkable for all values of Peclet number. The
theoretical curve of this work compares poorly with the master curve of data since
the value of the low Peclet limit is too small and the value of the scaled Peclet number
at which shear thickening occurs is also too small. The error in the simulation data
is too large to comment on the value of the Peclet for which shear thinning begins.
At low Peclet number, the theory underpredicts the value of the master curve. The
theory predicts that the value should be slightly less than unity, but the master curve
passes through a value between 2.0 and 2.5. The low-shear value of the master curve
is not a surprise since Brady (1993b) showed that a value of 12/5 for the coefficient
compared quite well to experimental and simulation data.

Since the simulation data collapses so nicely to a master curve, a second figure, Fig-
ure 3.27, 1s made which includes both experiments [van der Werfl, de Kruif & Dhont
(1989): D’Haene, Mewis & Fuller (1993); Bender & Wagner (1995)] and simulations
[Foss et al. (1999)]. The Carnahan-Starling and Woodcock equations for the equilib-

rium radial-distribution function are used for ¢ < 0.52 and 0.52 < ¢ < 0.64, respec-
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tively with ¢, = 0.64 used for maximum packing [Nolan & Kavanagh (1992)). There
is fair agreement. between the experimental data and simulation data, but consider-
ing the sources of error when plotting the experimental data, the agreement is quite
good. There are three main sources of error in the experimental data--measurement
of volume fraction, polydispersity and deviations from hard-sphere bchavior. Small
deviations iI.l volume fraction have quite large effects on physical properties since the

dispersions are near close-packing where physical properties either diverge or vanish.

Normal stress differences

In Figure 3.28 the O(¢?) contributions to the nondimensional first normal stress
differences, N, /7%, are shown. The first normal stress difference is positive at small
Peclet numbers, changes sign near Pe = 9 and is negative at high Peclet numbers.
The first normal stress difference changes sign since the Brownian and hydrody-
namic contributions have opposite signs, but the surprising feature in Figure 3.28
is the small magnitude of the hydrodynamic contribution to the first normal stress
difference at small Peclet numbers. To better observe the behavior for Pe « 1, the
magnitudes of these contributions are shown on a log-log plot in Figure 3.29a and the
next correction to the contributions to the first normal stress difference are shown in
Figure 3.29b. The hydrodynamic contribution is so small that it is even smaller than
the interparticle force contribution at small Peclet numbers. Even more surprising is
the O(Pe®/?) scaling for Pe <« 1. Brady & Vicic (1995) show that the hydrodynamic
contribution to the first normal stress difference is o( Pe) since the O(Pe) deforma-
. tion does not contribute. Additionally, it can be shown that the O(Pe?) deformation
does not yield hydrodynamic normal stress differences. Furthermore, Brady & Vi-
cic (1995) show that the next term for the inner expansion, the O(Pe%/?) term, is
isotropic and does not contribute to normal stress differences. One expects that the
next term in the inner expansion, O(Pe?®), might yield an O(Pe®) contribution to the
nondimensional first normal stress difference. In Figure 3.30a one of the moments
used in the calculation of the first normal stress difference is shown to scale with

O(Pe€%) at small Peclet numbers. Both moments used in the calculation of the first
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“normal stress difference, By, and By 3, have this same scaling, resullting in an O(Pe3)
term for the hydrodynamié contribution to the first normal stress difference. But
Ni/nsy ~ O(Pef’ﬂ) and not O(Pe®). In this analysis, the effects of the outer solu-
tion, where rPe!/? ~ O(1), have not yet been included. Brady & Vicic (1995) show
that the O(Pe®?) term of the outer expansion yields an O(Pe®?) contribution to the
hydrodynamic stress, and it is this contribution which yields the O( Pe®?) term of the
nondimensional first normal stress difference. The far-field behavior for B, 3 is shown
in Figufe 3.30b where By 3/Pe%/? is plotted versus rPe'/? and all curves collapse for
rPel/? > 4 when Pe < 0.20.

Both the Brownian and interparticle contributions are O(Pe) for small Peclet
number and are caused by the O(Pe?) deformation of the microstructure. The next
correction to both contributions at low Peclet number is O( Pe®/2) due to the O(Pe”/?)
deformation of the microstructure, as already shown for the case in which hydrody-
namic interactions are neglected.

At high Peclet number, the first normal stress difference cannot be extrapolated to
its infinite plateau value, but the hydrodynamic contribution to N; should not equal
zero, as predicted by Brady & Morris (1997). N; = 0 in their approximate analysis
since the angular velocity in the boundary layer is neglected, resulting in a structure
at particle contact [Brady & Morris (1997)],

To(2) ~ { — sin[#] cos[f] cos[¢], if > 0; (3.63)

0, otherwise.

If we derive the equation for the hydrodynamic contribution to the first normal stress

difference from equation (3.33),

H 1/2 ;0
niv‘ylcﬁ? = (%) /2 M(r) (B4,1(r; Pe) — %34,3(7'; Pe)) g(r)r2d1‘, (3.64)

and expand fpam(2) in terms of surface spherical harmonics, we find that By ; = 0 and
B3 = 0, leading to no hydrodynamic contribution to the first normal stress difference.

When the angular velocity terms are retained in the analysis, the structure within the
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‘boundary layer, will change from fga;. Based on the results of this numerical analysis
at Pe=1-10, it’s expectAed that Bs; <0 and By > 0 near particle contact for
Pe>1, lea(%ing to a non-zero ﬁ_rst normal stress at high Peclet number.

.Since Bsi < 0 and Byz > 0 near particle contact, then the first normal stress
difference is negative. Behavior only near particle contact is required to achieve an
approximatibn of the first normal stress difference, as shown in Figure 3.28, where
the solid black diamond is the result at Pe = 10 when the integral for the first normal
stress difference is evaluated for (r — 2)Pe < 6.

The fact that there is a negative first normal stress difference for dispersions
is surprising since only a few systems, such as liquid crystalline polymers [Magda
et al. (1991)], exhibit such behavior. We can understand why the hydrodynamic
contribution to the first normal stress difference is negative in two ways—i{rom a
purely mathematical point of view and from a physical viewpoint.

Mathematically, we can study how variations from fpa(2) affect By, and Bygs
when f(2) is expanded in terms of surface spherical harmonics. The result of Brady

& Morris (1997), fem(2), is cast in more general form,

—sin[(6 — 7+ &) + 7] cos[a(d — § + 8+ €) + T] cos[By], if > 0;
e~ { |
, otherwise.
(3.65)
where o controls the position of the maximum in the velocity-gradient plane, 8 con-
tracts/expands the ¢ coordinate, é shifts the region downstream (upstream) in the
velocity-gradient plane with a positive (negative) value while keeping the range of ¢
_ the same, and € increases (decreases) the range of values of 8 for which f is non-zero
in the velocity-gradient plane for positive (negative) values of €. As long as 8 = 1,
B4 3 = 0 because of the orthogonality properties of cos|[¢], and we find that 0 < 8 < 1
yields Bss > 0. We now investigate changes in the behavior of f(2) in the velocity-
gradient plane and the effecf of these changes on the value of By; when 8 = 1. The
position of the maximum value in the compressional zone can be moved downstream,

while keeping the range and position of the endpoints the same as fgas, by using

a > 1 with § = € = 0. Physically, the fact that the maximum is pushed downstream
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‘makes sense, but this set of parameters results in By; > 0 in disagreement with the
numerical results of this stﬁdy. Note that if o < 1, then By; < 0. A second likely
scenario is that the entire region is slightly shifted downstream, but the maximum
value remains in the center of the region. This behavior is accomplished by using
positive values of § with @ =1 and ¢ = 0. Again, physically this situation can be
visualized, bﬁt By,1 > 0. Another behavior that seems physical is for the leading edge
to remain at the same point while the range of the boundary layer extends further
downstream than fBm with the maximum value remaining at the midpoint of the
range. To achieve this behavior, positive values of ¢ are used with o =1 and § =0,
but By, > 0. Based on the‘density plots in Figure 3.20 and the plot of f(2) in Figure
3.21, we should expect the leading edge to be shifted slightly downstream (poéitive
values of §) and the width of the range to be extended further downstream (positive
values of ¢), but both of these result in By; > 0. To compensate for this behavior,
the maximum value within the boundary layer must be pushed from the midpoint of
the range toward the leading edge of the boundary layer. Even though the maximum
value of f in the boundary layer is on the leading edge side of the midpoint of the
range, this doesn’t mean that the maximum value is upstream of its low Peclet posi-
tion. In fact, as seen in Figure 3.21, the maximum value is still slightly downstream.
Physically, the position of the maximum value of f at particle contact is pushed
downstream from the compressional axis—the position of the maximum value at low
Peclet number, but the separation point is pushed further into the extensional zone
from the gradient axis—the position of separation at low Peclet number—because of
»lubrication forces.

A second physical explanation can be made for the region outside of the boundary
layer, where we visualize how the shear-induced structure differs from its desired state
and how an incompressible fluid element in the velocity-gradient plane must relax to
attain this desired state. If the fluid element contracts in the velocity direction and
expands in the gradient direction, a positive first normal stress difference occurs
since the tools of the cone-and-plate geometry would be pushed apart; whereas, if

the fluid element contracts in the gradient direction and expands in the velocity
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- directiony a negative first normal stress difference occurs. This a,rgument is used by
Marrucci (1997). to explaiﬁ the sign change of the first normal stress difference for
liquid crystalline polymers. For Brownian motion, the desired state is an isotropic
structure while fore-aft symmetry is the desired state for pure hydrodynamics for
low Reynolds number flow. We can see from the density plots, Figure 3.20 that a
Contraction‘in the velocity direction is required to achieve an isotropic state; thus, the
Brownian contribution to the first normal stress difference is positive. To achieve fore-
aft syminetr.y at high Peclet numbers, the structure in the compressional zone remains
the same while the region of f > 0 in the extensional zone must be pushed toward
the velocity axis. This motion results in a contraction in the gradient direction; thus,
the hydrodynamic contribution to the first normal stress difference is negative.

Next we use the scaling argument of Brady (1993b) to extend these dilute results
for the first normal stress difference to concentrated systems. In Figure 3.31 the
numerical results are compared to Stokesian Dynamics simulations [Foss et al. (1999)].
The most exciting feature of this figure is the fact that the dilute theory and simulation
data agree that a sign change occurs in N near Pe =~ 10. At low Peclet number the
error in the simulation data is large and it’s difficult to test the validity of the scaling.

In contrast to the behavior of the first normal stress difference, the second normal
stress difference isn’t very interesting. The O(¢?) contributions to the nondimensional
second normal stress difference are shown in Figure 3.32 and all contributions are
negative at all Peclet numbers. The low Peclet behavior is better seen in Figure 3.33a,
where the Brownian and interparticle contributions are shown to be O( Pe) and result
~ from the O(Pe?) deformation of the microstructure. The hydrodynamic contribution
is also O(Pe), but it arises from the O(Pe) deformation of the microstructure. The
next correction at low Peclet number is O( Pe%/?) for all contributions. The Brownian
and interparticle force contributions are caused by the O(Pe™/?) term of the inner
expansion, but the O(Pe%?) term of the outer solution results in the hydrodynamic
contribution, as shown for the first normal stress difference. Finally, the scaling
argument of Brady (1993b) is used to extend these results to concentrated dispersions

and compared with Stokesian Dynamics data [Foss et al (1999)] in Figure 3.15. The
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“theory predicts that a maximum value occurs near Pe = 4, in reasonable agreement
with simulation data. As fcﬁ the first normal stress difference, the large error in the
low Pecleft vga,lues makes it difficult to compare the theory with simulation data.
Finally, since both Ny and N, are known as a function of Peclet number, rod
climbing behavior [Lodge, Schieber & Bird (1988)] can be calculated, as done for the
case when hydrodynamic interactions are neglected. In Figure 3.35, we see that the
rod climbing coefficient is negative at all Peclet numbers, predicting that hard-sphere
colloidai dispersions only exhibit negative rod climbing. This prediction has been

experimentally confirmed in the high Peclet limit by Leighton (1997).

Osmotic pressure

The O(¢Pe) contributions to the osmotic pressure are shown in Iigure 3.36. As
discussed in the introduction to this section, the hydrodynamic contribution to the
osmotic pressure is not included for Pe > 1 since it does not meet the convergence
criterion. The low Peclet behavior is shown in Figure 3.37a, where the Brownian, hy-
drodynamic and interparticle force contributions to II/nkT — 1 — 4¢ are all O(¢Pe?).
The Brownian and interparticle force contributions are a result of the O(Pe?) defor-
mation of the equilibrium microstructure, while the O( Pe) term of the inner expansion
yields the O(¢Pe?) hydrodynamic contribution, as shown by Jeffrey, Morris & Brady
(1993). The next correction to the osmotic pressure at low Peclet number is shown in
Figure 3.37b, where the hydrodynamic contribution is O(¢Pe?®) while the Brownian
and interparticle force contributions are both O(Pe®?). The Brownian and inter-
. particle force contributions are caused by the isotropic, O(Pe*?) term of the inner
expansioh, as shown for the case when hydrodynamic interactions are neglected. The
O(¢Pe?) term of the hydrodynamic contribution remains an open issue. Only one
moment, Bg’l, is involved in the calculation of the hydrodynamic osmotic pressure,
and By, ~ O(Pe) + O(Pe®) in the near-field; thus, the near-field microstructure is
not responsible for the O(¢Pe®) hydrodynamic term since an O(Pe?) deformation is
required. Furthermore, the lowest term of the outer solution is O(Pe?/ %), yielding an

O(¢Pe™?) hydrodynamic contribution to the osmotic pressure; thus, the outer solu-
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tion cannot cause the O(¢Pe®) term for the osmotic pressure. Next, the possibility of
an error in the form of the calculation is eliminated by showing that the hydrodynamic
stress tensor wis traceless when the proper pressure moment equals zero, B (r%) = 0.
Numerical inaccuracy is the only remaining cause of the apparent O(¢Pe®) term of
the hydrodynamic contribution to the osmotic pressure. Numerical inaccuracy is
quite possibie since the hydrodynamic contribution to the osmotic pressure barely
meets the convergence criterion at low Peclet number and there is an O(Pe™?) ratio
in the orders of magnitude between the first contribution, O(¢Pe?) and the expected
scaling of the second contribution, O(¢Pe?).

There are no other theoretical results nor are there experimental or simulation

results with which to compare the predictions of this section.

3.4.3 Varying b/a ratios

In this section the Smoluchowski equation, equation (3.16), and its boundary condi-
tions, equations (3.17) and (3.18), are solved with varying ratios of the thermody-
namic and hydrodynamic radii for /a = 1.01, 1.10, 1.20, 1.60, 2.50, and 5.00. All
two-particle hydrodynamic functions are evaluated at r% while the effective hard-
sphere interaction occurs at r = 2.

Since the b/a ratio is varied, the concept of an effective hard-sphere interaction is

introduced [Buscall (1994); Quemada (1994)]. For dilute hard spheres, the equilibrium

radial-distribution function is simply

0, ifr<?2;

gea(r) = {1, e (3.66)

This effective hard-sphere interaction can be caused by the presence of either a steric
stabilizing layer on the surface of the particles or a long-range, repulsive interpar-
ticle force. For the case of steric stabilizers, b/a is nearly unity since the length of

the steric stabilizer, é, is quite small, ~ O(1 — 10nm) [Genz et al. (1994)], and the



88

thermodynamig radius, b, is approximated by
b=a+?4. (3.67)

Typically, b/a < 1.1 for steric stabilized colloidal dispersions [Buscall (1994)], and the
length of the steric stabilizing layer is approximated by assuming that the molecule
is fully extended.

When a long-range, repulsive interparticle interaction is present, the electrical
double layer; surrounding the particles interact, preventing the particles from making
physical contact. The length of the double layer is approximated by the Debye length,
k! [Nagele et al. (1994)]; thus, the thermodynamic radius, b, is approximated by

b=a+x"" (3.68)

Typically, charged latices have b/a > 2 [Buscall (1994)], and the Debye length can be
approximated by [Hoffman (1998)],

B kT \/*
K 1 = ('62—1) ) (369)

where ¢ is the dielectric constant of the fluid, e is the electronic charge, and I is the
ionic strength. The Debye length can reach quite large distances since the minimum
ionic strength is 5x10~6-1x10~% M for conventional dialysis and 2x10~7 M when using
a mixed bed of cation and anion exchange resins [Okubo (1987)].

Experimentally, the effective volume fraction or thermodynamic radius is approx-
imated by one of three measurements—osmotic pressure, first peak of the equilib-
rium radial-distribution function, or phase behavior [Nagele et al. (1994); Reus et al.
(1995)]. When using osmotic pressure, the effective volume fraction is a fitting param-
eter so that the volume-fraction dependence of the osmotic pressure fits the expected
hard-sphere behavior. For the equilibrium radial-distribution function, the radius of
the first peak is indicative of the location of thermodynamic hard-sphere behavior,

and the radius of the peak equals 2b, the interparticle separation when two particles
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“are in thermodynamic contact. When using phase behavior, the effective volume frac-
tion is determined by ﬁndihg the hydrodynamic volume fraction, ¢, = 47na®/3, of
the freezing point at equilibrium and using an effective volume fraction of ¢, = 0.494,
the freezing volume fraction [Pusey & van Megen (1987)] to determine b/a. Ideally,
at least one of these tests is performed whenever measuring the rheological response
of charged colloidal dispersions, but rarely is this done.

Despite the fact that the thermodynamic radius can be measured or approxi-
mated and has a physical origin, there are some disadvantages of using the effective
hard-sphere model. Both the steric stabilizing layer and the long-range repulsive in-
teractions are soft interactions since the steric stabilizing layer can be compressed or
interpenetrate and double layers can overlap. Additionally, the effective hard-sphere
model remains a central potential despite changes in shear rate which may cause a
deformation of the double layer from its spherically symmetric shape when there is
no flow. The steric stabilizing layer should nearly maintain its equilibrium shape
with an increase in shear rate, and the double layer should also nearly maintain its
equilibrium shape since the Peclet number of the macroions in the double layer is
small.

The theory of Ogawa et al. (1997) is the most complete theory to predict the
shear-rate dependence of the viscosity of charged colloidal dispersions, although the
theory is semi-empirical and valid only for concentrated dispersions with a long-
range, repulsive potential. The model does not include the prediction of normal
stress differences. Ogawa et al. (1997) bases the theory on the Eyring activated
_ process model, where a test particle is in a mean-field energy minimum formed by
adjacent particles and the test particle exchanges places with its neighbors.

There are no simulations for charged colloidal dispersions with b/a > 1 and for
which hydrodynamic interactions are exactly included. Rastogi, Wagner & Lustig
(1996) study charged systems for b/a = 1.25 but do not include hydrodynamic in-
teractions in the dynamics and include the hydrodynamic contribution to the viscos-
ity only through the experimentally-determined, high Peclet constant viscosity, 7e..

Later, Rastogi & Wagner (1997) continue their study on charged systems, but only
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include preaveraged hydrodynamic interactions. Such an approximate way of includ-
ing hydrodynamic interactions is also used by Heyes & Mitchell (1997) in their study
of Brownian dynamics using mean-field hydrodynamic calculations.

Not only are there no simulations, but there are few sets of experiments for which
the shear-rate dependent viscosity is measured with a systematic variation of b/a ra-
tios by changing particle size and/or Debye length [Mallamace, Micali & Vasi (1990);
Ogawa et al. (1997)]. There are no experiments for which there is a systematic vari-
ation of -b/ a and an accompanying measurement to approximate the thermodynamic
radius. Mallamace, Micali & Vasi (1990) show how the shear viscosity decreases with
a decrease in the thermodynamic radius for a given hydrodynamic radius by increas-
ing the salt concentration. Ogawa et al. (1997) show that the viscosity increases and
the shear rate for the start of the high Peclet plateau also increases with (i) a decrease
in particle size, a, while keeping ™! and ¢, constant and (ii) an increase in the ther-
modynamic radius by increasing x~! while keeping ¢, and particle size, a, constant.
Ogawa’s semi-empirical model predicts these trends, and it is shown that the model
presented here also predicts these trends. Unfortunately, Ogawa et al. (1997) is not
able to measure the low-shear Newtonian viscosity for any of the dispersions.

In this section the Smoluchowski equation is solved using the same set of param-
eters as in the previous section when b/a — 1. The expansion for the deformation
of the equilibrium microstructure is truncated at £,,,, = 10 and ¢,,,, = 16 while us-
ing 400 and 160 intervals for each ordinary differential equation when Pe <1 and
Pe > 1, respectively. All macroscopic properties are reported since all properties, in-

_cluding the hydrodynamic contribution to the osmotic pressure when Pe;, > 1, meet

the convergence criterion.

Microstructure

The descriptions of the meaning of all microstructure plots in the previous sections
apply to this set of microstructure plots as well.
Qualitatively, the density plots in Figures 3.38-3.43 are remarkably similar. Note

that the legend is the same for all b/a-ratios, showing that the structure at a given
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Peclet number,,Pe, is fairly insensitive to the strength of hydrodynémic interactions
included in the calculations. ’Despite the similarities, there are a few subtle differences
between the ﬁgures. One feature is most noticeable for Pe, = 1 near particle contact
in the corﬁpressional zone. For b/a = 1.01 there is no yellow in the compressional
zone—yellow is the color associated with the highest probability of finding a second
particle in the density plots. But there is a significant region of yellow for b/a = 1.20,
and this region disappears when b/a = 5.00. Physically, the appearance of the yel-
low regibn with increasing b/a ratio is not surprising since lubrication interactions
are eliminated as b/a increases and the two particles can more easily make contact.
Secondly, the angle of the extension of the boundary layer into the extensional zone
increases as b/a increases. For b/a = 1.01, the boundary layer separates from par-
ticle contact and the region of high probability advects into the extensional zone
nearly parallel with the velocity direction; whereas, for b/a = 5.00, the same region
has a significant angle with respect to the velocity direction. This angle appears to
monotonically increase as b/a increases.

In Figure 3.44 the contact value of f/Pe; in the compressional zone in the velocity-
gradient plane is shown for Pe, =1 and Pe, = 10. At Pe, = 1 the region of 6 for
which f > 0 and the value of  of the maximum value of f(2)/Pe; do not change as
b/a changes. But, as seen by the yellow region in the density plots, the maximum
value of f(2)/Pe, changes with b/a. In fact f(2)/Pe, has its largest value when
b/a = 1.6 while the #-dependence of f(2)/Pe, is remarkably similar for b/a = 5.00
and b/a = 1.01. v

At Pe, = 10, Figure 3.44b shows the effects of lubrication on the boundary layer
in the compressional zone. For b/a > 1.10, the separation point of the boundary layer
and the point of the maximum value of f(2)/Pe;, are relatively independent of b/a.
The maximum value of f(2)/Pe, still changes with b/a and still has its largest value
near b/a = 1.60. When b/a = 1.01 lubrication forces play a significant role and this
is exhibited in three features of f(2)/Pe,. The maximum value of f(2)/Pe; is much
smaller for b/a = 1.01 than for b/a = 5.00, in contrast to Pey = 1, since lubrication

forces in the compressional zone tend to keep two particles apart. The maximum of
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£(2)/ Pe, is shifted more downstream from its Pey = 1 value for b/a = 1.01 than for
larger values of b/a. Finaliy, the separation point also occurs further downstream
for b/a = 1.01 than for larger values of b/a since lubrication forces in the extensional
zone tend vto keep two particles together.

Even though lubrication has an effect on f(2)/Pes, the decay of f(r)/Pe, along
the compreséional axis doesn’t change that much for Pe, =1 nor in the boundary
layer at Pe, = 10, as shown in Figure 3.45. The most significant difference occurs
near pafticle. contact for Pe, = 10, where the value of f(r)/Pe, is much lower for
b/a = 1.01 than for other values of b/a because of lubrication forces.

Finally, Figure 3.46 provides more concrete evidence for the change in the angle
of the region of f > 0 in the extensional zone. In Figure 3.46a, there is only a small
effect of b/a on the decay of the structure along the extensional axis, especially for
larger separations. Near particle contact, the value of f(2)/Pe; for b/a = 1.01 is
nearly identical to the value for b/a = 5.00 and f(2)/Pe;, has its minimum value for
b/a = 1.60, the same b/a ratio of the largest value of f(2)/Pe; in the compressional
zone. Figure 3.46b shows the value of separation for which f = 0. For b/a = 1.01, the
value of r is small because the value of § at which the boundary layer separates is fur-
ther downstream than the other b/a ratios and the region of f > 0 in the extensional
zone is nearly parallel with the velocity axis. For b/a > 1.10, the separation point of
the boundary layer is nearly identical, as shown earlier, and the only remaining effect
is the angle that the f > 0 region makes with respect to the velocity axis. As b/a
increases, the value of r at which f = 0 also increases, leading to the conclusion that

_the angle of the region of f > 0 in the extensional zone increases as b/a increases.

Shear viscosity

The O(¢7) contributions to the relative shear viscosity are shown in Figures 3.47-3.49
for a range of b/a ratios. Since b/a increases while ¢ is constant, the value of the
hydrodynamic radius decreases and tends to a point particle while the thermodynamic
radius remains constant. Physically, the particle size decreases while the Debye length

increases to maintain a constant thermodynamic radius in a charge-stabilized system.
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“Since the particle size deéreases, the particle diffusivity also decreases, leading to a
decrease in the Brownian contribution to the shear viscosity as b/a increases. In
addition, since the particle size decreases, the effect of hydrodynamic interactions
also decreases, resulting in a decrease in the hydrodynamic contribution to the shear
viscosity. As the hydrodynamic radius decreases, the stress is transferred to the
interparticlé force contribution and at b/a = 2.50 the interparticle force is nearly the
only remaining contribution to the viscosity.

Eveh theugh the hydrodynamic contribution decreases as b/a increases, shear
thickening of the hydrodynamic component still occurs and can be seen for b/a up
to 1.60 in the results presénted here. It’s expected that hydrodynamic shear thick-
ening will always occur as the boundary layer near particle contact forms, but the
magnitude of the shear thickening decreases with increasing b/a since the value of the
hydrodynamic function at thermodynamic contact decreases as b/a increases. Addi-
tionally, the value of Pe, at which hydrodynamic shear thickening occurs increases
as b/a increases and cannot be calculated for b/a > 2.00 since hydrodynamic shear
thickening occurs at Pe;, > 10. Since the hydrodynamic contribution shear thickens,
the total viscosity will also shear thicken as long as the hydrodynamic viscosity in-
creases faster than the other contributions shear thin. Based on the results of the
previous section and Figure 3.47, shear thickening of the total viscosity occurs at
higher Peclet numbers as b/a increases.

At some value of b/a, the hydrodynamic viscosity appears as a small, nearly
constant value and the interparticle force contribution dominates, as seen in Figure

_ 3.49a. Even though the hydrodynamic viscosity appears nearly constant on the O(¢?)
scale, there is a small degree of shear thickening on the O(¢?) scale which is evident
when the numerical data is analyzed.

The effect of b/a ratios on the hydrodynamic, Brownian and interparticle force
contributions to the low shear, Newtonian viscosity are best seen in Figure 3.50. Fig-
ure 3.50a shows that the interparticle force contribution grows as ~ O(b/a — 1) for
b/a — 1 K 1, as expected based on the (1 —A (2%)) in the interparticle force stress,
equation (3.33), and the fact that A(r2) ~ 1 — O(r® — 2) for r — 2 < 1. For large val-
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‘ues of b/a, Figyre 3.50b shows that the hydrodynamic viscosity decays as ~ O((a/b)®)
and the Brownian viscosity 'decays as ~ O((a/b)7). The O(¢?) hydrodynamic contri-
bution deca){s as ~ O((a/b)®) simply because the hydrodynamic contribution scales
as O(¢?). ‘The Brownian contribution has an additional factor of a/b because of the
decrease in the particle diffusivity as the hydrodynamic radius decreases. Finally,
the interparficle force contribution is approximated, with excellent agreement, by the
results for the case of no hydrodynamic interactions, 12/5, with a factor of a/b to
account for the decrease in the particle diffusivity.

The total viscosity can be plotted in such a way that the coefficients are always
O(1), independent of the value of b/a. In Figure 3.51a, the O(¢?(a/b)) term of the
relative shear viscosity is plotted versus Pe;. The extra factor of b/a for the relative
viscosity is. convenient since the (¢7) term is ~ O(1) when b/a ~ O(1) and when
b/a —1 < 1, but the (¢?) term is ~ O(a/b) when b/a > 1. The results of the two
previous sections provide bounds on this figure with the case of no hydrodynamic
interactions providing a lower bound and the case of b/a — 1 providing an upper
bound.

A more realistic situation is studied by Mallamace, Micali & Vasi (1990) in which
the particle radius and hydrodynamic volume fraction are constant while the thermo-
dynamic radius and thermodynamic volume fraction are changed by varying the salt
concentration of the suspending fluid. As the salt concentration increases, the Debye
length decreases and the thermodynamic radius decreases while the hydrodynamic ra-
dius is held constant; thus, b/a decreases as salt is added to the system. The viscosity

_results of this section are rescaled in Figure 3.51b, where the O(¢2) contribution of
the shear viscosity is plotted versus the particle Peclet number, Pe, = 67n,ya®/kT.
Note that these results are only valid for ¢, < 1, imposing a severe restriction on
the hydrodynamic volume fraction for which these results are valid, ¢, < (a/b)3. As
b/a decreases, the low Peclet, Newtonian shear viscosity monotonically decreases and
approaches its value for the case of b/a — 1 presented in the previous section. The
decrease in shear viscosity with a decrease in b/a qualitatively agrees with the viscos-

ity results of Mallamace, Micali & Vasi (1990), where the viscosity is measured for
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a single particle radius as a function of salt concentration at a given particle volume
fraction. Furthermore, the shear viscosity begins to shear thin at some critical value
of the particle Peclet number and this critical value increases as b/a decreases.

Anothe'r physical system is studied by Ogawa et al. (1997) in which the particle
size is varied while the Debye length and the hydrodynamic volume fraction are kept
approximateiy constant. Ogawa et al. (1997) find that the viscosity increases as the
particle size decreases. They also find that there is a critical shear rate for the onset
of the high-shear, constant viscosity regime and that this critical shear rate increases
with a decrease in particle size. Since the Debye length is constant, the b/a ratio
increases as the particle size decreases. Since ¢, is constant, Figure 3.51b is used
to analyze the behavior of the viscosity. As b/a increases, the viscosity increases,
in agreement with the results of Ogawa et al. (1997). Unfortunately, Ogawa et al.
(1997) do not report measurements of the low Peclet viscosity and comparison cannot
be made with the onset of shear thinning, but based on their model, the critical shear
rate for the onset of shear thinning decreases with a decrease in particle size. In Figure
3.51a, the onset of shear thinning occurs at the same value of the Peclet number, Pe,,
and this fact is used to show that the results presented here predict that the critical

shear rate for the onset of shear thinning should increase as the particle size decreases,

Peyy = Peyy,

Y1a1b} = Faa2b3,

. — 2 . — 2
Y101 (Ch + kK 1) = Y22 (az + K l) )
Y2 _

ay {a; + k! 2
ooag \aa+k71)
If the particle size decreases, a; < a;, then the shear rate increases, 4, > 4;, and the
two models do not agree. The model here predicts that the critical shear rate for
the onset of shear thinning increases with decreasing particle size while the model

of Ogawa et al. (1997) predicts that the critical shear rate decreases. There is no

experimental data to determine which of the two models predicts the correct behavior.
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Both models do predict, in agreement with experimental data, that there is a critical
shear rate for the beginning of the high-shear, constant viscosity regime and that this
critical shear‘; rate increases as the particle size decreases. The model of Ogawa et al.
(1997) has an advantage since predictions can be easily made for infinite shear rate,

but no such predictions can be made by the model presented here.

Normal stress differences

The O(¢3) contributions to the nondimensional first normal stress difference are
shown in Figures 3.52-3.54 for a range of b/a ratios. As for shear viscosity, these
results are valid for ¢, < 1. Physically, the hydrodynamic radius changes as b/a
changes while the thermodynamic radius and thermodynamic volume fraction both
remain constant. By b/a = 2.50, the Brownian and hydrodynamic contributions are
nearly zero. As seen in the previous section for b/a — 1, the first normal stress dif-
ference changes sign at some critical Peclet number. The value of this critical Peclet
number increases as b/a increases, and at some value of b/a, there is no longer a sign
change. The value of b/a for which the first normal stress difference is positive definite
cannot be calculated because of the upper limit of Pe, = 10 for the calculations.

The contributions to the low Peclet, nondimensional first normal stress differ-
ence coefficient, N;/nsyPeyd?, are shown in Figure 3.55. Only the Brownian and
interparticle force contributions are shown since the hydrodynamic contribution is
O(Pe5/?), as shown in the section with b/a — 1. In Figure 3.55a, the interparticle
force contribution is ~ O(b/a — 1) for b/a — 1 K 1, just as for the shear viscosity.
_ For high values of b/a, Figure 3.55b, the Brownian contribution is ~ O((a/b)") for
b/a > 1, and the interparticle force contribution is well-approximated by the result
when hydrodynamic interactions are neglected, N, /n,yPeyd? = (16/15)(a/b).

The second normal stress difference is not as interesting since all components
have the same sign for all values of Pe, and b/a, as shown in Figures 3.56-3.59. By
b/a = 2.50, the Brownian and hydrodynamic contributions are nearly zero, just as
for the first normal stress difference.

For the low Peclet, nondimensional second normal stress difference coeflicient,
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"Ng/ nsy Pesd?, the interparticle force and Brownian contributions scale exactly as for
the first normal stress diﬂ'érence, as shown in Figures 3.58a and 3.58b. The inter-
particle forcg contribution at large values of b/a is well-approximated by the result
~ when hydfodynamic interactions are neglected, — Nz /1,y Peyd? = (21/15)(a/b). The
hyd_rodynamic contribution scales as O((a/b)%), in agreement with the hydrodynamic
contribution to the shear stress.

There are no experiments nor other theories with which to compare.

Osmotic pressure

The O(¢,Pey) contributions to the nondimensional osmotic pressure, I1/nkT', are
shown in Figures 3.60-3.62 for a range of value of b/a. By b/a = 5.00, the Brownian
and hydrodynamic contributions nearly equal zero. The hydrodynamic contribution
is positive for all Peclet numbers for b/a < 1.01, but at b/a = 1.10, the hydrodynamic
contribution becomes negative. A positive contribution to this term of the virial
expansion is typically due to the existence of a repulsive interparticle force, and, in this
case, lubrication forces in the compressional zone act as the repulsive force. A negative
contribution is indicative of an attractive interparticle force, and, as b/a increases,
the effect of the far-field hydrodynamic interactions in the extensional zone dominate
the effect of the far-field hydrodynamic interactions in the compressional zone. In the
extensional zone hydrodynamic interactions tend to keep two particles from moving
apart while in the compressional zone, hydrodynamic interactions tend to keep two
particles from moving together. Also note that the hydrodynamic contribution also
_decays with respect to changes in b/a much faster than either of the normal stress

differences and is nearly equal to zero at b/a = 1.60.

3.5 Cvonclusions

In this work the Smoluchowski equation is solved for two particles interacting with
an effective hard-sphere force over a range of Peclet numbers, Pe, = 67mn,yab?/kT,

and a range of b/a, where b/a is the ratio of the thermodynamic radius, b, to the
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“hydrodynamic,radius, a. The resulting nonequilibrium microstructure is used to
calculate the hydrodynamié, Brownian and interparticle force stresses and resulting
rheological properties. These dilute results for the rheological properties are extended
to higher concentrations by using the scaling theory of Brady (1993b).

First, dispersions are studied for which b/a = 1 and hydrodynamic interactions
are neglectéd. At high Peclet number a boundary layer forms at particle contact
in the compressional zone and the contact value of the nonequilibrium microstruc-
ture is ~ O(Pe), resulting in a viscous scaling for the stress as Pe — co. The dilute
macroscopic properties are scaled [Brady (1993b)], compared with Brownian Dynam-
ics simulations [Foss & Bfady (1999)] and found to be in reasonable agreement for
smaller volume fractions. At higher volume fractions there is a volume-fraction de-
pendent relaxation time [Bergenholtz (1999)] in contrast to the single relaxation time
predicted by Brady (1993b). The O(Pe®?) isotropic term of the inner expansion
at low Peclet number is calculated, and the resulting contribution to the osmotic
pressure is in excellent agreement with the numerical results.

Next, the case of b/a — 1 with two-particle hydrodynamic interactions is analyzed.
Shear thinning is caused by the decreased importance of Brownian motion as the shear
rate increases, resulting in a shear thinning Brownian viscosity. Shear thickening
at high Peclet number is caused by the formation of a boundary layer at particle
contact and the existence of hydrodynamic interactions, resulting in a shear thickening
hydrodynamic viscosity. Scaling theory [Brady (1993b)] produces a master curve
of simulation and experimental data, but the dilute theory is only in qualitative
_agreement. The first normal stress difference changes sign since the Brownian and
hydrodynamic contributions have different signs. At low Peclet number the Brownian
contribution dominates, and at high Peclet number the hydrodynamic contribution
dominates. Scaling theory [Brady (1993b)] collapses simulation data, and the dilute
theory correctly predicts that the sign change occurs near Pen/, ~ 10. Additionally,
the dilute theory also correctly predicts a maximum value of Ny /7,7 near Pen! =4 in
agreement with Stokesian Dynamics simulations [Foss et al. (1999)]. Lastly, the dilute

theory predicts negative rod climbing in agreement with the experimental results of



99
Leighton (1997) at Pe — co.

Finally, the b/a rat‘io ié varied and two-particle hydrodynamic interactions are
used. As b/a increases, lubrication forces are eliminated and then the effects of far-
field hydrodynamic interactions decrease. This decrease in the effect of hydrodynamic
interactions and the decrease of the hydrodynamic stress cause both shear thickening
and the sigh change of the first normal stress difference to occur at higher Peclet
numbers as b/a increases. Eventually, at some value of b/a, shear thickening of the
to_tal_viécosity no longer occurs and the first normal stress difference no longer changes
sign. When salt is added to a colloidal dispersion to reduce the thermodynamic radius,
the theory predicts that the shear viscosity decreases in agreement with experiments
[Mallamace, Micali & Vasi (1990)]. When the particle size decreases while the De-
bye length and hydrodynamic volume fraction remain constant, the shear viscosity
increases, also in agreement with experiments [Ogawa et al. (1997)].

Since the Smoluchowski equation and the bulk stress in sections 3.2 and 3.3 are
written using two-particle hydrodynamic functions, the method presented here can be
extended to any case for which the suspended bodies are spherical and the two-particle
hydrodynamic functions are known. Two non-coalescing, spherical droplets and two
spherical bodies of different sizes are examples of such cases. The current program
can be easily modified to include these cases since each hydrodynamic function is
evaluated by calling a separate function. The function call currently only includes
the particle separation based on the hydrodynamic radius, rg, but the particle size
ratio, 8 = az/a;, and the viscosity ratio, A = n4/7,, can be included, where a, and
_ a; are the radii of the different sized spheres and 74 is the viscosity of the dispersed
phase of an emulsion.

Additionally, the Smoluchowski equation is presented in a form that can be used
for any linear flow. In fact, preliminary calculations have been completed and density
plots for planar and uniaxial extensional flows are shown in Figure 3.63.

Finally, the equilibrium pair-distribution function is chosen to be ge,(r > 2)=1 in
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this work,-but the Smoluchowski equation can be for other cases by using

g(r) = geg (r) (1 + J); (3.70)

chus, allowing different interparticle potentials to be investigated. The most interest-
ing of these potentials is any potential that is not purely repulsive — attractive hard
spheres, the dumbbell model of polymer solutions and others. For the attractive force,
it would be interesting to see if there is shear thinning in the hydrodynamic viscosity
at small Peciet numbers for a dispersion of attractive hard spheres as the shear flow
increases and tends to pull the two particles apart along the extensional axis. While
for the dumbbell model, one will obtain a better understanding of why |Ny/N¢| =~ 1
for dispersions but |N,/N;| < 1 for polymer solutions. An hypothesis for the differ-
ence in behavior is that the spring between the two beads is the major contribution
to N, for polymer solutions since the spring wants to return to its equilibrium length
and the dumbbell tends to align with the flow in the velocity-gradient plane. It is not
necessary to study purely repulsive interactions to understand how the parameters in
the interparticle force affect rheology since a purely repulsive interaction can be recast
in the form of an effective hard-sphere interaction. By simply understanding how the
parameters affect the thermodynamic radius and using the results of this study, one

can understand how the parameters qualitatively affect dispersion rheology.

References

" Acrivos, A. & T.D. Taylor, “Heat and mass transfer from single spheres in Stokes

flow.” Phys. Fluids 5, 387-394 (1962).

Acrivos, A., R. Mauri & X. Fan, “Shear-induced resuspension in a Couette device.”

Int. J. Multiphase Flow 19, 797-802 (1993).

Aral, B.K. & D.M. Kalyon, “Viscoelastic material functions of noncolloidal suspen-

sions with spherical particles.” J. Rheol. 41, 599-620 (1997).

Batchelor, G.K. & J.T. Green, “The hydrodynamic interaction of two small freely-



101
moving spheres, in a linear flow field.” J. Fluid Mech. 56, 375-400 (1972a).

Batchelor, G.K. & J.T. Green, “The determination of the bulk stress in a suspension
of spherical particles to order ¢?.” J. Fluid Mech. 56, 401-427 (1972b).

Batchelor, G.K., “Brownian diffusion of particles with hydrodynamic interaction.” J.

Fluid Mech. . 74, 1-29 (1976).

Batchelor, G.K., “The effect of Brownian motion on the bulk stress in a suspension

of spherical particles.” J. Fluid Mech. 83, 97-117 (1977).

Beenakker, C.W.J., “The effective viscosity of a concentrated suspension of spheres

and its relation to diffusion.” Physica A 128, 48-81 (1984).

Bender, J.W. & N.J. Wagner, “Optical measurement of the contributions of colloidal
forces to the rheology of concentrated suspensions.” J. Coll. & Int. Sci. 172, 171-184
(1995).

Bender, J.W. & N.J. Wagner, “Reversible shear thickening in monodisperse and bidis-
perse colloidal dispersions.” J. Rheol. 40, 899-916 (1996).

Bergenholtz, J., personal communication (1999).

Bergenholtz, J., F.M. Horn, W. Richtering, N. Willenbacher & N.J. Wagner, “Re-
lationship between short-time self-diffusion and high-frequency viscosity in charge-

stabilized dispersions.” Phys. Rev. E 58, R4088-R4091 (1998).

Blawzdziewicz, J. & G. Szamel, “Structure and rheology of semidilute suspension

under shear.” Phys. Rev. E 48, 4632-4636 (1993).

-Boek, E.S., P.V. Coveney, H.N.W. Lekkerkerker & P. van der Schoot, “Simulating the
rheology of dense colloidal suspensions using dissipative particle dynamics.” Phys.

Rev. E 55, 3124-3133 (1997).

Boersma, W.H., J. Laven & H.N. Stein, “Shear thiékening (dilatancy) in concentrated
dispersions.” AIChE J. 36, 321-332 (1990).

Bossis, G. & J.F. Brady, “Dynamic simulation of sheared suspensions. 1. General

method.” J. Chem. Phys. 80, 5141-5154 (1984).



102
Brady, J.F. & G. Bossis, “Stokesian Dynamics.” Ann. Rev. Fluid Mech. 20, 111-157
(1988).
Brady, J.F., “Brownian motion, hydrodynamics, and the osmotic pressure.” J. Chem.

Phys. 98, 3335-3341 (1993a).

Brady, J.F., “The rheological behavior of concentrated colloidal dispersions.” J.

Chem. Phys. 99, 567-581 (1993b).

Brady, J.F., “The long-time self-diffusivity in concentrated colloidal dispersions.” J.

Fluid Mech. 272, 109-133 (1994).

Brady, J.F. & M. Vicic, “Normal stresses in colloidal dispersions.” J. Rheol. 39,
545-566 (1995).

Brady, J.F. “Model hard-sphere dispersions: Statistical mechanical theory, simula-

tions, and experiments.” Curr. Op. Coll. & Int. Sci. 1, 472-480 (1996).

Brady, J.F. & J.F. Morris, “Microstructure of strongly-sheared suspensions and its

impact on rheology and diffusion.” J. Fluid Mech. 348, 103-139 (1997).

Buscall, R., “An effective hard-sphere model of the non-Newtonian viscosity of stable
colloidal dispersions: Comparison with further data for sterically stabilised latices
and with data for microgel particles.” Coll. & Surf. A: Physic. & Eng. Aspects 83,
33-42 (1994).

Carnahan, N.F. & K.E. Starling, “Equation of state for nonattracting rigid spheres.”
J. Chem. Phys. 51, 635-636 (1969).

Chan, D. & R.L. Powell, “Rheology of suspensions of spherical particles in a Newto-
“ nian and a non-Newtonian fluid.” J. Non-Newt. Fluid Mech. 15, 165-179 (1984).
Chow, A.W., S.W. Sinton, J.H. Iwamiya & T.S. Stephens, “Shear-induced particle
migration in couette and parallel-plate viscometers — NMR imaging and stress mea-
surements.” Phys. Fluids 6, 2561-2576 (1994).
de Kruif, C.G., E.M.F. van lersel, A. Vrij & W.B. Russel, “Hard sphere colloidal

dispersions: Viscosity as a function of shear rate and volume fraction.” J. Chem.

Phys. 83, 4717-4725 (1985).



103
D’Haene, P., “Rheology of polymerically stabilized suspensions.” Ph.D. Thesis,
Katholieke Universiteit Leuven (1992).

D’Haene, P.,.J. Mewis & G.G. Fuller, “’Scattering dichroism measurements of flow-
induced structure of a shear thickening suspension.” J. Coll. & Int. Sci. 156,
350-358 (1993).

Dhont, J.K.G., “On the distortion of the static structure factor of colloidal fluids in

shear flow.” J. Fluid Mech. 204, 421-431 (1989).

Elrick, D.E., “Source functions for diffusion in uniform shear flow.” Aust. J. Phys.

15, 283-288 (1962).

Foss, D.R., T.N. Phung, J.F. Brady & G. Bossis, “Stokesian Dynamics simulation of

Brownian suspensions.” in preparation (1999).

Foss, D.R. & J.F. Brady, “Brownian Dynamics simulation of hard-sphere colloidal
dispersions.” in preparation (1999).

Foss, D.R., Ph.D. Thesis, California Institute of Technology (1999).

Gadala-Maria, F., “The rheology of concentrated suspensions.” Ph.D. Thesis, Stan-
ford University (1979).

Genz, U., B. D’Aguanno, J. Mewis & R. Klein, “Structure of sterically stabilized
colloids.” Langmuir 10, 2206-2212 (1994).

Heyes, D.M. & J.R. Melrose, “Brownian dynamics simulations of model hard-sphere

suspensions.” J. Non-Newt. Fluid Mech. 46, 1-28 (1993).

- Heyes, D.M., P.J. Mitchell, P.B. Visscher & J.R. Melrose, “Brownian Dynamics sim-
ulation of concentrated dispersions: Viscoelasticity and near-Newtonian behaviour.”

J. Chem. Soc. Faraday Trans. 90, 1133-1141 (1994).

Heyes, D.M. & P.J. Mitchell, “Mean-field hydrodynamic Brownian dynamics simu-
lations of stabilized colloidal liquids under shear.” J. Non-Newt. Fluid Mechn. 68,
101-124 (1997).



104
‘Hoffman, R.L.,, “Explanations for the cause of shear thickening in concentrated col-

loidal dispersions.” J. Rheoi. 42, 111-123 (1998).

Jeffrey, D.J.,.J.F. Morris & J.F. Brady, “The pressure moments for two rigid spheres
- in low-Reynolds-number flow.” Phys. Fluids A 5, 2317-2325 (1993).

Jomha, A.l. & P.A. Reynolds, “An experimental study of the first normal stress
difference — shear stress relationship in simple shear flow for concentrated shear

thickening suspensions.” Rheol. Acta 32, 457-464 (1993).

Jones, D.A.R., B. Leary & D.V. Boger, “The rheology of concentrated colloidal sus-
pensions of hard spheres.” J. Coll. & Int. Sci. 147, 479-495 (1991).

Kaffashi, B., V.T. O’Brien, M.E. Mackay & S.M. Underwood, “Elastic-like and
viscous-like components of the shear viscosity for nearly hard-sphere, Brownian sus-

pensions.” J. Coll. & Int. Sci. 187, 22-28 (1997).

Kalogrianitis, S.G. & J.W. van Egmond, “Full tensor optical rheometry of polymer
fluids.” J. Rheol. 41, 343-364 (1997).

Kim, S. & R.T. Mifflin, “The resistance and mobility functions of two equal spheres
in low-Reynolds-number flow.” Phys. Fluids 28, 2033-2045 (1985).

Kim, S. & S.J. Karrila, Microhydrodynamics: Principles and selected applications
(Butterworth-Heinemann, Boston, 1991).

Krieger, .M., “Rheology of monodisperse latices.” Adv. Coll. & Int. Sci. 3, 111-136
(1972).

Ladd, A.J.C., “Fluctuating lattice-Boltzmann equation.” Phys. Rev. Lett. 70,
1339-1342 (1993).

Ladd, A.J.C., “Numerical simulations of particulate suspensions via a discretized
Boltzmann-equation. 1. Theoretical foundations.” J. Fluid Mech. 271, 285-309
(1994a).

Ladd, A.J.C., “Numerical simulations of particulate suspensions via a discretized

Boltzmann-equation. 2. Numerical results.” J. Fluid Mech. 271, 311-339 (1994b).



105

Laun, H.M., “Normal stresses in extremely shear thickening polymer dispersions.” J.

Non-Newt. Fluid Mech. 54, 87-108 (1994).

Leal, L.G., Laminar flow and convective transport processes: Scaling principles and

asymptotic analysis (Butterworth-Heinemann, Boston, 1992).
Leighton, D.T., personal communication (1997).

Lionberger, R.A., “Shear thinning in colloidal dispersions.” J. Rheol. 42, 843-863
(1998).

Lodge, A.S., J.D. Schieber & R.B. Bird, “The Weissenberg effect at finite rod-rotation
speeds.” J. Chem. Phys. 88, 4001-4007 (1988).

Mackay, M.E., C.H. Liang & P.J. Halley, “Instrument effects on stress jump measure-

ments.” Rheol. Acta 31, 481-489 (1992).

Magda, J.J., S.G. Baek, K.L. DeVries & R.G. Larson, “Unusual pressure profiles and
fluctuations during shear flows of liquid crystal polymers.” Polymer 32, 1794-1797
(1991).

Mallamace, F., N. Micali & C. Vasi, “Viscoelastic properties of charged colloids,
polystyrene, and silica-water suspensions.” Phys. Rev. A 42, 7304-7311 (1990).

Marrucci, G., “Rheology of liquid crystalline polymers; linear and nonlinear behavior
of the nematic phase.” in Theoretical challenges in the dynamics of complez fluids

(Kluwer Academic, Dordrecht, 1997).

McQuarrie, D.A., Quantum chemistry (University Science Books, Mill Valley, CA,
- 1983).

Mitchell, P.J., D.M. Heyes & J.R. Melrose, “Brownian-dynamics simulations of model

2

stabilised colloidal dispersions under shear.” J. Chem. Soc. Faraday Trans. 91,

1975-1989 (1995).

Nagele, G., B. Steininger, U. Genz & R. Klein, “Short-time dynamics of charge-
stabilized colloidal suspensions.” Physica Scripta T55, 119-126 (1994).



106 |
Nolan, G.T. & P.E. Kavanagh, “Computer simulation of random packing of hard
spheres.” Powder Tech. 72, 149-155 (1992).

O’Brien, V.T. & M.E. Mackay, “Stress components and shear thickening of hard

sphere suspensions,” personal communication (1996).

Ogawa, A., H. Yamada, S. Matsuda, K. Okajima & M. Doi, “Viscosity equation

for concentrated suspensions of charged colloidal particles.” J. Rheol. 41, 769-785
(1997). .

Ohl, N. & W. Gleissle, “The characterization of the steady-state shear and normal
stress functions of highly concentrated suspensions formulated with viscoelastic lig-

uids.” J. Rheol. 37, 381-406 (1993).

Okubo, T., “The viscosity of colloidal spheres in deionized suspensions.” J. Chem.

Phys. 87, 6733-6739 (1987).

Phung, T.N., J.F. Brady & G. Bossis, “Stokesian Dynamics simulation of Brownian
suspensions.” J. Fluid Mech. 313, 181-207 (1996).

Poslinski, A.J., M.E. Ryan, R.K. Gupta, S.G. Seshadri & F.J. Frechette, “Rheological
behavior of filled polymeric systems. 1. Yield stress and shear-thinning effects.” J.

Rheol. 32, 703-735 (1988).

Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flannery, Numerical recipes in
Fortran: The art of scientific computing (Cambridge University Press, 2nd edition,
1992).

Pusey, P.N. & W. van Megen, in An Fzzon monograph: Physics of complex fluids and

‘ supermolecular fluids (\Niley—lnterseience, New York, 1987).

Quemada, D., “Concentrated colloidal suspensions at low ionic strength: a hard-
sphere model of zero shear viscosity, involving the hard-sphere phase transitions.”

Europhys. Lett. 25, 149-155 (1994).

Rastogi, S.R., N.J. Wagner & S.R. Lustig, “Rheology, self-diffusion, and microstruc-
ture of charged colloids under simple shear by massively parallel nonequilibrium Brow-

nian Dynamics.” J. Chem. Phys. 104, 9234-9248 (1996).



107 .
Rastogi, S.R. & N.J. Wagner, “Quantitative predictions of suspeﬁsion rheology by

nonequilibrium Brownian dynamics and hydrodynamic preaveraging.” J. Rheol. 41,

893-899 (1997).

Reus, V., L. Belloni, T. Zemb, N. Lutterbach & H. Versmold, “Spectres de diffusion
et pression osmotique de suspensions colloidales de particules de latex chargées.” J.

Chim. Phys. 92, 1233-1256 (1995).

Ronis, D., “Theory of fluctuations in colloidal suspensions undergoing steady shear

flow.” Phys. Rev. A 29, 1453-1460 (1984).

Ronis, D., “Configurational viscosity of dilute colloidal suspensions.” Phys. Rev. A

34, 1472-1480 (1986).

Smart, J.R. & D.T. Leighton, “Measurement of the hydrodynamic surface-roughness
of noncolloidal spheres.” Phys. Fluids A 1, 52-60 (1989).

van der Werff, J.C., C.G. de Kruif & J.K.G. Dhont, “The shear-thinning behaviour
of colloidal dispersions. II. Experiments.” Physica A 160, 205-212 (1989).

Wagner, N.J., personal communication (1998).

Willey, S.J. & C.W. Macosko, “Steady shear rheological behavior of PVC plasticols.”
J. Rheol. 22, 525-545 (1978).

Woodcock, L.V., “Glass transition in the hard sphere model and Kauzman’s paradox.”

Ann. N.Y. Acad. Sci. 37, 274-298 (1981).



108
Appendix A:

Definite integral of the product of
two Associated Legendre Polynomials
and most powers of sine and cosine

The result of this section is used to evaluate the integrals in the Smoluchowski equa-
tion for a general linear flow after the nonequilibrium microstructure has been ex-
panded in terms of surface spherical harmonics and integration is performed using
the orthogonality property of the harmonics. There are angularly-dependent terms
remaining in the Smoluchowski equation that cannot be immediately integrated and
must be numerically integrated in a general way since the integrand is dependent on
the type of flow as well as the rank and order of the harmonic. The method presented
here has been successfully used for all four rheologically significant flows—simple shear
flow, planar extensional flow, biaxial extensional flow and uniaxial extensional flow.
Since the numerical scheme is new, a proof of the validity of the scheme is presented
here. The main advantage of this method is that many of the integrals which are zero

are immediately recognized, thus eliminating time-intensive, numerical integration.
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If  £is an integer such that £ > 0,
m is an integer such that |m| < £,
P is an integer such that p > 0,
g is an integer such that |¢| < ¢,
o is an integer,
B is an integer such that 3> |q|—|m|—2 and 54 |m|+]q| is even,

1o BI2 im
then [ e (1= )" P () Pl () e =

-1

[¢/2—|m|/2] min[v,|n/2—k|] n—2k—2; (_1)k+IQI+’Y"j (2€ _ Qk‘)'
2 L & YE (= R) (- 2k —[m])

Y (7 + lgl — 2k —25)! 2
x| . a;bip,
7 (n—2k—-25)! 2p+1

where  p = cos[f],
Pglml(,u) is the Associated Legendre Polynomial of rank ¢, order m,
|z] is the integer floor of z,
min [z, y] is the minimum of = and y,

n=a+p8+4 ;

{ if 1 = p;
ip — : .
0, otherwise.

“ {(2i+1)2i(n_2k—2j)! (%(n_%_zﬁi))! ifn—2k—-25—:2>0 and even;
i= 2

(n=2k=2++ 1)1 (L (n-2k—2j—i))!’

0, otherwise.
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Proof

We start by defining the following function

I=1I(c,8,t,m,p,q) = [ llm (1= 1) P () Pl ) . (A1)

Recall the definition of the Associated Legendre Polynomial [McQuarrie (1983)],

PPl = (1 )" L0 (A2)
Substituting this definition into equation [A.1],
_ /_11 v (1 u2)ﬁ/2 (i - ug)lmu/z
x_dln;ﬁf’g#) (1 _ 2)in/2 dlq(ljﬁqﬁu_) dpu. (A.3)
At this point we define a new variable,
1
v =5 (B+1ml+lqf). (A.4)

It should be noted that + is always an integer since 3 + |m| + |g| is even, as stated
in the hypothesis. We shall require the fact that « is an integer later in this proof.

Before we continue, we need to make a few comments about the restrictions on |¢]|
and |m|. If ]ql > por |m| > £, then the Associated Legendre Polynomial is identically
zero; so I = 0. For the remainder of this proof, we shall only consider |¢| < p and
|m| < £, as per the hypothesis.

If |g| > 0, then we define the following two variables for integration by parts:

Y dl,mlpe(ﬂ)

T (1 - ﬂz) T (A.5)
d (di1 Py ()
d’v = % (——Euqu d}J.. (A.ﬁ)

Using these definitions, we integrate by parts if |g| > 0. We do nothing if |¢| = 0.
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Equation {A.3] yields:

= (ua - ,Lz)v d'm'Pew)) 4= Py()

du|m| d/,thl‘l _
yrdmir
1dp W d'uiml
dlq|~1p
A gy)dﬂ’ if 0 < gl < p; (A.7a)
1 v d™ Py _
I'= ]_1 ue (1= 42%) d’ulfn(| )Pp(“)d#v if |q| = 0. (A.7h)

If 0 < |q| < p, we continue to integrate by parts for a total of |g| times for equation

[A.7]. In addition, we rewrite equation [A.7].

lgl-1 k v d™ P, lg|—k—1 1
. Z (1) dc:k (ua (1-12) d P(#)) d _Pf(u)

du'ml d#|‘1| k-1 _
la dmp
il [ » dIP(p)
/ dpll ( - ) dplm!
X Pp(p)dp, if 0 < |q| < p; (A.8a)
Byl [ ') 2\ A" Pe(p)
/ v - i) dpim
x P,(p)dy, if |g| = 0. (A.8b)

If 3 > |q|—|m|—2, then all of the terms in the summation in equation [A.8] vanish.
(This statement is proved in Lemma 1 immediately following this proof.) Since the
- summation in equation [A.8] vanishes, equations [A.8] and [A.8] can be combined into
a single equation,

1 glal ~v d™ Py(p .
o [ A s ( ) Tii(l_)) Py(u)dp, if |g] < p. (A.9)
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In Lemma,2 it is shown that

dmlpy(p) AT (—1)* (2¢ — 2k)!
duml T = 2 (0 — k) (€ — 2k — |m])!

ptm2k=lml, (A.10)

Substituting equation [A.10] into equation [A.9],

dltzl -

—(— !ql — 2
I'= / . dﬂ|q| #)
L¢/2—Iml/2] (-1 ) (20 — 2k)!

8 ,; 2k (0 — k) (£ — 2k — |m|)!//_2k_lm]) Py(p)dp. (A.11)

We perform the following operations to equation [A.11]: (1) distribute the factors
of p and (1 — p?) into the summation, (2) exchange differentiation and summation
since the sum is uniformly convergent and the sum of the derivatives of the terms
is also uniformly convergent, and (3) exchange summation and integration since the

sum is uniformly convergent and the sum of the integrals is also uniformly convergent,

[¢/2=|m|/2] (_1)k+|Q| (2¢ — 2k)!

I =
& (L= k) ({— 2k — [m])!
1 lal y
a+—2k—|m| 2
X /_1 ] (u (1=12)") Py(u)dp. (A.12)

In Lemma 3 it is shown that

o |
g (72 (1)) -

min[y, —k ]
[7%2 1] (_1)7_‘7 (7) (77 + ‘ql — 2k —. 2])' n—2k—2j.

, (A.13)
J=0

We substitute equation [A.13] into equation [A.12] and then perform the following
operations: (1) distribute P,(u) through the summation, (2) interchange summation

and integration because of uniform convergence and (3) distribute terms through the
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summation,
[e/z;{‘nm min[w%z—kn (—1)EFle =3 (90 _ o)
k=0 j=0 20kl (¢ ~ k) (¢ — 2k — |m|)'

_ 9k —2j)! 1 .
y C) (n z]lzl 2k2_ Qj)2!J) /_1 R XY (A.14)

I =

Any nth degree polynomial can be expressed as a linear combination of the first
n Legendre Polynomials since the first n Legendre Polynomials form a basis for n-
dimensional polynomial space. We have the following result from [Whittaker & Wat-
son (1992)],

pt= i a; P (p), (A.15a)

=0

(2i+1)2¢(n)! (F(n+9))!
a; =

l . .. .
Ewyy (z(n_i))!, if n — 7 is even and non-negative; (A.15b)

0, otherwise.

We let n = n — 2k — 27 in equation [A.15] and substitute the result into equation
[A.14],

I =

[£/2~|m|/2| minfv,|n/2~k|] (_1)k+[q|+7‘j (20 —2k)! [~
2. 2kI (€ — k) (£ = 2k — |m])! (J)

k=0 7=0

— — 9a 1 [1—2k-2j
X(n3;7|3|2k21€2j)2!J)! /_1 ( Z:O aiR(ﬂ)) P, (u) dps. (A.16)

We now perform the following operations on equation [A.16]: (1) distribute P, (1)
into the summation, (2) interchange summation and integration since the terms are

uniformly convergent, and (3) remove a; from the integral,

|£/2—|m|/2} min[y,|n/2—k]] n—2k—27 1y kHaly—i 20 — 2k
2k (0 — k) (£ — 2k — |m])!

k=0 7=0 =0

Y\ (n+lgl —2k—=25)! r1
(]) U220, [ P Py ) (A17)




114
Finally, we use the orthogonality property of Legendre Polynomials [Tuma (1987)],

1 2
[ P) P () da = 5o (A.18)

where §;, is the Kronecker delta, in equation [A.17],
[£¢/2—|m|/2] min[y,|n/2~k]] n—2k-2; (_1)k+19|+’Y—J (2¢ — 2k)!

;‘:0 1.2:1) S 2RV — ) (L =2k — [m])!

v\ (1 + lgl =2k —25)! 2
x| , a
J (n—2k—=271 2p+1

1=

S (A.19)

Lemma 1

Hypothesis

If Zis an integer such that ¢ > 0,
m is an integer such that |m| < 2,
p is an integer such that p > 0,
g is an integer such that |g| < ¢,
k is an integer such that k0 < k <|q| — 1,

B is an integer such that 8> |q|—|m|—2 and 3+|m|+]g| is even,

k m|
d (u" (1 _u2)7w> =0at p==+1Vk.

then W d/,[,lm’

Proof

We start with the following,

E i ardmIP )
We twice use Liebnitz’ Rule of Differentiation [Tuma (1987)],

D" (uv) = 3 (") (D) (D), | (A.21)

r=0 r
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on equation [A,20],

& (o dmP)
m(# (=) =) =

k k—r dlmH-rP
> (B & e () SR
dk—r
L (- w)) =
k—r k— dk—r—t o dt (1 — 2!
;(tjwmi(wf)- (A.23)

Combining these last two results, equations [A.22] and [A.23],
E (e AP
dF (” (1‘“ ) dgml ) =
k k—r —r dk—r—tua dt (1 _ M2)’Y d|m]+rpe (#)

We notice that the middle derivative in the double summation equals zero when

evaluated at u = £1 for some values of ¢ and 4. If we can show that the middle term
equals zero when evaluated at 4 = +1 for all possible values of ¢ and +, as specified
in the hypothesis, then we have shown that the conclusion is true.

From the second summation, we see that max[t] = k — r. But from the first
summation, we see that 0 < r < k and min(r] = 0; therefore, max[t] = k since k > 0.
But from the hypothesis we see that max[k] = |¢| — 1; thus, max[t] = |¢} — 1.

By the hypothesis and the definition for 4, we conclude that

B>lgl—|m|—-2—y> gl -1 (A.25)
But we have shown that max[t] = |q| — 1; therefore,

v > max][t]. (A.26)
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Since 7 is an integer and v > max[t], the following is true,

+ 3 ) (12T, (A.27)

w=1

where f,, (1) is some function of . (The exact form of the function is not important

for this lemma.) Since v > max[t], we see that the following is true,
(1) =0at p==%1V1. (A.28)
Since w > 0, we can also say that the following is true,
2 y—ttw
(1 —u ) =0 at p ==%1 Vi, w. (A.29)

Using the last two results, equations [A.28] and [A.29], we conclude that the middle
derivative in equation [A.24] is equal to zero when evaluated at p = £1 for all values

of t and ~; thus,

%ﬁ (;ﬂ (1-u?) —dmén-([ﬂl) =0at = +1 Vk. (A.30)

Lemma 2

Hypothesis

If £ is an integer such that £ > 0,
m is an integer such that |m| < ¢,

k is an integer such that 0 < k <|q| — 1,

jm Le/2=iml/2] ko) o
then Lﬂﬂ) - ; ( 1) (26 Qk) 'Mf—2k—|'m|
i 2 SR k) (€= 2k — [m])!
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Proof
We start with the series representation for the /th Legendre Polynomial [Zill (1986)],

LRI (1)F (2 — 2k)!
_ : £—2k
Pr(p) = };} 2k (6 — k) (£ — 2k)!u ’

(A.31)

where |z] is the integer floor of z (i.e., the greatest integer not greater than z).
We now take the |m|th derivative of both sides of equation [A.31]. Furthermore, we

interchange suimmation and differentiation because the series is uniformly convergent,

dmip, (u) WA~ @0 -2k dimlpt
dull T = BRI (= k) (£ — 2k)1 dulm]

(A.32)

Since m, £, k are all integers, |m| < 1 (by the hypothesis), and £ < [£/2] (based on
the upper limit of the summation), then £ — 2k — |m| > 0; thus, the {m/|th derivative

will have one of two values,

dulm] et . o (A.33)
H 0, otherwise.

diml =2k {Jﬁ:&)‘_fﬂc Il i 6 — 2k — |m| >0 ;

Since k must be an integer and the sum / + |m| is not necessarily an even integer,
then we can be more specific about the range of the non-zero values of the |m|th
derivative. Rewriting equation [A.33],

m _ £—2k)! {—2k—|m . .
dmigt2 { T R 22
dplm! 0, otherwise. ‘

Finally, we split the summation in equation [A.32] into two ranges, 0 < k <
|4/2 — |m|/2]| and |£/2 — |m]|/2] +1 < k < [£/2}, and use the results from equation
[A.34],

dmlpy () P (=1)" (2¢ — 2k)! ¢=2k—|m|
Tagnl T & 2R —k)({—2k— m])" ‘
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"Lemma 3

Hypothesis

If  ¢1is an integer such that { > 0,

" m is an integer such that |m| < £,
p is an integer such that p > 0,

.q is an integer such that |¢| < g,
k is an integer such that & > 0,
o is an integer such that o > 0,
8 is an integer such that 3> |¢|—|m|—2 and 8+ |m|+]g| is even,
v = (B+Im|+lgl) /2,

i) (et B+l—2k—2))

i=0
Proof

We begin by using the binomial theorem to expand (1 — 2)” in a series of polynomials

of u. Note that the series truncates at j = -y since v is an integer.

(1-u2)" = i (—1)" (7> p, (A.36)

j=0 J

We multiply both sides of equation [A.36] by pet=2=Iml and multiply through

the summation on the left-hand side,

vy . .
ua+f—2k—|m| (1 _ Mz)'Y — Z (_1)'7—3 (3) u2’y—2]+a+£—2k—-|ml. (A37)
J=0

Recall that 2y = § + |m| + |g| from the hypothesis and substitute into equation
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[A.37], |
' . . Y . .

(1) = S (T

j=0 J
At this point we need to make sure that the exponent of u is non-negative on
the'i‘ight-hand side of equation [A.38]. We show that the exponent is non-negative if

a > 0.

a+B+C+ g —2k—25 >0,

Jmax = 7 from the summation,
a+pB+L+|q—2k-2y>0,

2y = B+ |m| + |g| from the hypothesis,
a+f—|m|—-2k >0,

kmax = (¢ — |m]) /2 from equation [A.35],

a > 0.

Since o > 0 is part of the hypothesis, the exponent of p on the right-hand side of
equation [A.38] is non-negative.

Since the exponent of u is non-negative in equation [A.38], we can take the gth
derivative of both sides. We also interchange differentiation and summation because
of uniform convergence,

dll (Ma+z-2k—|m| (1 _ pz)W) — i: (_1)7—1' (’7) dlal Ma+ﬁ+€+|?|—2k—2j. (A.39)

dpld! = 3/ duldl

Since the integer of p in the summation is an integer, we know that the |g|th

derivative has one of two values,

dlal o+ B+ CHlgl~2k=25

dul‘”
{ (a+ﬁ+€+|9f—2k—2]')!#a+ﬁ+t’-—2k-—2j, if |‘1| <a+fB+0+ |q| —2k—2j

(a+B+E—2k—27)!

(A.40)
0, if |g| > a+ B8+ 4+ |q| — 2k —25.
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We subtract |g| from both sides of the inequalities in equation [A.40] and solve
explicitly for j. Furthermoré, since 7 only has integer values, we can take the integer
floor of each‘ term on the right-hand side of the inequalities without affecting the

result,

dll ﬂa+ﬁ+l+lqi—2k—2j

{ (a(-zﬁ-;ﬁgil;:fz—;f)! petPH=2h=2 e g < (e B4 0) /2 — k] (A.41)
1. ifj>[(a+B+0)/2 k|

We shall substitute equation [A.41] into the summation in equation [A.38], but
first we must analyze the upper limit of the summation. From the above equation it
appears that we should just set the upper limit of j equal to |a/2 + 8/2 +£/2 — k|,

but we must analyze two different cases.

(1) If |@/2+ B/2+¢/2 — k] > ~, the upper limit should be v since v was the

original limit of the summation.
(2) If |@/24 B/24+¢/2 — k| < ~, then the upper limit is |a/2 + 8/2 +£/2 — k].

From these two cases we see that the upper limit of j should be set equal to the

minimum value of v and |a/2 + /2 +£/2 — k],

o (T (1= p?)) = (A-42)

min[’Y,LG:/?—k_]] (_1)’7_]. vy (a -+ ﬂ +7+ lql — 2k — 2])' a+ﬁ+f—2k—2j.
J (a+ B+ —2k—29)!

=0
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Figure 3.1: Results for f/Pe in the velocity—gradient plane at steady-state for
(a) Pe=1, (b) Pe =15, (c) Pe =10, and (d) Pe = 20, where f is the difference from
the equilibrium microstructure and Pe = 6mnyva®/kT. Hydrodynamic interactions
are neglected and b/a = 1.
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Figure 3.2: Results for f/Pe as a function of 6 at particle contact, r = 2, in the
-velocity-gradient plane, for Pe = 0.1 (o), Pe =1 (O), Pe =5 (A), Pe =10 (<) and

Pe = 20 (). Hydrodynamic interactions are neglected and b/a = 1. The high Peclet

asymptotic result of Brady & Morris (1997) (line) is included for comparison.
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Figure 3.5: The O(#?) contribution to the relative shear viscosity, 7., as a function
of Peclet number, Pe = 6mn,ya®/kT. Hydrodynamic interactions are neglected and
b/a = 1. Numerical results (A) are compared to the low Peclet asymptotic result,
(n, — 1 —2.5¢) = (12/5)¢?, [Brady & Vicic (1995)] (dashed line), the high Peclet
approximate asymptotic result, (1, — 1 — 2.5¢) = (6/5)¢?, [Brady & Morris (1997)]
(dotted line) and the numerical results of Blawzdziewicz & Szamel (1993) (o) and
Lionberger (1998) (O).
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Figure 3.6: Results for the relative shear viscosity, 7,, as a function of Peclet num-
ber, Pe = 6mn,ya®/kT, are used to numerically find the O(¢? Pe?) contribution when
" Pe <1, b/a =1, and hydrodynamic interactions are neglected. The relative shear
viscosity at the given Peclet number is subtracted from the low shear limit of the
relative viscosity, (7, )o. The dashed line, 0.62P¢?, is a curve fit to the numerical data
for Pe < 1.
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Figure 3.7: Results for the scaled shear viscosity as a function of Peclet num-
ber, Pe = 6mn,ya®/kT, using the scaling theory of Brady (1993b) when hydrody-
namic interactions are neglected. Numerical results of this work (A) are compared
“with the Brownian Dynamics simulations of Foss & Brady (1999) for ¢ = 0.30 (x),
$»=0.35 (), ¢=10.40 (O), ¢ =0.45 (o), and ¢ =0.50 (). Shear viscosity for
¢ = 0.45 is also measured after startup but prior to the time at which the disper-
sion begins structural changes as part of the shear-induced phase transition (e).
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Figure 3.10: The O(¢?) contribution to the nondimensional first normal stress dif-
ference, N;/n,7¥, as a function of Peclet number, Pe = 67n,¥a®/kT. Hydrodynamic
interactions are neglected and b/a = 1. Numerical results (A) are compared to the
" low Peclet asymptotic result, N1/n,% = (16/15)¢? Pe [Brady & Vicic (1995)] (dashed
line) and the numerical results of Blawzdziewicz & Szamel (1993) (o) and Lionberger
(1998) (O). The high Peclet approximate asymptotic result [Brady & Morris (1997)]
predicts N; = 0.
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Figure 3.11: The O(¢?) contribution to the nondimensional second normal stress
difference, N, /7,7, as a function of Peclet number, Pe = 677,¥a*/kT. Hydrodynamic
interactions are neglected and b/a = 1. Numerical results (A) are compared to the
" low Peclet asymptotic result, No/n,y = —(16/21)¢* Pe [Brady & Vicic (1995)] (dashed
line), the high Peclet approximate asymptotic result, Na/nsy = —(12/5m)$2, [Brady
& Morris (1997)] (dotted line) and the numerical results of Blawzdziewicz & Szamel
(1993) (o) and Lionberger (1998) (O).
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Figure 3.12: Results for the nondimensional first normal stress difference, N; /7,7,
as a function of Peclet number, Pe = 6mn,ya®/kT, are used to numerically find the
O(¢2P65/2) contribution when Pe < 1, b/a = 1, and hydrodynamic interactions are
neglected. The value of N, /7,7 at the given Peclet number is subtracted from the low
shear limit, (N; /0,5 Pe)oPe. The dashed line, 1.2Pe%2, is a curve fit to the numerical
data for Pe <« 1.
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Figure 3.13: Results for the nondimensional second normal stress difference, Ny /757,
as a function of Peclet number, Pe = 67n,ya®/kT, are used to numerically find the
O(¢*Pe®/?) contribution when Pe < 1, b/a = 1, and hydrodynamic interactions are
neglected. The value of Ny/n,¥ at the given Peclet number is subtracted from the
low shear limit, (Ny/n,%Pe)oPe. The dashed line, 0.81Pe®?, is a curve fit to the
numerical data for Pe < 1.
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Figure 3.14: Results for the scaled first normal stress difference as a function of Peclet
number, Pe = 67n,va®/kT, using the scaling theory of Brady (1993b) when hydro-
dynamic interactions are neglected. Numerical results of this work (A) are compared
with the Brownian Dynamics simulations of Foss & Brady (1999) for ¢ = 0.30 (x),
¢ =10.35 (), ¢ =040 (O), ¢ = 0.45 (o), and ¢ = 0.50 (+).
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Figure 3.15: Results for the scaled second normal stress difference as a function of
Peclet number, Pe = 6mn,ya®/kT, using the scaling theory of Brady (1993b) when
hydrodynamic interactions are neglected. Numerical results of this work (A) are
compared with the Brownian Dynamics simulations of Foss & Brady (1999) for
¢ =10.30 (x), ¢ =0.35 (), ¢ = 0.40 (O), ¢ = 0.45 (0), and ¢ = 0.50 (+).
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Figure 3.16: Results for the rod climbing variable, ¥yoq ctimp = 7 (9p../Or) [ns7?, as
a function of Peclet number, Pe = 67n,ya®/kT, using the numerical results of this
work (solid line). Hydrodynamic interactions are neglected and b/a = 1. Since the

rod climbing variable is negative for all values of Peclet number, only negative rod
climbing should occur.
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Figure 3.17: The O(¢Pe) contribution to the nondimensional osmotic pressure,
[I/nkT, as a function of Peclet number, Pe = 6xn,ya®/kT. Hydrodynamic in-
teractions are neglected and b/a =1. Numerical results (A) are compared to
the low Peclet asymptotic result, (II/nkT — 1 — 4¢) = (16/45)¢Pe?, [Brady & Vi-
cic (1995)] (dashed line) and the high Peclet approximate asymptotic result,
(I/nkT — 1 — 4¢) = (8/97)¢Pe, [Brady & Morris (1997)] (dotted line). No numeri-
cal results are reported by Blawzdziewicz & Szamel (1993) nor Lionberger (1998) for
osmotic pressure.
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Figure 3.18: Results for the nondimensional osmotic pressure, I1/nkT, as a function
of Peclet number, Pe = 67n,ya®/kT, are used to numerically confirm the O(¢? Pe®/?)
contribution when Pe < 1, b/a =1, and hydrodynamic interactions are neglected.
The value of II/nkT at the given Peclet number is subtracted from its low shear
limit, 1 4+ 4¢ + (16/45)¢Pe?. The dashed line, 0.286 Pe%/2, is the result of matching
the inner solution at O(Pe*?) with the first mismatched term of the outer solution
for Pe < 1.
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Figure 3.19: Results for the scaled osmotic pressure as a function of Peclet number,
Pe = 6mn,%a®/kT, using the scaling theory of Brady (1993b) when hydrodynamic in-
teractions are neglected and b/a = 1. Numerical results of this work (A) are compared
with the Brownian Dynamics simulations of Foss & Brady (1999) for ¢ = 0.30 (x),
¢ =0.35 (<), 6= 0.40 (O), ¢ = 0.45 (o), and ¢ = 0.50 (+).



141

0.50 0 -0.40

=

Figure 3.20: Results for f/Pe in the velocity—gradient plane at steady-state for
(a) Pe=0.1, (b) Pe=1, (c) Pe =4, and (d) Pe = 10, where f is the difference from
the equilibrium microstructure and Pe = 6mnyya®/kT for b/a = 1.001.
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Figure 3.21: Results for f/Pe as a function of # at particle contact, r = 2, in the
velocity-gradient plane, for Pe = 0.1 (o), Pe =1 (O), Pe =4 (A) and Pe = 10 (<)
for b/a = 1.001.
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Figure 3.22: Results for f/Pe along the compressional axis as a function of
(a) separation, r, and (b) boundary layer length, 2 + (r — 2)Pe, for Pe = 0.1 (o),
Pe=1(0), Pe=4 (A) and Pe =10 (O) for b/a = 1.001.
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Figure 3.23: Results for f along the extensional axis as a function of separation, r,
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Figure 3.24: The O(¢?) contributions to the relative shear viscosity, 1, as a function of
Peclet number, Pe = 67n,ya®/kT, for b/a = 1.001. Hydrodynamic (o), Brownian (O)
and interparticle force (A) contributions to the total (o) viscosity are reported. At
Pe =10 a second calculation (solid diamond) is performed in which the hydrodynamic
stress consists of two parts — the equilibrium contribution and the contribution
from the deformation of the equilibrium microstructure for (r — 2)Pe < 6. The two
calculations at Pe = 10 yield slightly different values since O(1) variations of the
nonequilibrium microstructure outside of the boundary layer are important.
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Figure 3.25: Results for the relative shear viscosity, 1., as a function of Peclet number,
Pe = 6mn,Ya*/ kT, are used to show the O(#*Pe?) contributions when Pe < 1 and
b/a = 1.001. The relative shear viscosity at the given Peclet number is subtracted
from the low shear limit of the relative viscosity, (7,)o, for the hydrodynamic (o),
Brownian (O) and interparticle force (A) contributions. The dashed line is drawn to

guide the eye.
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Figure 3.26: Results for the scaled shear viscosity as a function of Peclet number,
Pe = 6mnsya®/kT, using the scaling theory of Brady (1993b). Numerical results of
this work (o) are compared with the Stokesian Dynamics simulations of Foss et al.
(1999) for ¢ = 0.316 (A), ¢ = 0.37 (), ¢ = 0.40 (O), ¢ = 0.419 (2), ¢ = 0.45 (e),
& =0.47 (4), and ¢ = 0.49 (x).
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Figure 3.27: Results for the scaled shear viscosity as a function of Peclet number,
Pe = 6mn,ya®/kT, using the scaling theory of Brady (1993b). Numerical results
of this work (o) are compared with the Stokesian Dynamics simulations of Foss et
al. (1999) (e) and the experimental results of van der Werfl, de Kruif & Dhont
(1989) (A), D’Haene, Mewis & Fuller (1993) (o), and Bender & Wagner (1995) ().

T l'llll(l

<

o

RN <

[}

T T IIUII
) O
& o

Lo
4 o0
0o 773
<
¢ o
<

o

> OO_

Lol




149

0-6 rerry T 1 lll'll"""l

1

T llll|l|"'ﬁl mlullllll""l
o O

ﬁ
O O
0.4 (bp O

S o 3

= 3

© ]

o 02 e 3
N [PDD O .E
~ o] .
; @) Q 3
oz 008 B o 0 0000688 HAMNN A A AADRA E

< . s 0 ;
Z. 3 ° E
N— C < 3
0.2 -

- o ]

C r'S ]

- (o] .

-0.4:— o _:

C o 3

- o E

-0. C il a0 o vvvaal AT T BT TR I N N 1 A to1 o1t

Oom
o
21
o
—t
—t
—h
o

100

Pe

Figure 3.28: The O(¢?) contributions to the nondimensional first normal stress dif-
ference, Ny/n.¥, as a function of Peclet number, Pe = 67n,¥a®/kT, for b/a = 1.001.
Hydrodynamic (¢), Brownian (O) and interparticle force (A) contributions to the
total (o) first normal stress difference are reported. At Pe = 10 a second calculation
(solid diamond) is performed in which the hydrodynamic stress consists of two parts
— the equilibrium contribution and the contribution from the deformation of the
equilibrium microstructure for (r — 2) Pe < 6.
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Figure 3.29: Results for the nondimensional first normal stress difference, N;/n,7,
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the (a) low Peclet behavior and (b) the next correction for Pe < 1. In (b), the
value of Ni/n,¥ at the given Peclet number is subtracted from the low shear limit,
(N1/nsyPe)oPe, for the hydrodynamic (¢), Brownian (O) and interparticle force (A)
contributions. The dashed lines are drawn to guide the eye.
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moments in the calculation of the first normal stress difference, for Pe = 0.01, 0.02,
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Figure 3.31: Results for the scaled first normal stress difference as a function of Peclet
number, Pe = 67n,ya®/kT, using the scaling theory of Brady (1993b). Numerical
results of this work (o) are compared with the Stokesian Dynamics simulations of
Foss et al. (1999) for ¢ = 0.316 (A), ¢ =0.37 (<), ¢ =0.40 (O), ¢ = 0.419 (=),
¢ =0.45 (o), ¢ = 0.47 (+), and & = 0.49 (x).
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Hydrodynamic (¢), Brownian (O) and interparticle force {(A) contributions to the
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154

100':' T T T AR L AL A L R~
- @5@@ g gp@g{e (a)
- gg =
10 F g@gg ,,,,,,,, E
™ ’ . EQ """""""" .
o 5 _
= P ]
c 10°F 8 K ad b0 8AE E
EN % - 0 (Pe) AA AaAQA 3
—’ : AAA :
| AA
10° ¢ a8 E
E A E
i A ]
- A -
10-4 i i Lo+ 1l al posovaaeal e ool R
0.01 0.1 1 10 100
Pe
—— T T T T l”él S e o SR
o 98 ° (b)
< g °
= 55@«—4) (P 5/2) A
ZN ggg A D
A
o g 7 a
a. [ A
~ o I
Q g AAA
= A
E’ A
[q\]
JAN
<
al L IIIlIII--.-I 1 IIIIIlI...-I 1 IIIlIII....I 1 Ll L L Ll
0.1 1 10 100

Pe

Figure 3.33: Results for the nondimensional second normal stress difference, Ny/n,¥,
as a function of Peclet number, Pe = 6nn,%ya®/kT, for b/a = 1.001 are used to show
the (a) low Peclet behavior and (b) the next correction for Pe < 1. In (b), the
value of N2/nsy at the given Peclet number is subtracted from the low shear limit,
(N2/ns% Pe)oPe, for the hydrodynamic (¢), Brownian (O) and interparticle force (A)
contributions. The dashed lines are drawn to guide the eye.
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Figure 3.34: Results for the scaled second normal stress difference as a function of
Peclet number, Pe = 67n,ya®/kT, using the scaling theory of Brady (1993b). Numer-
ical results of this work (o) are compared with the Stokesian Dynamics simulations
of Foss et al. (1999) for ¢ = 0.316 (A), ¢ = 0.37 (), ¢ =0.40 (O), ¢ = 0.419 (=),
¢ =0.45 (o), ¢ = 0.47 (+), and ¢ = 0.49 (x).
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as a function of Peclet number, Pe = 6mn,ya®/kT, using the numerical results for
b/a = 1.001 (o). Since the rod climbing variable is negative for all values of Peclet
number, only negative rod climbing should occur.
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Figure 3.37: Results for the nondimensional osmotic pressure, I1/nkT, as a function of
Peclet number, Pe = 67n,%a®/kT, for b/a = 1.001 are used to show the (a) low Peclet
behavior and (b) the next correction for Pe < 1. In (b), the value of II/nkT at the
given Peclet number is subtracted from its low shear limit for the hydrodynamic (o),
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to guide the eye. -
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Figure 3.38: Results for f/Pe; in the velocity-gradient plane at steady-state for
(a) Pey = 0.1, (b) Pe, =1, (c) Pey =4, and (d) Pey = 10, where [ is the difference
from the equilibrium microstructure and Pe, = 6mnyyab®/kT for b/a = 1.01.
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Figure 3.39: Results for f/Pe; in the velocity-gradient plane at steady-state for
(a) Pey=0.1, (b) Pe, =1, (c) Pey =4, and (d) Pey = 10, where [ is the difference
from the equilibrium microstructure and Pey, = 6nn,yab?/kT for b/a = 1.10.
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Figure 3.40: Results for f/Pe, in the velocity-gradient plane at steady-state for
(a) Pep = 0.1, (b) Pey =1, (¢) Pey =4, and (d) Pe, = 10, where f is the difference
from the equilibrium microstructure and Pe;, = 6mnsyab?®/kT for b/a = 1.20.
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Figure 3.41: Results for f/Pe; in the velocity-gradient plane at steady-state for
(a) Pey = 0.1, (b) Pe, =1, (¢) Pey =4, and (d) Pey = 10, where f is the difference
from the equilibrium microstructure and Pey = 6mn,vab?/kT for b/a = 1.60.
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Figure 3.42: Results for f/Pe, in the velocity—gradient plane at steady-state for
(a) Pey = 0.1, (b) Pe, =1, (c) Pey = 4, and (d) Pe, = 10, where [ is the difference
from the equilibrium microstructure and Pe, = 6mn,yab?/kT for b/a = 2.50.
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Figure 3.43: Results for f/Pe, in the velocity—gradient plane at steady-state for
(a) Pey = 0.1, (b) Pey =1, (¢) Pey =4, and (d) Pep = 10, where f is the difference
from the equilibrium microstructure and Pey = 6mn,vab?/kT for b/a = 5.00.
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Figure 3.45: Results for f/Pe, along the compressional axis as a function of
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Figure 3.47: The O(¢}) contributions to the relative shear, 7,, as a func-
tion of Peclet number, Pe, = 6mn,yab*/kT, for (a) b/a = 1.01 and (b) b/a = 1.1.
Hydrodynamic (¢), Brownian (O) and interparticle force (A) contributions to the
total (o) viscosity are reported.
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Figure 3.48: The O(}) contributions to the relative shear viscosity, 7,, as a func-
tion of Peclet number, Pe, = 6mn,yab?/kT, for (a) b/a =1.2 and (b) b/a = 1.6.
Hydrodynamic (¢), Brownian (O) and interparticle force (A) contributions to the
total (o) viscosity are reported.
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Figure 3.49: The O(¢}) contributions to the relative shear viscosity, n,, as a func-
tion of Peclet number, Pe, = 6mn,yab®/kT, for (a) b/a =2.5 and (b) b/a = 5.0.
Hydrodynamic (¢), Brownian (8) and interparticle force (A) contributions to the
total (o) viscosity are reported.
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Figure 3.52: The O(¢7) contribution to the nondimensional first normal stress differ-
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and (b) b/a = 1.1. Hydrodynamic (¢), Brownian (O) and interparticle force (A) con-
tributions to the total (o) first normal stress difference are reported.
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Figure 3.53: The O(¢}) contribution to the nondimensional first normal stress differ-
ence, Ni/n.%, as a function of Peclet number, Pe, = 6mwn,yab*/kT, for (a) bja = 1.2
and (b) b/a = 1.6. Hydrodynamic (¢), Brownian (O) and interparticle force (A) con-
tributions to the total (o) first normal stress difference are reported.
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Figure 3.54: The O(¢?) contribution to the nondimensional first normal stress differ-
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Figure 3.56: The O(¢?) contribution to the nondimensional second normal stress
difference, N;/ns¥, as a function of Peclet number, Pe, = 6mn,yab®/kT, for
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force (/\) contributions to the total (o) second normal stress difference are reported.
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Figure 3.57: The O(¢?#) contribution to the nondimensional second normal stress dif-
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and (b) b/a = 1.6. Hydrodynamic (¢), Brownian (O) and interparticle force (A) con-
tributions to the total (o) second normal stress difference are reported.
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Figure 3.58: Effect of b/a on the O(¢?Pe;) Brownian (O), hydrodynamic (¢), and
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Figure 3.59: The O(¢}) contribution to the nondimensional second normal stress dif-
ference, Ny /n,%, as a function of Peclet number, Pe, = 6mn,7¥ab®*/kT, for (a) b/a = 2.5
and (b) b/a = 5.0. Hydrodynamic (¢), Brownian (O) and interparticle force (A) con-
tributions to the total (o) second normal stress difference are reported.
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Figure 3.60: The O(¢f) contribution to the nondimensional osmotic pressure,
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(b) b/a = 1.1. Hydrodynamic (¢), Brownian (O) and interparticle force (A) contri-
butions to the total (c) osmotic pressure are reported.
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Figure 3.61: The O(¢f) contribution to the nondimensional osmotic pressure,
/nkT, as a function of Peclet number, Pe, = 67n,7ab?/kT, for (a) b/a = 1.2 and
(b) b/a = 1.6. Hydrodynamic (o), Brownian (O) and interparticle force (A) contri-
butions to the total (o) osmotic pressure are reported.
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Figure 3.62: The O(¢}) contribution to the nondimensional osmotic pressure,
II/nkT, as a function of Peclet number, Pe, = 6mn,3ab®/kT, for (a) b/a = 2.5 and
(b) b/a = 5.0. Hydrodynamic (o), Brownian (O) and interparticle force (A) contri-
butions to the total (o) osmotic pressure are reported.



184

N 1A // 1A
comﬁi'as\sional exte»sénal
a_xis\\ /axis
\ y y
el
. .
/5:‘ RN 3 0
7 ™
Iy ™,
,/" N
/ N\
/ .
/_// \\\
/ b
7 "

Figure 3.63: Results for f/Pe at steady-state and Pe = 10 for (a) planar exten-
sional flow ((E)=4,d3+ d36;) in the 1-3 plane and (b) biaxial extensional flow
((E)=68161 + 8285 — 20503) in the 1-3 plane. f is the difference from the equilib-
rium microstructure, Pe = 67n,éa®/kT, hydrodynamic interactions are neglected and
bla = 1.



185

Chapter 4
Emulsions at the
critical capillary number in

steady simple shear flow
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4.1 Introduction

Emulsions and polymer blends are processed as systems that contain droplets of
one fluid dispersed in a second fluid. Emulsions are commonly uséd in the food
(e.g., ice cream, margarine, mayonnaise), pharmaceutical (e.g., chemotherapy, blood
substitutes), and cosmetic (e.g., creams, sunscreen) industries, while polymer blends
are often used as external structures for automobiles and appliances [Chappat (1994);
Stone (1994)]. During processing, an emulsion is subjected to different flow fields
which determine the size, shape and orientation of the droplets; thus, it is important
to predict how an imposed flow field affects the emulsion microstructure and the
resulting bulk rheological properties.

For a single droplet there is a balance between the viscous force, which tends to
deform the droplet, and the interfacial tension force, which tends to restore a droplet
to a spherical shape. This balance of forces is described by the capillary number,
Ca = ns¥ya/o, where n; is the suspending fluid viscosity, 4 is a characteristic shear
rate, a is the radius of the undeformed droplet, and o is the interfacial tension. When
Ca < 1, the droplet remains nearly spherical, but as the capillary number increases,
the droplet deforms until it bursts at the critical capillary number, Ca.. The value
of the critical capillary number is dependent on the type of flow and the viscosity
ratio, A = n4/n,, where 7y is the viscosity of the droplet fluid [Rallison (1984); Stone
(1994), Janssen, Boon & Agteroff (1994)].

The theory of small deformations of the surface of a single droplet is well-developed
[Taylor (1932); Chaffey & Brenner (1967); Schowalter, Chaffey & Brenner (1968); Cox
(1969); Frankel & Acrivos (1970); Barthes-Biesel & Acrivos (1973a, 1973b); Rallison
(1980)]. A small deformation parameter, ¢, is used in all theories, where ¢ < 1 is used
in a regular perturbation expansion for the deformation of the surface from a sphere
when (i) Ca < 1 and A ~ O(1) or (ii) A > 1 and Ca ~ O(1). The theory of Barthes-
Biesel & Acrivos (1973a, 1973b) predicts the O(e?) deformation of the surface and
the O(e*n,y¢) contribution to the bulk stress for a transient, general linear flow. In

addition to deformation, the theory also predicts droplet breakup in simple shear flow,
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but only for emulsions with a viscosity ratio in the range 0.1 < A < 3.6. The theory
fails for small values of the viscosity ratio since large deformations are required to
induce droplet burst, and large deformation theory [Hinch & Acrivos (1980)] must be
used. Droplet breakup does not occur when A 3> 1 in simple shear flow since vorticity
dominatés, and the deformed droplet rotates instead of exténding and bursting. This
theory of small deformations has been extended to calculate the shear viscosity of
two, interacting, nearly spherical droplets [Zinchenko (1984)] and the bulk rheology
of mildly deformed droplets in a non-dilute emulsion by using a cell method [Choi &
Schowalter (1975)].

A number of experiments have been performed to study the effect of flow type,
capillary number and viscosity ratio on the deformation and burst of a single droplet
[Taylor (1934); Rumscheidt & Mason (1961); Torza, Cox & Mason (1972); Grace
(1982); de Bruijn (1989); Varanasi, Ryan & Stroeve (1994); Janssen, Boon & Agterof
(1994)]. These experiments are found to be in excellent agreement with the small
deformation theory over its range of validity. In addition to droplet shape, these
experiments showed the effect of the viscosity ratio on the critical capillary number
and the existence of a critical value of the viscosity ratio for simple shear flow, A. = 4,
above which droplet breakup no longer occurs.

In addition to experiments, numerical simulations have been performed to test
the small deformation theory as well as study emulsions for which the theory is not
applicable (e.g., multiple droplets; bounded flows; Ca, A ~ O(1)) [Rallison (1981);
Pozrikidis (1993); Zhou & Pozrikidis (1993); Kennedy, Pozrikidis & Skalak (1994);
Li, Zhou & Pozrikidis (1995); Li, Charles & Pozrikidis (1996); Loewenberg & Hinch
(1996); Zinchenko, Rother & Davis (1997)]. The deformation of a single droplet
was studied as a function of viscosity ratio and capillary number and found to be in
excellent agreement with the small deformation theory. Even though droplet breakup
did not occur in these simulations, the point of droplet breakup could be detected.
One criterion is that droplet breakup occurs at the point when the steady shear
stress curve reaches a maximum with increasing imposed shear [Loewenberg & Hinch

(1996)]. This criterion is used to analyze results of numerical simulations at the
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critical capillary number.

Despite the progress in theory and numerical simulations, the rheology and mi-
crostructure of a concentrated emulsion that includes droplet breakup remains a dif-
ficult problem, but important results can still be obtained. When an emulsion is at
the critical capillary number, the stress from the interface is linear in shear rate for
A =1 and ¢ = 0.50, as shown by Doi & Ohta (1991) in their scaling argument. This
result for emulsions is important since an unstabilized emulsion in flow is always at
the critical capillary number. When ‘subjected to an external flow, an unstabilized
emulsion exhibits both droplet breakup and coalescence. The size, shape and orienta-
tion of the dispersed droplets reach steady state only when there is a balance between
breakup and coalescence, resulting in a droplet size that is inversely proportional to
the imposed rate, a ~ O(1/%). Since a ~ O(1/%), the capillary number of the emul-
sion, Ca = n,%ya/o, does not change and is always at the critical capillary number,
Ca..

Based simply on dimensional analysis, the Doi-Ohta scaling should be valid for
arbitrary values of volume fraction and viscosity ratio when an emulsion 1s at the
critical capillary number. As a test of this result, a number of experiments have
been performed at different values of A and ¢. Takahashi et al. (1994a, 1994b)
experimentally showed the validity of the Doi-Ohta scaling for the case of A = 1 for a
range of volume ffactions, including ¢ = 0.50. Vinckier et al. (1996a, 1996b) studied
a range of viscosity ratios (A = 0.15,0.44,0.80,1.2,2.3) over all volume fractions,
while Kitade et al. (1997) studied a few viscosity ratios (A = 0.155,0.826) at 10wt%
dispersed fluid.

The purpose of this work is to present a scaling argument for the volume-fraction
dependenée of the stress of an emulsion at the critical capillary number and provide
experimental evidence to confirm the scaling argument for the viscosity and first
normal stress difference of an emulsion of two Newtonian fluids in simple shear flow.
Data from this and other works are combined to construct master curves for the scaled
viscosity and first normal stress difference which are only functions of the viscosity

ratio, A, at the critical cdpillary number. Quantitative agreement with the master
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viscosity curve and qualitative agreement with the master curve for first normal stress

difference are obtained simply by using small deformation theory in simple shear flow.

4.2 Theory

The bulk stress, X, of a suspension of force-free droplets in an incompressible, New-

tonian fluid can be written as [Batchelor (1970)],
S = —pl+2p,E + =F, (4.1)

where E is the bulk rate-of-strain tensor and XF is the particle contribution to the
stress.

For a dilute emulsion containing non-Brownian droplets at low particle Reynolds
number with incompressible, Newtonian dispersed and suspending fluids having con-

stant surface tension, the particle stress takes the form,

=P 3 ¢ (
Ns7y 4r Ca

1 3
nn — §I) dA+¢(A=1) ym / (un + nu) dA, (4.2)

where the integrals are taken over the surface of the droplet, n is the outward normal
to the surface and u is the velocity of a point on the surface, nondimensionalized by
a?. Fquation (4.2) can-be re-written in more compact notation,

»Ff 9

=2 Q(6:1.Ca) £ 6(A =) P (9,1, Ca). (43)

where Q is the anisotropy tensor,

3 1
Q= E/ (nn _ §1) dA, (4.4)
and P is
3
= Z;/(un + nu) dA. (4.5)

The anisotropy tensor is only a function of the droplet shape and orientation and is
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a measure of droplet deformation relative to a sphere with Q = 0 for a sphere. P is

proportional to the average rate-of-strain tensor within the droplet since

/ SBdV =/ (un + nu) dA (4.6)
JVp Ag

is a step in the derivation of equation (4.2), where V4 is the volume of the droplet

and Ap is the surface of the droplet. To obtain this result, the definition of E,

E=_(Vu+(Vu)), (4.7)

DO | =

is used with the divergence theorem, where ! denotes the transpose. Volume-fraction
dependence is included for both Q and P in equation (4.3) since the bulk stress of
a concentrated emulsion can be calculated using the average shape and orientation
of only a single droplet [Loewenberg & Hinch (1996)]. Since the average shape and
orientation of a droplet can be affected by the presence of other droplets, Q and P
can be affected by changes in volume fraction.

In this work we are interested only in the case when the droplets are at the critical
capillary number, Ca,,

)L b

=% Q) Ca. (A - .
o Cac(¢,/\)Q(¢’ ;Cac(9,A)) + (A =1)P (0,7 Cac (e, 1)), (4.8)

and the particle stress is linear in shear rate for any value of ¢ and A since the right-
hand side of equation (4.8) is independent of rate, as predicted by the scaling of Doi
& Ohta (1991). Since the anisotropy tensor is independent of shear rate, the shape
and orientation of the droplets are self-similar with respect to changes in the external
flow as lohg as the emulsion is at the critical capillary number.

There are two key requirements for the scaling behavior of the volume-fraction
dependence of the particle stress. The first assumption is that the critical capillary

number is only a weak function of volume fraction for a given flow,

Cac (b, A) ~ Cae (V). (4.9)
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This assumption is validated by the data of Mason & Bibette (1997) who show that
the droplet radius is a weak function of volume fraction up to ¢ ~ 0.50 when emulsions
of different volume fractions are sheared at the same rate for a given value of A.
To complete the volume-fraction scaling of the particle stress, it is further assumed
that the aroplef shape and orientation are weak functions of volume fraction at the

critical capillary number. If this assumption is true,
Q (&, X Cac (V) = Q (M Cac(N), (4.10)
since the anisotropy tensor is only a function of shape and orientation. Furthermore,
P (¢, X Cac(A) = P (X Cac (X)), (4.11)

since the flow field inside the droplet is unchanged if the droplet shape and orientation
as well as the external flow field are unchanged. Obviously, the assumption about
droplet shape and orientation is valid for dilute emulsions since the droplets don’t
interact. For concentrations near maximum packing, the scaling will fail, but it is
expected that the scaling should be valid over a wide range of volume fractions since
the lubrication force between two droplets is quite weak [Davis, Schonberg & Rallison
(1989)].

Both of these assumptions are validated by the numerical results of Loewenberg &
Hinch (1996). In their simulations, the shear stress shows a maximum with increasing
capillary number, and the capillary number at which the maximum stress occurs is
taken as the critical capillary number, as suggested by Loewenberg & Hinch (1996).
For the case of A = 1, for which data is reported at volume fractions of ¢=0.00, 0.10,
0.20, and 0.30, the critical capillary number is a weak function of volume fraction. In
addition, the Taylor deformation parameter, a measure of the droplet shape, and the
orientation angle are also weak functions of volume fraction; thus, Q and P are weak

functions of volume fraction.

The main point of this scaling argument is that droplet shape and orientation
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are self-similar with respect to changes in external flow [Doi & Ohta (1991)] and
changes in volume fraction when a dilute to moderately-concentrated emulsion is at
the critical capillary number. Using the assumptions that Q, P, and Ca, are all weak
functions of volume fraction, the scaled particle stress, £*, is determined by simply

eliminating volume fraction from the right-hand side of equation (4.8),

LBP QN CacN) L, . |
¥ =TT ey O 1P (X Cac (X)), (4.12)

where the scaled particle stress is only a function of the viscosity ratio, A. Note that
equation (4.12) is independent of the flow type since there has been no assumption
regarding the type of flow, such as shear, planar extension, uniaxial extension. It is
only assumed that the flow is linear and that the emulsion is at the critical capillary
number for the given flow. The values for Q, P and Ca. will certainly not be the
same for both shear and planar extensional flows, but the values of Q, P and Ca,
should be weak functions of volume fraction for a given type of flow.

Using the equations for the bulk stress and the scaled particle stress, equations
(4.1) and (4.12), scaled rheological properties can be found that are only functions of

the viscosity ratio, A, at the critical capillary number in simple shear flow,

r — 1
)= (4.13a)
Ny
N (h) = —L1, 4.13b
N,
N> (D)= —— 4.13
2 ( ) T]s’.)Kﬁ’ ( C)

where 1, = 1n7/75 is the relative shear viscosity, 7 is the shear viscosity, N; is the first
normal stress difference, and N, is the second normal stress difference. Master curves

for only n” (A) and Ny ()) are constructed in this work.
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4.3 Experiment

4.3.1 Materials

Only.fwo fluids were used: a polymerized castor oil (Pale‘1000) from Céschem, Inc.,
and a 10,000 (':St polydimethylsiloxane (PDMS) from Nye Lubricants. These two
fluids were chosen because they (i) are immiscible (¢ = 6.0 dyn/cm at 22°C [Koh &
Leal (1990)]), (ii) have similar densities (p =0.974 and 1.018 g/cm? for PDMS and
Pale 1000, respectively), (iii) have vastly different viscosity-temperature coefficients,
(iv) have nearly equal coefficients of expansion and (v) are quite viscous.

Since the two fluids have all of these properties, one sample can be made to study
a single volume fraction and a wide range of values of A. The value of A is varied by
simply changing the temperature of the emulsion, but the volume fraction remains
constant since the coefficients of expansion of the two fluids are nearly the same. A
total of seven weight fractions were studied: 10, 15, 20, 25, 30, 35, and 40 weight
percent Pale 1000 in PDMS.

4.3.2 Experimental techniques

All measurements were completed using a constant stress rheometer (SR-5000; Rheo-
metrics, Inc.) equipped with the normal force option and Peltier environmental sys-
tem. A Water circulator (F3; Haake) was connected to the Peltier to remove heat
from the system. A 25-mm diameter cone (cone angle=0.1 rad) was used. There are
isolated cases where different geometries or different options are used on the SR-5000,
but these cases are clearly identified.

The normal force option uses a piezoelectric transducer capable of measuring
force to the nearest milligram, but the transducer exhibits signal drift during mea-
‘surements. This signal drift was no more than 0.2-g during an experiment of 150-sec,
independent of the applied force between 0.0-g and 250-g. Since the normal force
was automatically reset to zero by the rheometer software and the emulsion droplets

relaxed to an equilibrium structure between successive stresses, signal drift is an iso-
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lated effect for a single stress. Based on the magnitude of signal drift during a single
experiment, 2.0-g is used as the minimum measurable normal force for this work.

Steady tests were completed on the pure fluids as a function of stress and tem-
perature using a 25-mm cone. (See Figure 4.1 for typical data.) There was less than
1.5% change in the steady viscosity of either fluid over a stress range of 50-500 Pa
at a given temperature for all temperatures between 20.0-50.0°C; hence, the viscosi-
ties of the fluids are essentially independent of applied stress at a given temperature
throughout the experiments. The measured normal force in these experiments was
always smaller than the lower limit of the rheometer.

In an attempt to approximate the first normal stress difference coefficient, ¢; =
Ny /4%, for the two pure fluids, a 40-mm diameter cone (cone angle=0.04-rad) was
used with a higher range of stresses, 500-2900 Pa, at 20.0°C. Note that the stresses
used here are out of the range of stresses used for tests on emulsions in this work, but
to obtain a measurable normal force, high stresses were required. Results show that
Y1 ~ 0.00840.001 and 0.0340.02 Pa sec? for PDMS and Pale 1000, respectively; thus,
the two fluids are considered to be Newtonian fluids throughout the experiments.

The steady viscosities of the pure fluids were measured at a stress of 100 Pa as
a function of temperature in increments of 5.0°C from 20.0-50.0°C and are listed in
Table 4.1. Ten different experiments were completed by a single person for each fluid.
The ratio of the standard deviation to the average was less than 4% for viscosity
during multiple experiments on a single fluid for both fluids at all temperatures. The
ratio of the standard deviation to the average for viscosity during a single experiment
at one stress was less than 0.1%.

For all tests on emulsions, Pale 1000 was the droplet phase and PDMS was the
suspending fluid; therefore, the viscosity ratio is uniquely defined and shown in Figure
4.2 as a function of temperature. To insure that Pale 1000 remained the droplet phase,
éll experiments were completed below the phase inversion volume fraction. Paul &
Barlow (1980) empirically found that (ni/n2)(¢2/¢1) = 1 approximates the point
of phase inversion of two immiscible polymers. In addition to the phase inversion

point, there is a region around the phase inversion point in which the phases are



195
co-continuous [Utracki (1991)]. This co-continuous region is also avoided.

The (A, ¢)-parameter space available for study is shown in Figure 4.3. There are
- four separate curves that describe the boundaries of this region. An upper bound of
A = 4 is used since emulsions in simple shear flow do not exhibit droplet breakup if
A >4 [Grace (1982); de Bruijn (1989); Janssen, Boon & Agterof (1994); Varanasi,
Ryan & Stroeve (1994)]. The phase inversion curve of Paul & Barlow (1980) is written
in a different form, ¢p; = A/(14 A), where ¢p; is the phase inversion volume fraction.
Instead of using ¢p;, an upper bound of ¢p; — 0.1 is used to avoid the coexistence
regime. A lower bound of ¢ = 0.09 is used so that the number density of droplets
is large enough to provide a measurable particle stress. Finally, an upper bound of
@ = 0.39 is used so that the emulsion is well within the volume fraction range for
which the critical capillary number is a weak function of volume fraction [Mason &
Bibette (1997)]. All experiments in this study are denoted by a solid circle on Figure
4.3.

The following test protocol was used for every experiment. The emulsion was
mixed by hand with a spatula until a uniform, milky color was obtained. Improper
mixing was easily detected since Pale 1000 is amber in color while PDMS is clear.
The sample was then placed in a vacuum oven at room temperature and the vent was
toggled on/off until the sample stopped frothing. The sample was kept in the oven
at 30-mm Hg vacuum for an additional ten minutes to eliminate any remaining air
bubbles.

A series of 13 stresses between 50 and 435 Pa, inclusive, were applied in order of
increasing stress for 150 seconds each using a 25-mm cone and Peltier. The ratio of
T;4+1/7: was kept at a constant 1.2 for consecutive values of stress so that the system
was only slightly above the critical capillary number at the beginning of a new stress,
prior to droplet breakup. A value of 1.2 was chosen so that a single isolated droplet
.wouldi burst into two large and three satellite droplets [Rallison (1981); Rallison
(1984); Stone (1994)]. A time of 150 seconds was chosen based on (i) the results
of Takahashi et al. '(1994a) that 200 strains was sufficient to reach steady state for

a similar system when ".)’j‘/ ¥ = 2.0 and (ii) the smallest shear rate of the study at
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20.0°C and 50 Pa for the 40.0wt% sample. Both the rotation rate and normal force
were measured as a function of time for each experiment. After the stress sequence
was completed, the sample was removed from the rheometer and a new sample was
loaded for each experiment. As for the pure fluids, a series of tests was completed
to determine sdlnpling effects on rheological properties. The ratio of the standard
deviation to the average was 4% and 6% for viscosity and first normal stress difference,
respectively, when one investigator runs tests on multiple samples of the same volume

fraction.

4.4 Results

Figure 4.4 shows an example of steady viscosity, 1, and first normal stress difference,
Ny, as a function of applied stress, 7, for an emulsion with 30.0wt% dispersed phase.
At low stresses the viscosity decreases with increasing stress, but the viscosity is
approximately constant at intermediate stresses. The effect at low stresses is more
pronounced for higher values of the viscosity ratio and higher volume fractions. At
high stresses, drastic shear thinning is evident and this effect is mostly eliminated from
this study by choosing an upper limit for the applied stress of 445 Pa. The onstart of
shear thinning is evident in Figure 4.4 for A = 0.800 at the highest stresses reported.
Shear thinning at high stresses is more pronounced for higher volume fractions and
smaller values of the viscosity ratio. The first normal stress difference increases with
increasing stress and is approximately linear in stress, as predicted by the Doi-Ohta
scaling. Complete results of viscosity and first normal stress difference as a function
of stress are listed in Tables 4.2-4.23.

Doi & Ohta (1991) predict that the shear viscosity is independent of the imposed
rate (or stress, in this case), yet there are two regions of stress in which the viscosity
shows shear thinning behavior. FEach of these regions of stress are studied more
closely to understand why shear thinning occurs. It is shown that shear thinning at
low stresses is caused by a combination of geometry effects and incomplete coalescence

at small volume fractions. Shear thinning at high stresses is caused by edge fracture of
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the sample. These two regions of stress are eliminated when analyzing the rheological
data since the change in macroscopic properties are not due solely to changes in the

droplet size, shape and orientation.

4.4.1 Low stress effects

At low stresses, the cone angle affects the value of the apparent viscosity, as shown in
Figure 4.5, where the viscosity at low stresses increases with decreasing cone angle.
If the geometry has no effect, differences in viscosity should be simply due to sample-
to-sample variation. It’s obvious that sample-to-sample variation cannot account for
the large difference in apparent viscosities at low stresses for the three cone angles
used. These experiments were performed with 25-mm diameter, aluminum, snap-in
cones of varying cone angles (0.10, 0.07, 0.04-radians). These snap-in cones were
attached to the upper disposable tool fixture that is typically used as a standard
tool on Rheometrics constant rate rheometers instead of constant stress rheometers.
The Peltier was replaced with the electrically heated plate option to accommodate the
extra length of the upper tool. All experiments were carried out at room temperature.

To further confirm the geometry effect at low stresses, a simple analysis is com-
pleted to determine the stress above which geometry effects are negligible. For flows
in which two parallel walls bound the fluid and the walls are separated by a distance
H, H/2a > 10 is a typical criterion used to place a bound on the maximum value
of the particle radius for which wall effects are negligible. For the case of the cone-
and-plate geometry, H is a function of the radius from the center of the tool. Note
that there is a minimum value of H = 53-um since the cone is truncated; thus, an
emulsion with droplets having a < 2.6-um shows no geometry effects. In most cases,
the droplet size is much larger than 2.6-um, and a more detailed analysis is required.

Since it’s improbable that the entire measuring surface of the tool encloses a region
of fluid for which wall effects are negligible, a compromise must be made. Geometry
effects are assumed to be negligible if 90% of the measuring surfaces enclose a volume

of fluid for which H/2a¢ > 10. Based on this assumption, we find a criterion of
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Umar = 30-um to neglect wall effects in a cone-and-plate geometry with a 25-mm
diameter cone having a cone a,ngle of 0.10-radians. Based on the value of the maximum
allowable droplet radius, the minimum stress required to obtain this radius can be

calculated using the critical capillary number,

g

Tmin ~ Cac

~ 200Ca., (4.14)

amax

where 7,,;, has units of Pascals.
The equation of de Bruijn (1989), a curve fit to experimental data, is used to
calculate the value of the critical capillary number, C'a., for a given value of the

viscosity ratio, A,

log,o (Cac) = a+ b(logyy (V) + ¢ (logyo (M) + Togia (V) —dlogm 0’ (4.15)
where

a = —0.506, (4.16a)

b = —0.0994, (4.16b)

c=0.124, (4.16¢)

d=—0.115, (4.16d)

Ao = 4.08. (4.16e)

Equation (4.15) is a curve fit to experimental data for Newtonian droplets in a New-
tonian suspending fluid in simple shear flow. For the calculations of 7., it is also
assumed that surface tension does not vary with temperature, which isn’t too poor of
an assumption considering that the maximum variation of surface tension with tem-
perature for immiscible homopolymer blends is -0.03 mN/m/K [Koberstein (1990)].
Table 4.24 includes the minimum stress required to eliminate geometry effects as a
function of viscosity ratio for an emulsion with 30.0wt% dispersed fluid. The value

of Tpin increases quickly as A — 4 but remains relatively constant for A < 1, which
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agrees with the results in Figure 4.4. The values for 7,,;, are used when analyzing
the rheologickal data to eliminate wall effects.

To confirm the required value of @4z, the maximum allowable droplet size, mi-
croscbpic images of emulsions were taken after various stresses for 0.15wt% dispersed
phase a,t' a telﬁperature of 25.0°C, as shown in Figure 46 The usual test protocol
was used for these experiments with one exception—the test was stopped after reach-
ing steady-state at a certain stress. Once the test was stopped, the upper tool was
slowly raised to 2.0-mm and a glass pipette was used to take a sample for microscopy.
Samples were viewed using a Zeiss microscope (47 16 40-9901) with a 7:1/NA 0.20
objective lens. The sample was backlit by white light without the use of diffusers or
polarizers. Photographic images were taken using a Minolta SRT101 camera with Ko-
dak 400-speed, color film and a Zeiss camera tube (47 30 23-9900). At stresses higher
than the minimum stress, T, = 169-Pa, for A = 2.27, the droplets are smaller than
dpmaz, While at stresses lower that 169-Pa, the droplet size is quite large, as expected,
reaching nearly 150-um and geometry effects will be measurable.

In addition to large droplets at low stresses, the droplet size is very polydisperse.
The droplet size has not reached a steady value because coalescence has not occurred
at a fast enough rate during the time scale of the experiment. This slow coalescence
also causes an increase in the viscosity compared to the expected value since the
smaller droplets do not deform in the flow. By the time the minimum stress is reached
in the stress sequence, there is sufficient time for droplets to coalesce and dispersity
of droplet sizes decreases above 7,,. Slow coalescence is only a problem at small
volume fractions since the average distance between droplets is ~ O (aqﬁ—l/ 3). At
large Volume fractions it is expected that the droplets achieve a steady and uniform
size during the time a single stress is applied to the sample and only geometry effects

remain at low stresses.
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4.4.2 High stress effects

At high stresses the steady viscosity shear thins, contrary to the prediction of Doi &
Ohta (1991). To test the region of shear thinniﬁg at high stresses, an experiment was
performed using a 35.0wt% emulsion over an extended range of stresses, 50 to 770-Pa,
while simultaneously acquiring rheology data and visual images of the meniscus at
the outer édge. Steady viscosity results and steady meniscus images are reported in
Figure 4.7. The cone is the white portion of the image with the black dot in the
upper, right corner of each image. The surface of the lower tool, the Peltier, is most
evident in image (b) of Figure 4.7. The Peltier surface can be seen as a horizontal
line approximately 2/5 from the bottom along the left side of the image.

The images of the meniscus were captured using a Sony VHS camcorder (VL-
L50U) with a 12x zoom lens and an additional lens between the sample and the
camcorder’s objective lens to provide greater magnification. The sample was backlit
with white light, bounced off the stainless steel back of the rheometer stage, so that
the meniscus appeared as a silhouette. A soft, diffuse white light was directed at the
tool from behind the camcorder’s objective lens to provide enough light to capture
the image. All ambient light was eliminated. Still shots were captured from VHS
tape using a Sony stereo videocassette recorder (SVO-2000) and a Macintosh Quadra
660AV.

At low stresses, where shear thinning is caused by wall effects, the meniscus does
not change shape from the no-flow surface. At the highest stress used in the standard
protocol, 445-Pa, the meniscus slightly changes shape and the cone is no longer fully
covered with fluid. Incomplete coverage of the cone surface by the sample is more
evident at 770-Pa where the viscosity has decreased to approximately 50% of its value
at intermediate stresses. At stresses higher than 770-Pa, the fluid no longer contacts
the cone, allowing the cone to spin freely.

Since the Peltier has a larger diameter than the cone, it appears from the images
that the Peltier provides a place for fluid to accumulate with little resistance and that

edge fracture, and resulting shear thinning, might be caused by the choice of tools.
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Experiments at room temperature on a 30.0wt% emulsion using a 40-mm diameter
cone (cone angle:0.04-radians) for the upper tool and the 40-mm diameter electrically
heated plate for the lower tool show similar behavior. The sample is expelled from
the tools quite easily and shear thinning, though not as severe, still occurs. Edge

fracture at high stresses, and the resulting shear thinning, is not caused by the use

of tools with different diameters.

4.4.3 Analysis of rheology

The results for viscosity at low and high stresses do not contradict the scaling argu-
ment of Doi & Ohta (1991) since shear thinning occurs in these regions because of
wall effects and edge fracture, respectively. Shear thinning does not occur because of
changes in the size, shape or orientation of the droplets; thus, the Doi-Ohta scaling
cannot be applied to regions of low or high stresses in this study. There is an inter-
mediate region of stresses, T, < 7 < 445-Pa, for which the Doi-Ohta scaling can be
applied and is valid. In the intermediate stress regime, the viscosity is approximately
constant and the first normal stress difference, when measurable, is approximately
linear in applied stress, as predicted by Doi & Ohta (1991). For the case of A = 3.44,
the value for 7,,;, > 445-Pa and no intermediate region exists. Data from the four
highest stresses are used to approximate the rheological behavior for emulsions with
A = 3.44.

Since the Doi-Ohta scaling is valid, a single experiment is characterized by a
constant steady shear viscosity, 1, and a constant nondimensional, first normal stress
difference, N, /n,%, for a given set of values for the viscosity ratio and volume fraction.
Both of these constants are calculated by averaging the data over the intermediate
range of stresses, but the standard deviation calculated during this averaging process

~does not account for sample-to-sample variation. Error bars for n and N; must
account for sample-to-sample variation since different samples are compared. The

proper standard deviations are calculated by

s, = (0.04) 2"/, (4.172)
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sn1 = (0.06) 212Ny, (4.17b)

where s, and sy are the standard deviations for the shear viscosity and first normal
stress difference, respectively, which account for sample-to-sample variation when
only one replication is completed [Bafna (1995)]. In s,, the factor of 0.04n arises
because the sample-to-sample variation of emulsion viscosity is 4% of the average,
as measured during a series of tests using a 35.0wt% emulsion. During these same
tests, the sample-to-sample variation of the first normal stress difference is 6% of the
average, thus accounting for the factor of 0.06/V; in the equation for the standard
deviation of N;. The factor of 2!/ for both s, and sy; comes from the fact that only
a single experiment is performed and that the standard deviation must be extended to
include the 66% confidence interval of the true average and true standard deviation.

Figure 4.8 shows an example of the viscosity and nondimensional, first normal
stress difference as a function of volume fraction for A = 1.55. Averages and standard
deviations are calculated as just described and account for sample-to-sample variation.
Visually, a linear curve fit with respect to volume fraction appears reasonable for both
curves.

Using data like that presented in Figure 4.8, the scaled viscosity and scaled first
normal stress difference can be easily calculated by using a linear curve fit program
[Press et al. (1992)] for all values of the viscosity ratio. When curve fitting viscosity,
both the slope and intercept are left as free parameters. In all cases, the solvent
viscosity is included in the 66% confidence interval of the intercept. For the nondi-
mensional, first normal stress difference, the slope is kept as a free parameter, but
the intercept is set equal to zero since the fluids are Newtonian over the range of
stresses studied. Curve fit results for viscosity and first normal stress difference are
presented in Tables 4.25 and 4.26, respectively, including values of the scaled viscosity
(1), scaled first normal stress difference (N7), the chi-square parameter ( x?), and the

goodness-of-fit parameter, (Q).
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Scaled viscosity

In Table 4.25, the curve fitting results for the scaled viscosity are quite remarkable.
The goodness-of-fit parameter is greater than>0.85 for all values of viscosity ratio,
and a linear fit for viscosity with respect to volume fraction is quite acceptable. The
scaled viscosity, n*, is a valid concept and meaningful property.

The results of the curve fitting procedure are also presented in Figure 4.9, where
scaled viscosity, n*, is plotted as a function of the viscosity ratio, A. Results of this
work are compared to other experimental results [Takahashi et al. (1994a, 1994b);
Vinckier, Mewis & Moldenaers (1996a); Kitade et al. (1997)] and simulation results
[Loewenberg & Hinch (1996)]. Agreement between the different systems is quite
spectacular considering that the data includes some emulsions for which the pure
fluids exhibit non-Newtonian behavior such as shear thinning and/or first normal
stress differences [Takahashi et al. (1994b); Vinckier, Mewis & Moldenaers (1996a);
Kitade et al. (1997)].

Finally, a curve to approximately predict the scaled viscosity as a function of A is
a desirable feature. Based on the results of Loewenberg & Hinch (1996) for A = 1, the
Taylor deformation parameter is less than 0.50 at the critical capillary number for all
volume fractions studied; thus, the small deformation theory may be applicable. We
start with the results of Taylor (1932) for nearly spherical droplets in simple shear

flow,

. (5A+2)
N = ST 1) (4.18)

The results of Taylor (1932) are added to Figure 4.9 and found to be in reasonable
agreement with the experimental and simulation data over the whole range of the

viscosity ratio for which data is available.

Scaled first normal stress difference

Curve fitting results for the scaled first normal stress difference are presented in
Table 4.26, and the results are adequate. The goodness-of-fit parameter is quite

small, @ ~ 0(0.1 — 0.001), for larger values of the viscosity ratio, A > 1.2, but the
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goodness-of-fit parameter is greater than 0.82 for smaller viscosity ratios, A < 1.2.
Despite the low value of the goodness-of-fit parameter, the data for scaled first normal
stress difference is not as poor as it first appears.

First of all, Press et al. (1992) state that investigators may find models acceptable
when the goodness-of-fit parameter is as small as 0.001, the smallest value in this
study. Secondly, we can reject the linear model for the whole range of volume fraction
and, instead, apply the model to a truncated range of volume fraction. If a linear
curve fit is performed for A = 1.55, eliminating 40.0 and 35.0wt% from the original
analysis, the scaled first normal stress difference is 2.76 £0.126 instead of 2.894+0.112.
In addition, the curve fit over the smaller range of volume fraction yields a goodness-
of-fit parameter equal to 0.70 instead of 0.031. By eliminating the two highest volume
fractions, the goodness-of-fit parameter reaches a level for which the linear model is
now perfectly acceptable, but the scaled first normal stress difference barely changes
and is nearly within the 66% confidence interval of its original value. Based on these
two facts, the linear model is accepted as an adequate fit for all values of the viscosity
ratio.

Figure 4.10 shows the results of the curve fitting procedure for the scaled first
normal stress difference, N}, as a function of the viscosity ratio, A. As for viscosity,
results of this work are compared to other experimental results [Takahashi et al.
(1994a, 1994b); Vinckier, Mewis & Moldenaers (1996a); Kitade et al. (1997)] and
simulation results [Loewenberg & Hinch (1996)]. Considering the fact that normal
stress differences are difficult to measure and the wide-range of systems presented,
the agreement between the different systems is excellent.

When including data for the scaled first normal stress difference, Ny, in Figure
4.10, only the contribution from the interface is included. When an emulsion is com-
posed of Newtonian fluids, this is not a problem since the measured first normal stress
difference occurs solely due to the existence of the interface. But when emulsions are
composed of fluids that exhibit measurable first normal stress differences [Takahashi
el al. (1994b); Vinckier, Mewis & Moldenaers (1996a); Kitade et al. (1997)], the

contribution to the measured first normal stress difference from the dispersed and
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suspending fluids must be subtracted to give the extra stress, AN;. The extra stress
is the stress solely due to the existence of the interface and the quantity becomes
important at high rates since N; ~ (%?) for the pure fluids and dominates the con-
tribution from the interface, AN; ~ (4). The extra first normal stress difference is

typically defined [Takahashi et al. (1994b)],
AN (1) = N () = dN1a(9) = (1 — @) Nis (7), (4.19)

where N; 4 and N;; are the first normal stress differences of the dispersed and sus-
pending fluids, respectively, at the shear rate of interest.

Finally, just as for viscosity, it is desirable to find a curve to approximately predict
the scaled first normal stress difference as a function of A. Since small deformation
theory works so well for viscosity, it is used here as well. We start with the first results
predicting normal stress differences caused by a single droplet at small deformations

[Schowalter, Chaffey & Brenner (1968)], evaluated at the critical capillary number,

. (19) +16\°
Ny = e (9 + 6). (4.20)

40 A+1

The result of Schowalter, Chaffey & Brenner (1968) is added to Figure 4.10 and
found to be in reasonable agreement with the experimental and simulation data only
for A ~ 1. By visually inspecting equation (4.20), we see that it predicts aphysical
behavior as A — 4. Equation (4.20) predicts that the first normal stress difference
increases with increasing viscosity ratio since the critical capillary number diverges as
A — 4, as seen in equation (4.13). But as the viscosity ratio increases, the droplet is
less deformed and should result in a smaller value for the first normal stress difference.
This idea is in agreement with experiments since the first normal stress difference of
an emulsion at A & 1 is much easier to measure than the first normal stress difference
of hard spheres.

In hopes of correcting the aphysical nature of the predictions of Schowalter, Chaf-

fey & Brenner (1968), the results of Barthes-Biesel & Acrivos (1973a, 1973b) are
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analyzed. Barthes-Biesel & Acrivos (1973a, 1973b) predict the O(Ca®n,¥¢) contri-
bution to the bulk stress for Ca < 1. The new terms in the bulk stress predict a
shear thinning viscosity in simple shear flow, but the new terms do net contribute to
normal stresses.

There is oniy one remaining study that predicts a different dependence of the
first normal stress difference on the capillary number for small deformations [Choi &
Schowalter (1975)]. Choi & Schowalter use a deformable droplet in a cell model in

simple shear flow and find

- _2(Ca ) (416 () 500+ o )]
N1_5(1+Z2) (4(/\+1) (”"54@“) +0(¢ ))) (4.21a)

7 _ (192 +16) (2 +3) 5 (19X + 16) i,
SETICERY Ca(1+¢4(/\+1)(2>.+3)+O(@/>>'(4-21b)

Since we are only interested in the dilute behavior of the emulsion at the critical

capillary number, take the ¢ < 1 limit of both equations, set Ca = Ca. and rearrange
to find

. Ca, {192 +16\° 1
M= ( A1 ) 1+ 22 (1.22)
(19X + 16) (2A + 3)
7 = . 4.22b
40(A+1) Ca (4.220)

If Ca. < 1, then Z < 1 and equation (4.20) is recovered. If A — 4, then Ca, > 1,
Z ~0(Ca;), Z>1, and N ~ O(1/Ca.) resulting in a scaled first normal stress
difference that approaches zero as A — 4. The result of Choi & Schowalter (1975) for

¢ < 1 is added to Figure 4.10 and found to be in reasonable qualitative agreement
with the data.
4.5 Conclusions

A scaling argument for the particle stress of an emulsion of two Newtonian fluids in

steady flow at the critical capillary number is presented. It is shown that the scaled
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particle stress can be written as a function that is dependent only on the ratio of the
viscosities of the dispersed and suspending fluids, A = ng/n,.

The steady viscosity and first normal stress difference of an emulsion—polymerized
castor oil dispersed in polydimethylsiloxane—are measured in simple shear flow at
the critical capillary number as a function of the volume ffaction of dispersed phase,
¢ = 0.09 —0.39, and viscosity ratio, A = 0.20 — 3.6. These results confirm the scaling
argument for the particle stress for simple shear flow. Master curves are produced for
the scaled viscosity and first normal stress difference. Small deformation theory of a

single droplet in simple shear flow is used to approximate the master curves.
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Figure 4.1: Steady-state shear viscosity, n, as a function of applied shear stress, 7, for
(a) PDMS and (b) Pale 1000 at T=20.0°C (A), T=30.0°C (o), T=40.0°C (O), and
T=50.0°C (<).
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Figure 4.4: Steady-state results for (a) shear viscosity, n, and (b) first normal stress
difference, N;, as a function of applied stress, 7, for 30.0wt% with A\ = 3.44 (e),

A =227 (0), A =1.55 (¢), A =1.10 (O), and A = 0.800 (A). Error bars are shown
only for A = 3.44.
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Figure 4.6: Microscopic images of droplets in an emulsion of 15.0wt% dispersed fluid
at a temperature of 25.0°C. The stress sequence was started following the usual pro-
tocol and stopped after (a) 50 Pa, (b) 104 Pa, (c) 215 Pa and (d) 445 Pa to take
a sample. Images of 98-um diameter polystyrene beads (Bangs Laboratories, Inc.)
were used to determine the length scale.
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Figure 4.7: Effect of edge fracture on steady shear viscosity. (a) Steady-state shear
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master curve.
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Temp | Ns Nd A
(°C) (Pa sec) (Pa sec)

- 10.0 | 13.51£0.337 120.56 £4.220 | 8.93 £0.394
15.0 | 12.16£0.376 | 65.74 £1.775 5.41 +0.222
20.0 | 10.994:0.429 | 37.82 £+1.059 3.44 £0.165
25.0 9.984-0.389 | 22.69 £0 817 2.27 £0.121
30.0 9.104+0.191 14.14 £0.297 1.55 +0.046
35.0 8.33£0.192 9.15 +0.192 1.10 £0.034
40.0 7.68+0.276 6.15 +0.129 | 0.800+0.0333
45.0 7.114+0.149 4.24 +0.093 | 0.596+0.0181
50.0 6.454+0.219 2.96 £0.115 | 0.4584+0.0237
55.0 5.961+0.232 2.13 +£0.045 | 0.3574+0.0158
60.0 5.544+0.138 1.56 £0.055 | 0.282+0.0122
65.0 5.164+0.160 1.17 £0.036 | 0.2284+0.0099
70.0 | 4.814+0.135 | 0.896+0.0349 | 0.1864-0.0089
75.0 | 4.50+0.112 | 0.694+0.0201 | 0.154+0.0059
80.0 4.2140.093 | 0.547£0.0186 | 0.13040.0053
85.0 3.94+0.114 | 0.435x0.0100 | 0.110-£0.0041
90.0 3.70+£0.100 | 0.352+0.0088 | 0.095+0.0035

Table 4.1: Steady-state viscosity of PDMS (7)) and Pale 1000 () with the viscosity

ratio, A = 14/ns, as a function of temperature.
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Temp: 20.0°C Temp: 25.0°C
Stress Viscosity Ny Viscosity N,
(Pa) (Pa sec) (Pa) |  (Pasec) (Pa)

50.0 | 14.3540.0045 N/M | 13.15+0.0053 N/M
60.0 | 14.3040.0058 N/M | 13.10+£0.0090- N/M
72.0 | 14.234£0.0054 N/M | 13.0440.0061 N/M
86.0 | 14.16+0.0112 N/M | 12.964-0.0029 N/M
104.0 | 14.064+0.0049 N/M | 12.88+0.0015 N/M
125.0 | 13.984+0.0073 N/M | 12.78+0.0039 N/M
150.0 | 13.8840.0042 N/M | 12.68+0.0021 N/M
180.0 | 13.784+0.0045 N/M | 12.57+0.0044 N/M
215.0 | 13.69+0.0056 N/M | 12.45%0.0038 N/M
258.0 | 13.61+£0.0070 N/M | 12.34+0.0042 N/M
310.0 | 13.53£0.0051 N/M | 12.22+0.0062 N/M
372.0 | 13.4440.0054 N/M | 12.1440.0048 N/M
445.0 | 13.38£0.0011 N/M | 12.05+0.0045 82.1£3.39

Table 4.2: Viscosity and first normal stress difference, Ny, as a function of stress for
c=10.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C
Stress Viscosity Ny Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)

50.0 | 11.77+0.0076 N/M 10.5140.0038 N/M
60.0 | 11.73+0.0020 N/M 10.49£0.0028 N/M
72.0 | 11.68+0.0032 N/M 10.46+0.0045 N/M
86.0 | 11.61x£0.0054 N/M 10.424+0.0044 N/M
104.0 | 11.53£0.0048 N/M 10.36+0.0046 N/M
125.0 | 11.4440.0051 N/M 10.27£0.0042 N/M
150.0 | 11.34+0.0042 N/M 10.18+0.0015 N/M
180.0 | 11.22+0.0024 N/M 10.06+0.0025 N/M
215.0 | 11.10+£0.0040 N/M 9.95+£0.0039 N/M
258.0 | 11.00£0.0009 N/M 9.85+0.0021 N/M
310.0 | 10.914+0.0044 N/M 9.79+0.0059 N/M
372.0 | 10.87+0.0025 N/M 9.754£0.0009  83.51+4.06
445.0 | 10.8240.0051 92.1+4.96 | 9.71+0.0022 100.7+4.19

Table 4.3: Viscosity and first normal stress difference, N, as a function of stress for

c=10.0wt% at T=30.0 and 35.0°C. N/M means N; was not measurable.
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Temp: 40.0°C Temp: 45.0°C
Stress Viscosity Ny Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)

50.0 | 9.36%0.0038 N/M 8.59£0.0039 N/M
- 60.0 .| 9.34£0.0022 N/M 8.58£0.0040 N/M
72.0 | 9.30£0.0035 N/M 8.55%0.0036 N/M
86.0 | 9.26+0.0029 N/M 8.50£0.0026 N/M
104.0 | 9.20%0.0033 N/M 8.44+0.0028 N/M
125.0 | 9.13+0.0040 N/M 8.37+0.0011 N/M
150.0 | 9.03%0.0042 N/M 8.27£0.0066 N/M
180.0 | 8.93%0.0010 N/M 8.18+£0.0030 N/M
215.0 | 8.84%£0.0011 N/M 8.12+0.0030 N/M
258.0 | 8.79x0.0050 N/M 8.07+0.0032 N/M
310.0 | 8.75x0.0043 N/M 8.04£0.0029 N/M
372.0 | 8.72£0.0058  90.2+4.15 | 8.00£0.0037  92.3+4.09
445.0 | 8.67£0.0040 110.3+3.78 | 7.94:+0.0039  106.01+3.68

Table 4.4: Viscosity and first normal stress difference, Vi, as a function of stress for
c¢=10.0wt% at T=40.0 and 45.0°C. N/M means N; was not measurable.

Temp: 50.0°C
Stress Viscosity N,
(Pa) (Pa sec) (Pa)

50.0 | 7.84+£0.0057 N/M
60.0 | 7.82+0.0037 N/M

- 72.0 | 7.80%£0.0050 N/M
86.0 | 7.76+0.0028 N/M
104.0 | 7.70+£0.0013 N/M
125.0 | 7.63£0.0047 N/M
150.0 | 7.54+0.0020 N/M
180.0 | 7.46£0.0030 N/M
215.0 | 7.4240.0043 N/M
258.0 | 7.38+0.0043 N/M
310.0 | 7.36%0.0018 N/M
372.0 | 7.31£0.0021  88.443.41
445.0 | 7.2440.0042 112.0£5.78

Table 4.5: Viscosity and first normal stress difference, Ny, as a function of stress for
c=10.0wt% at T=>50.0°C..N/M means N; was not measurable.



Temp: 20.0°C Temp: 25.0°C
Stress Viscosity N, Viscosity Ny
(Pa) (Pa sec) (Pa) *(Pa sec) (Pa).

50.0 | 16.8140.0082 N/M | 14.4040.0048 N/M

- 60.0 | 16.72+£0.0066 N/M | 14.314+0.0032. N/M
72.0 | 16.5840.0078 N/M | 14.194+0.0048 N/M
86.0 | 16.43+0.0075 N/M | 14.0640.0059 N/M
104.0 | 16.244+0.0060 N/M | 13.88+0.0072 N/M
125.0 | 16.04+0.0070 N/M | 13.69+0.0058 N/M
150.0 | 15.83+0.0068 N/M | 13.48+0.0020 N/M
180.0 | 15.6240.0014 N/M | 13.2610.0045 N/M
215.0 | 15.404£0.0072 N/M | 13.05%0.0057 N/M
258.0 | 15.214+0.0060 N/M | 12.84+0.0012 N/M
310.0 | 15.02+0.0009 N/M | 12.68+0.0057 80.8+£2.82
372.0 | 14.85+0.0067 N/M | 12.59£0.0099 105.7+2.19
445.0 | 14.70£0.0071 N/M | 12.544+0.0055 121.7+2.96

Table 4.6: Viscosity and first normal stress difference, Ny, as a function of stress for
c=15.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C
Stress Viscosity N Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)

50.0 | 13.18+£0.0047  N/M | 11.68£0.0035  N/M
60.0 | 13.1140.0063  N/M | 11.6040.0043  N/M
72.0 | 13.004£0.0054  N/M | 11.524£0.0045  N/M
86.0 | 12.880.0091 N/M | 11.4040.0071 N/M
104.0 | 12.724£0.0022  N/M | 11.274£0.0058  N/M
125.0 | 12.54+0.0071 N/M | 11.114£0.0035  N/M
150.0 | 12.33+£0.0056  N/M | 10.91+0.0011 N/M
180.0 | 12.1040.0058  N/M | 10.70+£0.0047  N/M
215.0 | 11.8840.0051  N/M | 10.5540.0015  N/M
258.0 | 11.71£0.0018  N/M = | 10.46+0.0040  N/M
310.0 | 11.6340.0057 92.442.74 | 10.4140.0043  92.242.23
372.0 | 11.5740.0072 111.34£2.26 | 10.34+0.0075 116.04+2.68
445.0 | 11.5040.0017 132.242.85 | 10.2440.0049 138.7:1.86

Table 4.7: Viscosity and first normal stress difference, Ny, as a function of stress for
c=15.0wt% at T=30.0 and 35.0°C. N/M means N; was not measurable.
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Temp: 40.0°C Temp: 45.0°C
Stress Viscosity N, Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 10.35+0.0043 N/M 9.3740.0025 N/M-

- 60.0 .| 10.2840.0054 N/M 9.31£0.0043 N/M
72.0 | 10.2140.0040 N/M 9.244+0.0045 N/M
86.0 | 10.1140.0035 N/M 9.154+0.0032 N/M
104.0 | 9.9840.0022 N/M 9.0240.0061 N/M
125.0 | 9.81£0.0017 N/M 8.8640.0019 N/M
150.0 | 9.61+0.0024 N/M 8.7140.0012 N/M
180.0 | 9.4540.0040 N/M 8.61+0.0032 N/M
215.0 | 9.36x0.0050 N/M 8.5540.0038 N/M
258.0 | 9.30+0.0048  85.842.10 | 8.5140.0041 N/M
310.0 | 9.264+0.0042 102.0+£2.04 | 8.44+0.0039 105.8+2.28
372.0 | 9.184+0.0037  125.7£2.55 | &8.34£0.0029  131.5+3.20
445.0 | 9.0840.0057 155.241.93 | 8.2540.0018 156.9+2.06

Table 4.8: Viscosity and first normal stress difference, Ny, as a function of stress for

c=15.0wt% at T=40.0 and 45.0°C. N/M means N; was not measurable.

Table 4.9: Viscosity and first normal stress difference, N;, as a function of stress for
c=15.0wt% at T=>50.0°C. N/M means N; was not measurable.

Temp: 50.0°C
Stress Viscosity Ny
(Pa) (Pa sec) (Pa)
50.0 | 8.38+0.0044 N/M
60.0 | 8.32+0.0036 N/M
72.0 | 8.24+0.0037 N/M
86.0 | 8.13+0.0031 N/M
104.0 | 8.00+£0.0041 N/M
125.0 | 7.85%0.0028 N/M
150.0 | 7.76%0.0037 N/M
180.0 | 7.71£0.0021 N/M
215.0 | 7.66+0.0032 N/M
258.0 | 7.61+0.0042  82.6+3.04
310.0 | 7.55+0.0031  96.8+4.04
372.0 | 7.4840.0029 131.8+2.98
445.0 | 7.37£0.0041  163.0+2.70
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Temp: 20.0°C Temp: 25.0°C

Stress Viscosity Ny Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 18.90+0.0064 N/M 16.67+0.0075 N/M
60.0. | 18.68+0.0087 N/M 16.48+0.0102 N/M
72.0 18.404-0.0149 N/M 16.244-0.0072 N/M
86.0 18.09£0.0049 N/M 15.974+0.0029 N/M
104.0 | 17.7510.0023 N/M 15.634+0.0072 N/M
125.0 | 17.39+0.0086 N/M 15.304+0.0070 N/M
150.0 | 17.0540.0053 N/M 14.944-0.0027 N/M
180.0 | 16.7340.0079 N/M 14.5940.0077 N/M
215.0 | 16.4340.0076 N/M 14.2740.0063 N/M
258.0 | 16.15+0.0009 N/M 14.034+0.0070 82.1+1.74
310.0 | 15.9140.0040 N/M 13.91+0.0062 106.5+£1.82
372.0 | 15.72£0.0042 93.4+1.88 | 13.84+0.0036 119.94+3.34
445.0 | 15.60+0.0034 113.9£2.88 | 13.78+0.0039 152.3+1.64

Table 4.10: Viscosity and first normal stress difference, Ny, as a function of stress for

¢=20.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C

Stress Viscosity N, Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 14.6140.0049 N/M 12.7540.0085 N/M
60.0 14.444-0.0061 N/M 12.614+0.0035 N/M
72.0 14.234+0.0059 N/M 12.44+0.0067 N/M
86.0 | 13.98+0.0062 N/M 12.2240.0051 N/M
104.0 | 13.68+0.0061 N/M 11.96+0.0059 N/M
125.0 | 13.32+0.0046 N/M 11.6640.0017 N/M
150.0 | 12.9640.0059 N/M 11.334:0.0022 N/M
180.0 | 12.6540.0070 N/M 11.1040.0089 N/M

0 215.0 | 12.4840.0131 N/M 11.004+0.0087 100.84+2.07
258.0 | 12.3940.0092 99.84+1.99 | 10.94+0.0075 108.242.27
310.0 | 12.32+0.0033 119.6+2.53 | 10.884-0.0030 126.24+2.74
372.0 | 12.2540.0037 142.2+1.66 | 10.794+0.0020 152.042.09
445.0 | 12.154£0.0054 171.042.20 | 10.664+0.0064 186.44+2.00

Table 4.11: Viscosity and first normal stress difference, Ny, as a function of stress for

c=20.0wt% at T=30.0 and 35.0°C. N/M means N; was not measurable.
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Temp: 40.0°C Temp: 45.0°C

Stress Viscosity M Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 11.31+0.0063 N/M 10.03+0.0050 N/M
60.0 | 11.17+0.0054 N/M 9.91+0.0029 N/M
72.0 | 11.0140.0040 N/M 9.75+0.0043 N/M
86.0 | 10.83+0.0090 N/M 9.56+0.0075 N/M
104.0 | 10.58+0.0046 N/M 9.30+0.0045 N/M
125.0 | 10.32+0.0047 N/M 9.06+0.0043 N/M
150.0 | 10.074+0.0033 N/M 8.921+0.0033 N/M
180.0 | 9.9440.0062 N/M 8.86+0.0023 N/M
215.0 | 9.93+£0.0045  86.5+£3.37 | 8.814+0.0017  84.2+2.29
258.0 | 9.85+0.0021 102.7£2.12 | 8.75£0.0059 115.2£3.35
310.0 | 9.74+0.0066 124.8+£1.81 | 8.66+0.0013 136.6+3.23
372.0 | 9.62+0.0036  155.442.49 | 8.55+0.0006 166.0+3.29
445.0 | 9.46+0.0049 201.942.79 | 8.41+0.0046 204.142.45

Table 4.12: Viscosity and first normal stress difference, Ny, as a function of stress for

c¢=20.0wt% at T=40.0 and 45.0°C. N/M means N; was not measurable.

Table 4.13: Viscosity and first normal stress difference, NV;, as a function of stress for
¢=20.0wt% at T=50.0°C. N/M means N; was not measurable.

Temp: 50.0°C
Stress Viscosity N,
(Pa) (Pa sec) (Pa)
50.0 | 9.08+0.0045 N/M
60.0 | 8.96%0.0079 N/M
72.0 8.7840.0069 N/M
86.0 8.58+0.0048 N/M
104.0 | 8.33+0.0031 N/M
125.0 | 8.17+0.0037 N/M
150.0 | 8.09+0.0040 N/M
180.0 | 8.04+0.0017 N/M
215.0 | 8.00+0.0033  92.6+3.56
258.0 | 7.934£0.0028 109.1+2.23
310.0 | 7.83+0.0025 130.6+2.56
372.0 | 7.71+0.0010 174.242.17
445.0 | 7.584+0.0010 222.54+1.36
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Temp: 20.0°C Temp: 25.0°C
Stress Viscosity Ny Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 22.46+0.0137 N/M 18.924+0.0075 - N/M~-
60.0 | 22.02+0.0124 N/M 18.61+0.0063 N/M
72.0 | 21.48+0.0076 N/M 18.214+0.0102 N/M
86.0 | 20.88+0.0067 N/M 17.72+£0.0023 N/M
104.0 | 20.23+0.0061 N/M 17.16£0.0084 N/M
125.0 | 19.59+0.0076 N/M 16.56+0.0062 N/M
150.0 | 18.99+0.0069 N/M 15.98+0.0098 N/M
180.0 | 18.4540.0068 N/M 15.55+0.0075 N/M
215.0 | 18.0440.0041 N/M 15.35+£0.0127  92.844.13
258.0 | 17.77+0.0049  89.24+1.69 | 15.27+0.0063 107.843.54
310.0 | 17.6440.0112 106.2+2.42 | 15.17+0.0073 126.7+2.68
372.0 | 17.564+0.0049 126.9+£2.34 | 15.05+0.0056 159.443.25
445.0 | 17.454+0.0053 151.8+2.26 | 14.88+0.0024 194.2+1.81

Table 4.14: Viscosity and first normal stress difference, Ny, as a function of stress for

c¢=25.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C

Stress Viscosity Ny Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 15.83£0.0124 N/M 14.1240.0072 N/M
60.0 | 15.56+0.0087 N/M 13.86+0.0072 N/M
72.0 | 15.2140.0048 N/M 13.5740.0076 N/M
86.0 | 14.81+0.0102 N/M 13.23+0.0093 N/M
104.0 | 14.30+0.0034 N/M 12.78+0.0064 N/M
125.0 | 13.7440.0040 N/M 12.30£0.0037 N/M
150.0 | 13.29+£0.0048 N/M 11.95+0.0070 N/M
180.0 | 13.10£0.0088  91.3+3.32 | 11.82+0.0099  89.5+2.02
215.0 | 13.024£0.0114 106.64+2.70 | 11.75+£0.0043 108.2£2.47
258.0 | 12.96+0.0053 127.7£2.55 | 11.66+0.0057 132.7£1.88
310.0 | 12.87+0.0029 148.2+2.76 | 11.55+0.0064 149.8+3.29
372.0 | 12.76+£0.0051 191.2+3.05 | 11.38+0.0038 185.0+2.15
445.0 | 12.58+0.0083 217.7+2.91 | 11.14+0.0046 232.4+2.48

Table 4.15: Viscosity and first normal stress difference, Ny, as a function of stress for

c=25.0wt% at T=30.0 and 35.0°C. N/M means N; was not measurable.
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Temp: 40.0°C Temp: 45.0°C

Stress Viscosity Ny Viscosity N
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)

1 50.0 | 12.2640.0088 N/M 10.67+0.0033 "N/M

- 60.0 | 12.0240.0064 N/M 10.46+0.0071 N/M
72.0 | 11.75£0.0040 N/M 10.19+0.0059 N/M
86.0 | 11.3940.0027 N/M 9.84+0.0054 N/M
104.0 | 10.95+0.0039 N/M 9.50+0.0055 N/M
125.0 | 10.64+0.0099 N/M 9.35+£0.0027 N/M
150.0 | 10.5240.0050 N/M 9.29+0.0047 N/M
180.0 | 10.47+0.0109 84.54+2.49 | 9.254+0.0035  90.8+2.71
215.0 | 10.40+0.0046 107.9+3.36 | 9.18+0.0052 109.1+1.94
258.0 | 10.30+£0.0025 127.2+2.18 | 9.08+0.0042 130.0+1.85
310.0 | 10.17+£0.0033 157.3+2.55 | 8.93+0.0014 169.6+2.70
372.0 | 9.974+0.0046 198.2+2.92 | 8.75+0.0063 209.6+2.85
445.0 | 9.72+0.0059  248.0+3.72 | 8.50+£0.0044 268.9+2.92

Table 4.16: Viscosity and first normal stress difference, Vi, as a function of stress for

c=25.0wt% at T=40.0 and 45.0°C. N/M means N; was not measurable.

Temp: 20.0°C Temp: 25.0°C
Stress Viscosity Ny Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 26.30+0.0141 N/M 21.74£0.0076 N/M
60.0 | 25.4740.0116 N/M 21.074£0.0074 N/M
72.0 | 24.5140.0078 N/M 20.2840.0066 N/M
86.0 | 23.54+0.0029 N/M 19.44+0.0107 N/M
104.0 | 22.534+0.0122 N/M 18.504+0.0070 N/M
125.0 | 21.62+0.0084 N/M 17.6140.0071 N/M
150.0 | 20.81+0.0092 N/M 16.944+0.0087  80.143.06
180.0 | 20.13+0.0067 N/M 16.64+0.0088  94.0+3.86
215.0 | 19.63£0.0115  92.54+2.42 | 16.5340.0092 113.7+2.76
258.0 | 19.4040.0089 109.7+2.54 | 16.46+£0.0079 137.5+3.34
310.0 | 19.31£0.0140 129.5%4.58 | 16.35+0.0080 162.7+3.31
372.0 | 19.20£0.0060 159.7£3.01 | 16.214+0.0093 188.94+3.58
445.0 | 19.064+0.0077 187.4+£3.79 | 15.9940.0048 236.7+3.08

Table 4.17: Viscosity and first normal stress difference, Ny, as a function of stress for

¢=30.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.
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Temp: 30.0°C Temp: 35.0°C

Stress Viscosity N, Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 18.69+0.0146. N/M 15.51£0.0119 N/M
60.0 | 18.13+0.0052 N/M 15.09+0.0038 N/M
72.0 | 17.4940.0054 N/M 14.60+0.0053 N/M
- 86.0 | 16.754+0.0137 N/M 14.03+0.0069 N/M
104.0 | 15.88+0.0118 N/M 13.29+£0.0084 N/M
125.0 | 15.12+0.0043 N/M 12.65+0.0039 N/M
150.0 | 14.7240.0128  83.5%2.58 | 12.43+£0.0119 91.143.11
180.0 | 14.60£0.0096 102.242.25 | 12.36£0.0109 111.4£1.23
215.0 | 14.51£0.0061 120.543.11 | 12.284+0.0065 121.5£2.30
258.0 | 14.4240.0098 148.243.29 | 12.2040.0044 152.9%+2.25
310.0 | 14.2840.0115 167.743.29 | 12.064+0.0108 188.04+2.75
372.0 | 14.094+0.0122 210.6+£3.49 | 11.86+0.0047 223.6+1.91
445.0 | 13.814+0.0059 255.1+3.27 | 11.58+0.0030 280.14+2.37

Table 4.18: Viscosity and first normal stress difference, Ny, as a function of stress for

c¢=30.0wt% at T=30.0 and 35.0°C. N/M means N; was not measurable.

Table 4.19: Viscosity and first normal stress difference, Ny, as a function of stress for
c=30.0wt% at T=40.0°C. N/M means N; was not measurable.

Temp: 40.0°C
Stress Viscosity N
(Pa) (Pa sec) (Pa)
50.0 | 13.734+0.0099 N/M
60.0 13.334+0.0052 N/M
72.0 12.8440.0077 N/M
86.0 12.2540.0056 N/M
104.0 | 11.5940.0065 N/M
125.0 | 11.31£0.0119 N/M
150.0 | 11.23+0.0043 88.5%1.57
180.0 | 11.164+0.0065 103.3£2.26
215.0 | 11.08+0.0050 121.842.29
258.0 | 10.94+£0.0064 152.3+3.13
310.0 | 10.734+0.0080 191.942.01
372.0 | 10.4440.0043 243.5+1.90
445.0 | 10.03£0.0052 306.2+2.28




Temp: 20.0°C Temp: 25.0°C
Stress Viscosity N Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 30.39+0.0128 N/M 24.62+0.0311 N/M
- 60.0 | 29.074+0.0128 N/M 23.60+0.0176 N/M
72.0 | 27.6240.0071  N/M | 22.45+0.0103  N/M
86.0 | 26.21£0.0131 N/M 21.284+0.0121 N/M
104.0 | 24.74+0.0163 N/M 19.97+0.0093 N/M
125.0 | 23.38+0.0131 N/M 18.78+0.0120 N/M
150.0 | 22.284£0.0024  80.6+2.70 | 18.14+0.0115 93.1+2.72
180.0 | 21.5840.0104 102.0+1.86 | 17.97+0.0125 118.3+2.38
215.0 | 21.36+0.0221 117.6+1.96 | 17.88+0.0075 132.34+3.49
258.0 | 21.26+0.0182 138.74+2.19 | 17.74+0.0088 156.5+1.92
310.0 | 21.11+£0.0148 169.1+1.79 | 17.56+0.0121 187.0+2.59
372.0 | 20.92+0.0122 196.84+1.74 | 17.29+0.0126 227.4+3.02
445.0 | 20.64+0.0060 245.843.20 | 16.91+0.0020 277.84+2.62

Table 4.20: Viscosity and first normal stress difference, V;, as a function of stress for

c=35.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C

Stress Viscosity N, Viscosity Ny
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 20.2940.0124 N/M 17.034+0.0102 N/M
60.0 | 19.57%+0.0113 N/M 16.4040.0065 N/M
72.0 | 18.734+0.0125 N/M 15.65+0.0029 N/M
86.0 | 17.75+0.0030 N/M 14.74+0.0079 N/M
104.0 | 16.68+0.0104 N/M 13.71£0.0076 N/M
125.0 | 15.63+0.0110 89.6+2.70 | 13.30+0.0091 87.8+2.65
150.0 | 15.33+£0.0126 111.4+2.05 | 13.214£0.0095 101.34+2.77
180.0 | 15.26+0.0101 120.9+2.26 | 13.144+0.0064 130.24+2.71
215.0 | 15.16£0.0141 149.6+£3.02 | 13.024+0.0041 141.44+2.46
258.0 | 15.024+0.0078 168.942.95 | 12.84+0.0133 174.74+3.21
310.0 | 14.82+£0.0097 206.1+3.31 | 12.564+0.0069 214.0+2.23
372.0 | 14.514+0.0081 259.242.94 | 12.134+0.0027 276.5+2.14
445.0 | 14.05+0.0084 306.1+£3.13 | 11.514+0.0058 345.0+3.22

Table 4.21: Viscosity and first normal stress difference, Ny, as a function of stress for

c=35.0wt% at T=30.0 and 35.0°C. N/M means N1 was not measurable.
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Temp: 20.0°C Temp: 25.0°C

Stress Viscosity N, Viscosity N
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)

1 50.0 | 34.384+0.0389 N/M 27.4840.0226 N/M

- 60.0 | 32.66+0.0207 N/M 26.16+0.0167 N/M
72.0 | 30.80+0.0168 N/M 24.72+0.0119 N/M
86.0 | 28.951+0.0161 N/M 23.2040.0110 N/M
104.0 | 27.07+0.0128 N/M 21.49+0.0123 N/M
125.0 | 25.724+0.0077 N/M 19.95+£0.0550  88.7+2.77
150.0 | 24.324+0.0094 91.7+2.61 | 19.39+0.0230 117.8£1.60
180.0 | 23.584+0.0220 115.04+1.94 | 19.32+0.0248 132.5£2.38
215.0 | 23.40+0.0177 129.942.09 | 19.2240.0224 152.6+2.71
258.0 | 23.30£0.0205 161.4+£1.82 | 19.04+0.0078 189.1%+3.79
310.0 | 23.084+0.0159 182.4+3.17 | 18.76+0.0091 216.3+3.03
372.0 | 22.77+£0.0163 226.0+2.06 | 18.36£0.0110 268.3+2.36
445.0 | 22.344+0.0134 264.3+3.64 | 17.73+0.0077 321.5+1.42

Table 4.22: Viscosity and first normal stress difference, N, as a function of stress for

c=40.0wt% at T=20.0 and 25.0°C. N/M means N; was not measurable.

Temp: 30.0°C Temp: 35.0°C

Stress Viscosity N Viscosity N,
(Pa) (Pa sec) (Pa) (Pa sec) (Pa)
50.0 | 22.6440.0315 N/M 19.18+0.0110 N/M
60.0 | 21.46+0.0046 N/M 18.1840.0087 N/M
72.0 | 20.13=0.0097 N/M 17.07£0.0047 N/M
86.0 18.73+0.0116 N/M 15.814+0.0052 N/M
104.0 | 17.31£0.0174 N/M 14.684+0.0056 N/M
125.0 | 16.72+0.0216  95.0+2.63 | 14.444-0.0088 88.5+3.41
150.0 | 16.644+0.0189 104.6+2.14 | 14.36+0.0119 107.24+2.48
180.0 | 16.55+0.0181 131.1+2.76 | 14.244+0.0112 127.2+2.68
215.0 | 16.40+0.0062 153.5+1.88 | 14.064+0.0084 154.5+2.35
258.0 | 16.19+0.0127 187.9+£2.02 | 13.764+0.0130 185.7+2.81
310.0 | 15.86£0.0099 228.4+2.41 | 13.304+0.0084 231.6+3.30
372.0 | 15.34£0.0093 285.4+2.31 | 12.544+0.0102 301.6+3.38
445.0 | 14.56+£0.0068 356.8+£2.52 | 11.004+0.0169 409.9+3.65

Table 4.23: Viscosity and first normal stress difference, Ny, as a function of stress for

c¢=40.0wt% at T=30.0 and 35.0°C. N/M means »Nl was not measurable.




Table 4.24: Minimum stress required to eliminate wall effects using equations (4.14)
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A Tmin
(Pa)

3.44 | 2135
2.27 | 169
1.55 | 113
1.10 98
0.800 | 93
0.596 | 91
0.458 | 92

and (4.15).

Temp n* intercept slope x? Q
(°C) (Pa sec) (Pa sec)

20.0 | 2.70£0.228 | 10.85+0.387 | 29.30+2.246 | 1.163 | 0.9787
25.0 | 2.19£0.209 | 9.971+0.248 | 21.87+1.933 | 0.351 | 0.9992
30.0 | 1.93£0.156 | 9.13+0.184 | 17.58+1.383 | 0.736 | 0.9937
35.0 | 1.61+£0.286 | 8.38+0.184 | 13.48+1.218 | 0.925 | 0.9883
40.0 | 1.47+£0.234 | 7.72+0.258 | 11.32+1.786 | 0.181 | 0.9961
45.0 | 1.254£0.231 | 7.13£0.146 | 8.98+1.637 | 0.468 | 0.9258
50.0 | 1.29+0.344 | 6.48+0.213 | 8.344+2.213 | 0.309 | 0.8569

Table 4.25: Scaled viscosity, n*, as a function of temperature. The table also includes
the results for the curve fit of viscosity, 5, versus volume fraction, ¢, using a linear
curve fitting program with both the slope and intercept as parameters.
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Temp | N; = slope | x? Q
(°C)
20.0 | 2.4240.113 | 19.50 | 0.0000627
25.0 | 2.67£0.104 | 13.17 | 0.004047
30.0 | 2.89+0.112 | 7.10 0.03114
35.0 | 2.924+0.113 | 2.89 0.8224
40.0 | 2.854+0.130 | 0.417 0.9811
45.0 | 2.8240.144 | 0.055 0.9967
50.0 | 2.8240.166 | 0.133 0.9357

Table 4.26: Scaled first normal stress difference, N7, as a function of temperature. The
table also includes the results for the curve fit of the dimensionless first normal stress
difference, N;/n,%, versus volume fraction, ¢, using a linear curve fitting program
with the intercept set to zero.
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Chapter 5

Stress jumps of polymer solutions
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5.1 Introduction

Polymer solutions—systems in which long-chain, flexible macromolecules are dis-
persed in a fluid—are, historically, one of the most studied comple:;( fluids, but the
cause of the dissipative stress and its dynamic origin in simple shear flow remain
open topics. Possible causes of the dissipative stress include hydrodynamic interac-
tions [Fuller & Leal (1981); Ottinger (1987)] and intrinsic viscosity [Osaki (1973);
Fuller & Leal (1981); Allegra (1986); Manke & Williams (1987, 1992, 1993)]. There is
additional experimental evidence that the dissipative stress is also affected when the
continuum approximation is not satisfied—the solvent relaxation time is on the or-
der of the relaxation time of the polymer molecule—and the solvent relaxation time
is modified by the presence of the solute [Morris, Amelar & Lodge (1988); Schrag
et al. (1991); Ngai (1991); Gisser & Ediger (1992)]. This dissipative stress can be
measured by performing mechanical stress jumps in which the applied shear rate is
instantaneously changed and the resulting instantaneous change in the stress is mea-
sured. Until recently, stress jumps could not be measured because of the limitations
of torque transducers [Mackay, Liang & Halley (1992)]. Since the introduction of
torque rebalance transducers, stress jump measurements in simple shear flow after
flow cessation have been performed on semi-rigid macromolecules [Liang & Mackay
(1993)], liquid crystalline polymers [Smyth & Mackay (1994); Smyth et al. (1995)],
and colloidal dispersions [Mackay & Kaffashi (1995); O’Brien & Mackay (1996); Kaf-
fashi et al. (1997)]. Stress jump measurements of polymer solutions have not vet
been performed in simple shear flow, but they have been reported for cessation of
extensional flow [Orr & Sridhar (1996)]. This work forms the foundation for future
studies in which the strain and rate dependence of the dissipative stress of polymer
solutions in simple shear flow is studied to gain a deeper understanding of the physics
responsible for the dissipative stress.

In this study, stress jumps are performed at flow startup for polymer solutions of
high molecular weight (M,,=18x10°), nonionic polyacrylamide dispersed in a solvent

of 70.0wt% fructose in water. A range of concentrations of dispersed polymer is
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chosen so that linear viscoelastic measurements at small concentrations allow the
high-frequency viscosity, 7., to be determined. Since stress jumps are measured for
~the first time at flow startup, the relationship n*(t = 0;%) = 5/ [Gerhardt & Manke
(1994)] is confirmed, where 5t (¢; %) is the viscosity associated with stress growth after

flow startup, evaluated at time ¢ and the imposed shear rate 4.

5.2 Experiment

5.2.1 Materials

The suspending fluid is made by dissolving 70.0wt% d-fructose (Sigma, F-2543, Lot
67H10172) in double-distilled, deionized water. Water cannot be used as the solvent
by itself because the viscosity of water is too low to eliminate the effects of momentum
diffusivity in stress jumps [Liang & Mackay (1993)], and fructose is simply used as
a viscosity thickener. Bacteria growth is hindered by adding 0.02wt% sodium azide
(Sigma, S-2002, Lot 77H0079) to the fructose-water mixture. Both fructose and
sodium azide are used as received. The resulting mixture is placed on a wrist action
shaker (Burrel, model 75) in a sealed bottle for eight hours and then set aside for an
additional eight hours to allow entrained air to escape. A single batch of fructose-
water 1s used to make all polymer solutions. -

Polymef solutions are made by adding the appropriate amount of polyacrylamide
(M,,=18x10°, Polysciences, 18522, Lot 463162) to the fructose-water mixture, and
the polymer is dispersed by rotating the sealed container at approximately 10 RPM for
24 hours. The polymer solution is then placed upright for eight hours in a sealed bottle
to allow entrained air to escape. All experiments for a single polymer concentration
are performed within 24 hours. Polymer solutions of 0.00, 0.06, 0.09, 0.12, 0.15 and

0.18wt% polymer are made.
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5.2.2 Experimental techniques

A constant rate rheometer (Rheometrics, RFS-II) outfitted with the standard bath
attachment (Rheometrics), a dual-range, torqﬁe rebalance transducer (Rheometrics,
IOOFRT) and standard motor is used for rheological measurements. Temperature
is controlled by a water circulator (Neslab; RTE-130)—there is no feedback loop
between the thermocouple in contact with the lower tool and the setpoint of the
circulator. The setpoint of the circulator is 15.0°C for all experiments. A 50-mm
diameter titanium cone (cone angle: 0.02-radians) is used as the upper tool and a
50-mm diameter aluminum plate is used for the lower tool. A homemade Plexiglas
vapor barrier, shown in Figure 5.1, is used to prevent solvent evaporation. The
contribution to the torque from the fluid in the reservoir of the vapor barrier is small,
but measurable, and this contribution is subtracted from the raw data.

Once the sample is loaded and the vapor barrier is attached, the torque is mon-
itored until the load-induced stress relaxes. Linear viscoelastic measurements are
completed, and then stress jump measurements are performed. Labview, a data ac-
quisition board (National Instruments, PCI-MIO-16XE-50) and a Power Macintosh
(7200/120) are used for millisecond data acquisition for stress jump measurements by
sampling the unfiltered, voltage output of the torque transducer. The Labview VI is
started prior to flow startup so that the no-ioad voltage is monitored. The rheometer
motor starts, rotates for two seconds at the commanded rate and then stops, all while
acquiring data in Labview. Once the motor stops, the Labview VI is also stopped
and the long-time stress decay is monitored using Rheometrics software program, Or-
chestrator, to insure that the stress completely relaxes prior to the next test. These
relaxation times vary with polymer concentration and are on the order of an hour
for 0.18wt% polymer. This procedure for stress jumps continues until all rates have
been sampled, starting with the lowest rate for which a measurable torque signal is
obtained and continuing to the rate for which the high range of the transducer is
reached. The rates between these two limits are chosen so that there are five rates

per decade.
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This experimental procedure is completed four times for every concentration of

polymer excépt for the sample‘ of 0.18wt% polymer for which only two replications

~ are performed.

5.3 Resﬁlts

Results for the linear viscoelastic behavior of the polymer solutions are presented in
Figures 5.2-5.4. In Figure 5.2a, the loss modulus of the suspending fluid is ~ O(w), as
expected for a Newtonian fluid. At high frequency the storage modulus is ~ O(w?),
also as expected for a Newtonian fluid. The loss modulus of low concentration polymer
solutions reaches its high frequency limit, ~ O(w), only for 0.06wt% and 0.09wt%
polymer, as seen in Figures 5.2b and 5.3a; thus, the high-frequency dynamic viscosity,
1., can only be measured for three different samples, ¢=0.00, 0.06, 0.09wt% polymer.

Typical stress jump data is shown in Figure 5.5 for one of the replications of
0.15>wt% polymer solution. At low rates a single curve should be formed for the
viscosity growth curve, independent of the rate [Isono et al. (1991)]. This behavior
is not seen at low rates for the system shown in Figure 5.5; instead, the transient
viscosity slowly approaches this single curve at low rates. This slow approach is
due to a lag in the response time of the transducer caused by the large moment
of inertia of the upper tool and vapor barrier and is not a function of the material
itself. Experiments without the vapor barrier at low rates confirm this result. At
slightly higher rates, an overshoot in the viscosity growth curve appears and the
time for the peak of the overshoot appears at smaller times as the imposed rate
increases. At intermediate rates, the viscosity overshoot appears at nearly the same
time, and the viscosity growth curves for different rates are indistinguishable at small
times. At high rates, the overshoot appears at approximately the same time, but
the viscosity curve deviates from the rate-independent curve at approximately the
same value of strain [Menezes & Graessley (1982); Takahashi et al. (1986)]. For
analysis of stress jump data, only the intermediate regime of shear rates is analyzed

to eliminate instrument effects at low rates and deviations from the linear viscoelastic,
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rate-independent viscosity growth curve at high rates. This intermediate regime of
rates includes rates for which (1) the viscosity overshoot occurs with its maximum
value at times shorter than 30-ms and (2) the strain satisfies, v = 4¢ < 15. It should
be noted that the ringing phenomenon seen by Liang & Mackay (1993) in stress jumps
at startﬁp is not seen here.

Once the intermediate range of shear rates is determined, the instantaneous stress
jump is calculated. See Figure 5.6 for the transient viscosity curves after startup for
one of the replications of a polymer solution with 0.06wt% polymer when intermediate
rates are included. Figure 5.6a shows the transient viscosity for the full two seconds of
the experiment, and none of the curves collapse to a single, rate-independent curve for
the full duration of the experiment. But at short times, the viscosity growth curves
do collapse, as seen in Figure 5.6b. There is one other important feature of Figure
5.6b—data for times less than 30-ms are eliminated. There is a characteristic time
for the transducer to reach its null position after an instantaneous change in the rate.
For shear startup of a 50-mm titanium cone with the vapor barrier, this characteristic
time is 50-ms; thus, for times greater than 50-ms, the measured torque is caused only
by the material. To calculate the value of 5*(¢ = 0;7), the viscosity during startup
at the instant of the change in the imposed rate, the data is extrapolated. The

extrapolation is performed using a linear curve fit since [Attané, Pierrard & Turrel

(1985); Takahashi et al. (1986)]
Nt (t;9) ~ tGo (5.1)

for short times, where

Go = G(t =0), (5.2)

and G(1) is the linear viscoelastic relaxation modulus. The curve fit [Press et al.
(1992)] is perfonﬁed over the range of 50-ms to 100-ms.

This procedure for stress jump analysis is completed for all 22 samples of this
study. Data for one ref)lication for 0.09, 0.12, 0.15 and 0.18wt% polymer are shown in
Figures 5.7, 5.8, 5.9, and 5V.10, respectively. The results for nt(t=0;%) and G(¢t = 0)
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for each concentration are then averaged over the replications, and these averaged
results are shown in Figures 5.11 and 5.12, respectively. In Figure 5.11, there is
. excellent‘agreement. between the results for n*(¢ = 0;4) and 7., at low concentration,
where both quantities are measured; thus, the relationship» |

nt(t=0;%) =ng, (5.3)

derived by Gerhardt & Manke (1994) using linear viscoelastic fluid theory is con-
firmed. At higher concentrations the high-frequency dynamic viscosity cannot be
measured since the relaxation time increases with volume fraction and the region
where G ~ O(w) occurs at higher values of w, outside of the range of the rheometer.
It’s no surprise that n* (¢ = 0;%) = 7., since both measurements contain information
regarding the hydrodynamic contribution to the viscosity associated with the equi-

librium microstructure.

5.4 Conclusions

Stress jump and linear viscoelastic measurements are performed for polymer solutions
at startup of simple shear flow. The relationship derived by Gerhardt & Manke (1994)
for a general viscoelastic fluid is confirmed for polymer solutions, n*(¢t = 0;4) = n._.
Since both 7., the high-frequency viscosity, and G(¢ = 0), the linear viscoelastic re-
laxation modulus at ¢ = 0, can both be measured by stress jump measurements,
stress jumps at startup provide two pieces of useful information when testing theo-
retical models.

Since stress jJump measurements can be performed for polymer solutions, the strain
and rate dependence of the dissipative stress can be studied by performing stress
jumps after shear cessation. If intrinsic viscosity is the dominant dissipative mech-
anism, the hydrodynamic contribution to the viscosity should change as a function
of strain for a given rate since the relative velocity of the two beads of the dumb-

bell changes as the molecule stretches and orients with the flow. In addition, these
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experiments are instrumental in determining the cause of shear thickening in some
polymer solutions [Kishbaugh & McHugh (1993)].

The fact that stress jump measurements can be accurately performed at startup
is also important for other complex fluids. For example, the scaling thedry of Brady
(1993) relies on knowledge 6f the high-frequency dynamic ‘viscosity, nL., to scale both
the shear rate and rheological properties. Unfortunately, n’ of concentrated dis-
persions cannot typically be measured on conventional rheometers because of their
limited frequency range in dynamic experiments, but stress jumps at startup can
instead be measured to yield the same information. Stress jump measurements at
startup can also be performed on emulsions. If an emulsion is composed of two im-
miscible Newtonian fluids with spherical droplets and droplet interactions are treated
in a self-consistent way similar to the Lorentz sphere method, the high-frequency

dynamic viscosity is [Palierne (1990); Graebling, Muller & Palierne (1993)],

;10N +1) 4 36(51 + 2)
oo = TN+ 1) — 26(5A + 2)

(5.4)

where 7, is the viscosity of the suspending fluid, A is the viscosity ratio of the dispersed |

and suspending fluids, and ¢ is the volume fraction of the dispersed phase.
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— 50-mm parallel plate geometry
« sample
portion of bath that spins
## portion of bath that is stationary
— vapor barrier
®  o-ring

SIDE VIEW: CUTAWAY

¢ VAPOR BARRIER:
TOP

U < VAPOR BARRIER:
*BOTTOM

Figure 5.1: A seal is formed between the lower portion of the vapor barrier and the
lower tool by using vacuum grease, and an o-ring is used as a secondary seal. The
two upper pieces of the vapor barrier are attached to the upper tool and to each other
with vacuum grease. - Additionally, a small cable tie is used around the neck of the
two upper pieces to keep them attached. Finally, 10-ml of low viscosity silicone oil is
added to the reservoir to complete the seal.
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Figure 5.2: Results for storage modulus, G’ (o), and loss modulus, G” (D)

function of frequency, w, for (a) pure suspending fluid and (b) c=0.06wt%.

, as a



1005" T T I||||l' T T ]IIIIII 1 T I]lll"-—-:

- (2 .

- Wa -

o

10k mm‘”m T &

@ E z T mmm E
Qq : mmm QIIII -
~ m ]
- i mmmmlliZEHZ |
- = iig 3 3
= - III§§§ 3
-3 - E$$$§ ]
gt ]
0.1 =
0.01‘ il 1 ||||||| 1 1 lllllll:n- 1aaaal |||||I[

0.1 1 10 100

frequency (rad/sec)

1005 LA | M Illllll""l"'l T Illlll 1 1 II|||||E

= ) oS

L BB -

1oL EBEB zﬂ

3 s m T3

< 2 EQBE:mmmmm 3
%/ i gggmmmm ]
%) ] . gz T i
2 1:— . §§§ —
S :
= A i
0.1 -

0.01 I L ] !Ill(ll L 1 |||||]I Leaaal |||||ll

0.1 L 10 100

frequency (rad/sec)

Figure 5.3: Results for storage modulus, G’ (o), and loss modulus, G” (O), as a

function of frequency, w, for (a) c=0.09wt% and (b) c=0.12wt%.
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Figure 5.5: Results for shear viscosity growth in startup flow for a polymer solution
with 0.15wt% polymer over a range of shear rates. At low rates (dashed line), the
transducer does not respond immediately and there is a lag in the stress jump caused
by the large moment of inertia of the tool when using the vapor barrier. At high rates
(dotted line), deviations from linear viscoelastic behavior occur at times smaller than
50-ms after startup, the characteristic time scale for the response of the transducer.
Data from both cases are eliminaied from the stress jump analysis.
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Figure 5.6: Results for shear viscosity growth in startup flow for a polymer solu-
tion with 0.06wt% polymer over a range of shear rates (10.0 (o), 15.8 (O), 25.1 (o),
39.8 (x), and 63.1 sec™? (+)) when the system is initially at equilibrium. Data is
taken for a total of (a) two seconds but only the first (b) 100 milliseconds is used in
the stress jump analysis, where the dotted line is the extrapolation to ¢ = 0.
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Figure 5.7: Results for shear viscosity growth in startup flow for a polymer solu-
tion with 0.09wt% polymer over a range of shear rates (6.31 (A), 10.0 (o), 15.8 (O),
25.1 (o), 39.8 (x), and 63.1 sec™! (+)) when the system is initially at equilibrium.
Data is taken for a total of (a) two seconds but only the first (b) 100 milliseconds is
used in the stress jump analysis, where the dotted line is the extrapolation to t = 0.
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Figure 5.8: Results for shear viscosity growth in startup flow for a polymer solu-
tion with 0.12wt% polymer over a range of shear rates (6.31 (A), 10.0 (o), 15.8 (O),
25.1 (o), 39.8 (x), and 63.1 sec™! (+)) when the system is initially at equilibrium.
Data is taken for a total of (a) two seconds but only the first (b) 100 milliseconds is
used in the stress jump analysis, where the dotted line is the extrapolation to ¢ = 0.
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Figure 5.9: Results for shear viscosity growth in startup flow for a polymer solu-
tion with 0.15wt% polymer over a range of shear rates (10.0 (o), 15.8 (O), 25.1 (o),
39.8 (x), and 63.1 sec™! (4)) when the system is initially at equilibrium. Data is
taken for a total of (a) two seconds but only the first (b) 100 milliseconds is used in
the stress jump analysis, where the dotted line is the extrapolation to ¢ = 0.
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Figure 5.10: Results for shear viscosity growth in startup flow for a polymer solu-
tion with 0.18wt% polymer over a range of shear rates (6.31 (A), 10.0 (o), 15.8 (0),
25.1 (o), and 39.8 (x)) when the system is initially at equilibrium. Data is taken for
a total of (a) two seconds but only the first (b) 100 milliseconds is used in the stress
jump analysis, where the dotted line is the extrapolation to ¢ = 0.
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Figure 5.11: Results for the startup viscosity, n*(t = 0) (A), and the high-frequency
dynamic viscosity, 7., (O), as a function of polymer concentration for nonionic poly-
acrylamide (M,,=18x10°) in a solvent of 70.0wt% fructose-water.
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Figure 5.12: Results for the linear viscoelastic relaxation modulus at ¢ = 0, G(t = 0),
as a function of polymer concentration for nonionic polyacrylamide (M,,=18x10°)
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Concluding remarks
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The relationship between macroscopic rheological properties and the underlying mi-

crostructure of complex fluids is explored for colloidal dispersions, emulsions and

~ polymer solutions. For colloidal dispersions in simple shear flow, the two-particle

Smoluchowski equation is solved and the resulting microstructure is used to calculate
rheologiéal properties as a function of dimensionless sheaf rate. Scaling arguments
and experiments are used to show that rheological properties are linear in volume
fraction for an emulsion at the critical capillary number in simple shear flow if the
size, shape and orientation of the droplets are weak functions of volume fraction for
a given shear rate. Finally, stress jumps at startup and dynamic measurements are
performed on polymer solutions to show that n*(¢ = 0;%) = n/_, where n*(¢; %) is the
viscosity growth function after shear startup at time ¢ for shear rate 4, and n/_ is the
high-frequency dynamic viscosity. The fact that these two quantities are equal makes
physical sense since both methods measure the viscous contribution to the viscosity
associated with the equilibrium microstructure.

The methods used to predict the rheology and microstructure of colloidal disper-
sions are quite general and can be used for other systems and/or flows. In all cases,
the particles in the system must be spherical, but the two particles can have differ-
ent sizes or be fluid droplets instead of hard spheres. In addition, the particles can
interact with an interparticle force other than a hard sphere interaction, such as a
square-well potential or a Hookean force. Finally, other rheologically significant flows,
such as planar or uniaxial extensional flows, can be studied instead of simple shear
flow.

For emulsions at the critical capillary number, it is shown that rheological func-
tions are linear in volume fraction for dilute to moderately-concentrated systems.
There aré two terms that contribute to these rheological properties. The first term
is the anisotropy tensor and the second term is related to the rate of strain within
the droplets. Neither the scaling arguments nor the experiments of this work can
determine the relative contribution of these two terms to emulsion viscosity, but me-
chanical stress jumps can provide such a measurement. Upon flow cessation, the rate

of strain within the droplets instantly vanishes, and there is only a single contribution
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to the stress through the anisotropy tensor since the droplets have not yet relaxed
from their steady size, shape and orientation.

Finally, stress jumps at flow startup are performed on polymer solutions in shear
flow, and it is shown that stress jumps exist that are different from the solvent vis-
cosity. These éxperiments form the foundation for analysis of the strain and rate
dependence of the hydrodynamic viscosity to shed light on the mechanism for the
dissipative stress and the cause of shear thickening in polymer solutions. Further-
more, stress jumps at startup yield two quantities, ., and G(t = 0), that can be

used to test rheological models for G(t), where G(¢) is the linear viscoelastic relax-

ation modulus.



