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Abstract

The Conjecture of Birch and Swinnerton-Dyer relates an analytic invariant of

an elliptic curve – the value of the L-function, to an algebraic invariant of

the curve – the order of the Tate–Šafarevič group. Gross has refined the

Birch–Swinnerton-Dyer Conjecture in the case of an elliptic curve with com-

plex multiplication by the full ring of integers in a quadratic imaginary field.

It is this version which interests us here. Gross’ Conjecture has been refor-

mulated, by Fontaine and Perrin-Riou, in the language of derived categories

and determinants of perfect complexes. Burns and Flach then realized that

this immediately leads to a refined conjecture for elliptic curves with complex

multiplication by a nonmaximal order. The conjecture is now expressed as

a statement concerning a generator of the image of a map of 1-dimensional

modules. We prove this conjecture of Burns and Flach.
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Chapter 0

Introduction.

The Conjecture of Birch and Swinnerton-Dyer relates an analytic invariant of

an elliptic curve – the value of the L-function, to an algebraic invariant of

the curve – the order of the Tate–Šafarevič group.

In our situation, the elliptic curve E is defined over a number field F .

The L-function, like the classical Riemann zeta function, is defined as a prod-

uct over prime ideals of F . The Tate–Shavarevich group is the group of 1-

cohomology classes of E which are locally trivial at each place of F .

For most elliptic curves E, the ring of endomorphisms End(E) is isomorphic

to Z. However, there are some elliptic curves whose endomorphism ring is

larger. In this case, E is said to have complex multiplication. It is elliptic

curves with this additional structure which interest us here. The basic theory

of the subject shows that if E has complex multiplication, then End(E) is

isomorphic to an order O in a quadratic imaginary field K.

Gross has refined the Birch–Swinnerton-Dyer Conjecture in the case where

O is the full ring of integers OK . It is this version which interests us here.

He uses the fact that the L-function of an elliptic curve with complex mul-
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tiplication agrees with the product of two L-functions of a Grössencharacter

of F , associated to E, with values in K. Gross’ idea is to consider the two

L-functions separately, making a conjecture about each, viewing it as the K-

equivariant L-function. He formulates a complex regulator in place of the real

regulator used in the original conjecture. As well, he uses the order ideal of a

group in place of the cardinality of the group.

Rubin has proved the p-part of Gross’ conjecture in the case where F = K

(i.e., the class number of K is 1) and p does not divide |µOK | (the number

of roots of unity in K), under the condition rank(E(F )) = 0. Some cases of

Gross conjecture with F 6= K will follow from our results below.

Gross’ Conjecture has been reformulated, by Fontaine and Perrin-Riou,

in the language of derived categories and determinants of perfect complexes.

Burns and Flach then realized that this immediately leads to a conjecture

which is a refinement in the case where O 6= OK . The conjecture is now

expressed as a statement concerning a generator of the image of a map of 1-

dimensional modules. We wish to prove the p-part of this conjecture of Burns

and Flach for elliptic curves with complex multiplication by a nonmaximal

order, i.e., where O 6= OK , and where necessarily F 6= K. We shall use

Rubin’s restrictions

rank(E(F )) = 0

F (Etors)/K is abelian

p 6 | |µOH |
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(H being the Hilbert Class field of K). In fact we shall also assume for sim-

plicity that K has class number 1 (i.e., H = K).

The formulation of Burns–Flach naturally allows a further refinement of

the conjecture, dealing with the Weil restriction B of E, and considering Rp-

modules in place of Op-modules, where R = End(B). (The conjecture will be

over the endomorphism algebra R of B, which is much larger than K.) We

shall prove this conjecture by reducing it to the Main Conjecture for imaginary

quadratic fields. At this point we need to make the further assumption that

p 6 | [K f0p : K],

where f0 is the prime-to-p part of the conductor of B and Km/K denotes the

ray class field of conductor m, because Rubin’s proof of the Main Conjecture

requires this condition.

We shall use a method of Kato to address this situation, first dualizing

the modules involved, then passing to a situation universal with respect to

invertible sheaves over p-adic rings. The conjecture is then seen to follow from

two known results, the Explicit Reciprocity Law and Rubin’s Main Conjecture.

We first discuss the conjectures which are ancestors of the Burns–Flach

Conjecture under consideration, and the translation between the language of

the original Birch–Swinnerton-Dyer Conjecture and that of perfect complexes.

Next, a deduction of the Burns–Flach Conjecture, from the Main Conjecture

and the Explicit Reciprocity Law, is given. Finally, we discuss numerical

examples of the conjectures.
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Chapter 1

The conjecture of Birch and
Swinnerton-Dyer.

We will give the Birch–Swinnerton-Dyer Conjecture in its original generality,

applying not only to elliptic curves but to abelian varieties in general. We

follow [9] in our exposition.

Let A be an abelian variety of dimension g which is defined over a number

field F .

Write L(A/F, s) for the L-series of A over F , which is defined by the Euler

product

L(A/F, s) =
∏
w 6 |∞

Pw(A/F,Nw−s)−1,

where for any finite place w of F

Pw(A/F, x) := det(1− xφw | (T`(A)⊗Q`)Iw),

the characteristic polynomial of the action of Frobenius (φw) upon the inertia

`-adic Tate quotient module (T`(A)⊗Q`)Iw (which is the co-invariants, under

the action of the inertia group Iw, of the `-adic Tate module T`(A) ⊗ Q`).
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This polynomial is independent of ` and has coefficients in Z. The L-series is

convergent in the half-plane {s ∈ C : Re(s) > 3
2
}.

Let III(A) be the Tate-Šafarevič group

ker

(
H1(F,A)→

∏
w

H1(Fw, A)

)

of A over F . (The product is taken over all places w of F .) The following is

conjectured to be true, and will be assumed here.

Assumption 1.0.1. III(A) is finite.

A constant is defined using the Néron model, the invariant differentials on

A and their period integrals, and the discriminant of F/Q. The constant will

be conjecturally related to the L-function.

Write A for the Néron model of A, and Aw = A⊗OF kw after a base change

to the residue field of F at a finite place w. Write A0
w for the connected

component of the origin in Aw.

Let (ω1, . . . , ωg) be an F -basis of H0(A,ΩA/F ). Denote the projective OF -

module of invariant differentials on the Néron model A of A, by ΩA. Then∧g ΩA, restricted to H0(A,Ωg
A/F ), is given by

(
g∧
i=1

ωi

)
·D

for some fractional ideal D of OF .

For a complex place w of F , let (h1, . . . , h2g) be a Z-basis of the integral
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homology H1(A(Fw),Z). Define

Ωw :=

∣∣∣∣det

(∫
hi

ωj

∣∣∣∣∫
hi

ωj

)∣∣∣∣ .
This is non-zero and depends only on

∧g
i=1 ωi and w.

For a real place w of F , corresponding to the embedding σ : F ↪→ R,

let (h1, . . . , hg) be a Z-basis of H1(A(Fw),Z)+, the submodule of the integral

homology H1(A(Fw),Z) fixed by complex conjugation. Define

Ωw :=

∣∣∣∣ Aσ(R)

Aσ(R)0

∣∣∣∣ · ∣∣∣∣det

(∫
hi

ωj

)∣∣∣∣ .
This is non-zero and depends only on

∧g
i=1 ωi and w.

Fix bases (x1, . . . , xn) and (y1, . . . , yn) of respective free subgroups X ⊂

A(F ) and Y ⊂ A(F )∨ of finite index. (Here ∨ indicates the dual abelian

variety.) Define the regulator

R :=
| det(< xi, yj >)|∣∣∣A(F )

X

∣∣∣ · ∣∣∣A∨(F )
Y

∣∣∣ ,
where <,> is the canonical height pairing corresponding to the Poincaré di-

visor on A × A∨. The value of R ∈ R∗ is independent of X and Y and their

bases.

Now we are ready to state the conjecture of Birch and Swinnerton-Dyer:

Conjecture 1.0.2 (Birch–Swinnerton-Dyer). We have

L(A/F, s) ∼ c(s− 1)rankZA(F ) as s→ 1
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for some constant c ∈ R∗
+ such that

c

R ·
∏

w|∞ Ωw

lies in Q and equals

|discF/K |−g/2 ·NF/QD · |III(A)| ·
∏
w 6 |∞

∣∣∣∣Aw(kw)

A0
w(kw)

∣∣∣∣ .
Note that the last product is well-defined because for all but the finite

number of places w of bad reduction, we have Aw(kw) = A0
w(kw), and the

multiplicand equal to 1.

We are interested in the case where rankZA(F ) = 0, whereupon the asser-

tion of the conjecture reduces to

L(A/F, 1) · |A(F )| · |A∨(F )|∏
w|∞ Ωw

= |discF/K |−g/2·NF/QD·|III(A)|·
∏
w 6 |∞

∣∣∣∣Aw(kw)

A0
w(kw)

∣∣∣∣ ∈ Q.
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Chapter 2

The Weil restriction.

To discuss Gross’ refinement of the Birch–Swinnerton-Dyer Conjecture, we

will need the Weil restriction. Let A be abelian variety defined over F , an

extension of a number field K. The Weil restriction

B := ResFKA

is an abelian variety defined over K, whose construction we recall now.

For simplicity assume that F/K is Galois.

For each element σ of G := Gal(F/K), we have a commutative diagram of

schemes

A

��

Aσ

��

σoo

Spec(F )

&&MMMMMMMMMM
Spec(F )

xxqqqqqqqqqq

σoo

Spec(K)

,
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where Aσ is the fibre product of

A

��
Spec(F ) Spec(F ).σoo

Taking the fibre product over all σ, we have

B̃ :=
∏

σ∈GA
σ

��
Spec(F )

��
Spec(K).

The finite group G acts on the projective scheme B̃, compatibly with its action

on F . Therefore, there exists a scheme B which is the quotient of B̃ by the

G-action. B is then defined over K. This variety B is abelian, with the group

law inherited from A via B̃. It is seen that B satisfies the desired functorial

property:

Lemma 2.0.1. B is a K-variety such that

HomSpec(K)(Y,B) ' HomSpec(F )(Y ⊗K F,A)

for any K-scheme Y . (The functor ResFK is the right adjoint of the extension-

of-scalars functor Y 7→ Y ⊗K F . ) In particular, for Y = Spec(C) and a
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complex place v of K, we have

B(C) = HomSpec(K)(Spec(C), B) ' HomSpec(F )(Spec(C⊗KF ), A) =
⊕
w|v

A(Fw).

If A is an elliptic curve with complex multiplication by an order O in an imagi-

nary quadratic field K, this equality of functors provides B with multiplication

by (at least) O.
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Chapter 3

The conjecture of Gross.

Gross has refined (in [9]) the conjecture of Birch–Swinnerton-Dyer for elliptic

curves with complex multiplication.

Let E be an elliptic curve defined over a number field F , with complex

multiplication by the ring of integers OK of a quadratic imaginary field K. If

we fix an isomorphism OK ' EndF (E), then the action of EndF (E) on Lie(E)

gives an embedding K ↪→ F . If we fix a complex embedding K ↪→ C, we

obtain a Grössencharacter ψ of F with values in C∗. See [21], II, §9.

We replace the Q`-action on the `-adic Tate module T`(E) ⊗ Q` by the

K⊗Q`-action given by complex multiplication. Now the global K-equivariant

L-series of E/F is defined

KL(E/F, s) :=
∏
w 6 |∞

KPw(E/F,Nw−s)−1,

where

KPw(E/F, x) = det
K⊗Q`

(1− xφw | (T`(E)⊗Q`)Iw),
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the characteristic polynomial of the action of Frobenius (φw) upon the inertia

`-adic Tate quotient module (T`(A) ⊗ Q`)Iw . The product is over all finite

primes of F .

On the other hand, we have the Hecke L-series

L(ψ, s) :=
∏

w 6 |∞·fψ

(1− ψ(w)Nw−s)−1.

(The product is over the finite primes of F not dividing the conductor fψ of

ψ.) This product is convergent in the half-plane {s ∈ C : Re(s) > 3
2
} and has

an analytic continuation to the entire plane by Hecke. (See [21], II, §10.)

It is known, by a theorem of Deuring, that

KL(E/F, s) = L(ψ, s).

Hence we also have

L(E/F, s) = L(ψ, s)L(ψ, s),

reflecting the identity of Euler factors NK/Q(KPw(x)) = Pw(x). The aim of

Gross’ Conjecture is to identify the leading term of L(ψ, s) instead of that of

L(E/F, s) (whose leading term is the subject of the Birch–Swinnerton-Dyer

Conjecture).
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3.1 Choice of bases.

We continue to write B = ResFKE for the Weil restriction of E. The [F : K]-

dimensional abelian variety B is canonically self-dual and has complex multi-

plication by OK . We have

KL(B/K, s) = KL(E/F, s).

As before, a “constant” is defined using the Néron model, the invariant differ-

entials on E, and their period integrals. But this time, the “constant” is an

ideal in OK . This ideal will again be conjecturally related to the L-function.

Write B for the Néron model of B, and Bv = B⊗OK kv after a base change

to the residue field of K at a finite place v. Write B0
v for the connected

component of the origin in Bv.

Let (ω1, . . . , ω[F :K]) be an K-basis of H0(B,ΩB/K). Denote the projective

OK-module of invariant differentials on the Néron model B of B, by ΩB. Then∧[F :K] ΩB, restricted to H0(B,Ω
[F :K]
B/K ), is given by

[F :K]∧
i=1

ωi

 · d
for some fractional ideal d of OK .

The integral homology H1(B(C),Z) is a projective OK-module of rank

[F : K]. Let (h1, . . . , h[F :K]) be a K-basis of H1(B(C),Q). Then

∧[F :K]
OK

H1(B(C),Z)
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is given by [F :K]∧
j=1

hj

 · b
for some fractional ideal b of OK . Let (γ1, . . . , γ[F :K]) be the dual K-basis of

H1(B(C),Q). Then ∧[F :K]
OK

H1(B(C),Z)

is given by [F :K]∧
j=1

γj

 · b−1.

Define

Ω := det

(∫
hi

ωj

)
.

This is non-zero.

Fix a basis (x1, . . . , xn) of a free OK-submodule X ⊂ B(K) of finite index.

Define the complex regulator

RC :=
det(< xi, xj >C)∣∣∣B(K)

X

∣∣∣ ,

where

<,>: B(K)×B(K)→ R
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is the height pairing and

<,>C: B(K)×B(K)→ C

is

(x, y) 7→ δ < x, y > − < x, δy >,

{1, δ} being a Z-basis of OK , and <,>C is independent of the choice of δ. The

value of RC ∈ C∗ is independent of X and its basis.

3.2 The conjecture.

Let “#” denote the order ideal as an OK-module.

Now we can state Gross’ refinement of the Birch–Swinnerton-Dyer Conjec-

ture.

Conjecture 3.2.1 (Gross). We have

L(ψ, s) ∼ c(s− 1)rankOK
B(K) as s→ 1

for some constant c ∈ C∗ such that

c

RCΩ
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lies in K and generates

b · d ·#(III(B)) ·
∏
w 6 |∞

#

(
Bv(kv)

B0
v(kv)

)
.

We are interested in the case where rankOKB(K) = 0, whereupon the

assertion of the conjecture reduces to

(
L(ψ, s) · |B(K)|

Ω

)
= b · d ·#(III(B)) ·

∏
w 6 |∞

#

(
Bv(kv)

B0
v(kv)

)
.

As explained by Gross, we have

NL(ψ, s) =L(B/K, s),

NRC =R,

N(Ω) =
∏
w|∞

Ωw

Nb =|discF/K |g/2

Nd =NF/QD

N(#III(B)) =|III(E)|

N

∏
w 6 |∞

#

(
Bv(kv)

B0
v(kv)

) =
∏
v 6 |∞

∣∣∣∣Bv(kv)

B0
v(kv)

∣∣∣∣ .
(the first three norms being the complex norm z 7→ zz, the others being the

norm map on ideals) so that the original Birch–Swinnerton-Dyer Conjecture

follows from Gross’ Conjecture.
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Chapter 4

The language of perfect
complexes.

In this chapter we reformulate Gross’ Conjecture using the language of perfect

complexes and their determinants, essentially following Fontaine and Perrin-

Riou in [6].

4.1 Determinants of perfect complexes.

By a complex we mean a sequence of modules {M j}j∈Z over some ring, say

Q, indexed by the integers, with maps

M j
dj //M j+1

satisfying dj+1 ◦ dj = 0 for all j ∈ Z.

By a perfect complex we mean a complex which is quasi-isomorphic to

a bounded complex whose terms are finite projective modules. (These are the

complexes for which it will be possible to define the determinant.)

The determinant of a perfect complex is the alternating tensor product
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of the determinants of the modules M j. Precisely, it is defined as

⊗
j∈Z

(detM j)(−1)j ,

where M−1 denotes the dual of M , and detM is the highest nontrivial exterior

power of M (if M is nontrivial, and Q if M = 0).

In the situations we will be considering, the determinant of the complex

is also equal to the alternating tensor product of the determinants of the

cohomology modules Hj(M•) of the complex:

Lemma 4.1.1. If Q is regular, then

detM• =
⊗
j∈Z

(detHj(M•))(−1)j .

In particular, when Q is a Dedekind ring or a field, the determinant can

be computed this way. (See [14].)

We will use the following implicitly in calculating the determinants of

finitely generated torsion modules.

Lemma 4.1.2. Suppose M is a finitely generated torsion module over a dis-

crete valuation ring Q with quotient field F Then the determinant of M is

given by:

detF (M ⊗Q F ) detF (0) F

detQ(M)
OO

OO

(#M)−1
OO

OO
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Proof. Write additively the group operation of M . Let x1, . . . , xn be gen-

erators of M , and M ′ the free module on those generators. Let M ′′ be the

kernel of M ′ η→M , a submodule of M ′ (also free) whose generators we denote

by y1, . . . , yn. Denoting by d : M ′′ →M ′ the inclusion, we have

d(y1) = a11x1 + · · ·+ a1nxn,

d(y2) = a21x1 + · · ·+ a2nxn,

...

d(yn) = an1x1 + · · ·+ annxn,

for some ajk ∈ Q, j, k = 1, . . . , n. Then M has the finite projective resolution

· · · // 0 //M ′′ //M ′ //M // 0 // · · · ,

concentrated in degrees -1 and 0. So detM = detM ′ ⊗ det−1M ′′. Over F , d

induces the isomorphism

M ′′ ⊗Q F '
d

//M ′ ⊗Q F .

We wish to identify the invertible Q-module

detM ′ ⊗Q (detM ′′)−1
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inside the invertible F -module

(
det
F

(M ′ ⊗Q F )
)
⊗F

(
det
F

(M ′′ ⊗Q F )
)−1

.

Now (
det
F

(M ′ ⊗Q F )
)
⊗F

(
det
F

(M ′′ ⊗Q F )
)−1

has canonical basis

d(y1) ∧ · · · ∧ d(yn)⊗ (y1 ∧ · · · ∧ yn)−1

while

detM ′ ⊗Q (detM ′′)−1

has canonical basis

det(ajk)
−1 · d(y1) ∧ · · · ∧ d(yn)⊗ (y1 ∧ · · · ∧ yn)−1.

We have the diagram

η(y1) ∧ · · · ∧ η(yn)⊗ (y1 ∧ · · · ∧ yn)−1 � //

∈

1

∈

(detF (M ′ ⊗Q F ))⊗F (detF (M ′′ ⊗Q F ))−1 ' // F

detM ′ ⊗Q (detM ′′)−1 ' //
OO

OO

Q · det(ajk)
−1

OO

OO

det(ajk)
−1 · η(y1) ∧ · · · ∧ η(yn)⊗ (y1 ∧ · · · ∧ yn)−1 � //

∈

det(ajk)
−1,

∈
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where the isomorphisms are induced by d. As Q is a DVR, det(ajk) ·Q = #M .

The result follows.

4.2 The setting.

Let B be an abelian variety defined over the quadratic imaginary field K,

and so that there is an embedding OK ↪→ EndK(B). Denote by B∨ the dual

abelian variety.

The situation we have in mind is that in which B is the Weil restriction

of an elliptic curve with complex muliplication by OK . Here we would have

B ' B∨. We make the same assumption about the Tate–Šafarevič group as

before:

Assumption 4.2.1. III(B) is finite.

Fix K ↪→ C.

4.3 Four vector spaces.

We have four finite-dimensional K-vector spaces H0(B,Ω1), H1(B(C),Q),

B(K)⊗Z Q, B∨(K)⊗Z Q and perfect K ⊗ R = C-linear pairings

(H0(B,Ω1
B/K)⊗Q R)× (H1(B(C),Q)⊗Q R)→ C (4.1)

induced by integration and

(B(K)⊗Z R)× (B∨(K)c ⊗Z R)→ C (4.2)
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given by the modified height pairing <,>C discussed earlier. (For any K-

module W we denote by W c the same group W with the conjugate action of

K.) Defining

KΞ := det
K
H0(B,Ω1

B/K)⊗K det
K
H1(B(C),Q)

⊗K (det
K
B(K)⊗Z Q)⊗K (det

K
B∨(K)c ⊗Z Q),

these pairings induce a K ⊗ R = C-linear isomorphism

Kϑ∞ : KΞ⊗Q R ' K ⊗ R.

4.4 Galois cohomology.

We fix a prime number p, and a finite set S of places of K, containing the

infinite place, those places above p, and all places where B has bad reduction.

We denote by GS the Galois group of the maximal extension of K unramified

outside S and by OK,S the ring of S-integers of K. For any continuous GS-

module N we put

RΓ(OK,S, N) = C•(GS, N),

the standard complex of continuous cochains. We define

RΓc(OK,S, N)

=Cone

(
RΓ(OK,S, N)→

⊕
v∈S

RΓ(Kv, N)

)
[−1].
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Suppose v 6 | p is a place of K. Define

RΓf(Kv, Vp(B))

to be the perfect complex, concentrated in degrees 0 and 1, of K⊗Qp-modules

· · · // 0 // Vp(B)Iv
1−Frobv// Vp(B)Iv // 0 // · · · . (4.3)

Define

RΓf(Kv, Tp(B))

to be the complex

B̂(Kv)[−1],

which is

· · · // 0 // B̂(Kv)
// 0 // · · · , (4.4)

concentrated in degree 1, where B̂(Kv) := lim←−
n

B(Kv)/p
n is the p-completion of

B(Kv).

For v | p, we define

RΓf(Kv, Vp(B))

to be the perfect complex, concentrated in degrees 0 and 1, of K⊗Qp-modules

· · · // 0 // Dv

(1−φ,π) // Dv ⊕H0(B,Ω1
B/Kv

)∨ // 0 // · · · , (4.5)
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where Dv denotes

Dcris(Vp(B)) = H0(Kv, Bcris ⊗Qp Vp(B))

and ∨ denotes the K⊗Qp-dual. The Kv-vector space H0(Kv, Bcris⊗Qp Vp(B)),

though invariant under the action of Gal(Kv/Kv), has an additional Frobenius

automorphism, which is what we mean here by φ. Define

RΓf(Kv, Tp(B))

to be

B̂(Kv)[−1].

First, as in [2], we have a natural map of complexes of OK,p-modules

RΓf(Kv, Tp(B))→ RΓ(Kv, Tp(B))

and denote by

RΓ/f(Kv, Tp(B))

the cone of this map.

Whether v 6 | p or v | p, we have compatibility between

RΓ(Kv, Tp(B)),

RΓ(Kv, Vp(B)),
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and the natural map

RΓf(Kv, Tp(B))→ RΓ(Kv, Tp(B)),

as follows. If v 6 | p, then

RΓ(Kv, Tp(B))⊗Zp Qp = B̂0(Kv)[−1]⊗Zp Qp

is the zero complex, which is quasi-isomorphic to

RΓ(Kv, Vp(B)).

If v | p, we have

RΓf(Kv, Tp(B))⊗Zp Qp = B̂(Kv)⊗Zp Qp[−1],

which is quasi-isomorphic to the complex

RΓf(Kv, Vp(B)),

via the exponential map

H0(B,ΩBv)
∨

exp
' // B̂(Kv)⊗Zp Qp

in degree 1.
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Remark 4.4.1. If B has good reduction at v 6 | p, then

RΓf(Kv, Tp(B))

could have been defined as was

RΓf(Kv, Vp(B))

to obtain the same cohomology. Precisely,

RΓf(Kv, Tp(B)) = B̂(Kv) = B̂0(Kv)

is quasi-isomorphic to the complex

· · · // 0 // Tp(B)Iv
1−Frobv// Tp(B)Iv // 0 // · · · , (4.6)

concentrated in degrees 0 and 1, which lies inside

RΓf(Kv, Vp(B)).

The quasi-isomorphism is compatible with the natural map

RΓf(Kv, Tp(B))→ RΓ(Kv, Tp(B)),
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whose mapping cone we denote

RΓ/f(Kv, Tp(B)).

Second, we define

RΓf(K,Tp(B))

=Cone

RΓ(OK,S, Tp(B))→
⊕

v∈S−{∞}

RΓ/f(Kv, Tp(B))

 [−1].

Third, we recall that the complex

RΓc(OK,S, Tp(B))

by definition fits into the exact triangle

RΓc(OK,S, Tp(B))→ RΓ(OK,S, Tp(B))→
⊕
v∈S

RΓ(Kv, Tp(B)).

Using the complexes definingRΓ/f(Kv, Tp(B)), RΓf(K,Tp(B)), andRΓc(OK,S, Tp(B)),

we obtain a distinguished triangle

RΓc(OK,S, Tp(B))→ RΓf(K,Tp(B))→

 ⊕
v∈S−{∞}

RΓf(Kv, Tp(B))

⊕RΓ(C, Tp(B)).

(4.7)

We define

RΓ/f(Kv, Vp(B)),
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RΓf(K,Vp(B)),

RΓc(OK,S, Vp(B)),

similarly. There is a version of triangle (4.7) with rational (Vp(B)) coefficients,

and we have

RΓc(OK,S, Tp(B))⊗Zp Qp ' RΓc(OK,S, Vp(B)).

Here, since we are dealing with the regular rings K, K⊗Qp, and OK ⊗Zp,

the determinants of the complexes considered are alternating tensor products

of the determinants of the cohomology modules, as noted in Chapter 4.1.

4.5 Reformulation of Gross’ Conjecture.

In order to reformulate Gross’ Conjecture, we wish to relate #(III(B)p∞) to

the determinant of

RΓc(OK,S, Tp(B)),

viewed as an integral lattice inside the determinant of

RΓc(OK,S, Vp(B)).
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From the distinguished triangle (4.7), it will suffice to compute the determi-

nants of

RΓf(Kv, Tp(B)), v ∈ S − {∞} (4.8)

RΓf(K,Tp(B)), (4.9)

RΓ(C, Tp(B)), (4.10)

describing them as lattices in the respective invertible Kp-modules

det
Kp

RΓf(Kv, Vp(B)),

det
Kp

RΓf(K,Vp(B)),

det
Kp

RΓ(C, Vp(B)).

The determinant of the first complex (4.8) is given by the following lemma.

Lemma 4.5.1. For RΓf(Kv, Tp(B)) ⊂ RΓf(Kv, Vp(B)), v finite, we have

det
OK,p

RΓf(Kv, Tp(B)) =#

(
Bv(kv)

B0
v(kv)

)
(4.11)

⊂Kp ' det
Kp

RΓf(Kv, Vp(B)) (4.12)
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if v 6 | p, and

(4.13)

det
OK,p

RΓf(Kv, Tp(B)) =d ·#
(

Bv(kv)

B0
v(kv)

)
·

[F :K]∧
j=1

ωj

 (4.14)

⊂Kp ·

[F :K]∧
j=1

ωj

 ' det
Kp

RΓf(Kv, Vp(B)) (4.15)

if v | p. Here the isomorphisms are induced by maps between cohomology in

degrees 0 and 1.

For the proof of the lemma we use the following two results, The first is

from Lemma 1 of [3], and the second is proved using [11].

Lemma 4.5.2. Suppose

· · · // 0 //M
η //M // 0 // · · · ,

is a complex of finite projective Q-modules, concentrated in degrees 0 and 1.

Then there is a commutative diagram

det(Q) det(M)⊗ det(M)−1 ' //
��

Lemma 4.1.1
����

Q

det(η)

��

detQH
0(M)⊗ detQH

1(M)−1

detQ(0)⊗ detQ(0)−1 Q

where the horizontal isomorphism is induced by idM .
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Lemma 4.5.3.

B̂(Kv)/H
1(kv, Tp(B)Iv) ' Bv(kv)/B

0(kv).

Proof. We denote by B the Néron model of B/Kv, by B0 the zero connected

component subscheme, by Bv the special fibre, and by B0
v the zero connected

component of Bv. By [11], Lemma 2.2.1, there is a short exact sequence of

group schemes

0 // B0
pn

// B0
pn // B0 // 0 .

We also use the short exact sequence of group schemes

0 // Bpn
// B

pn // B // 0 .

From these exact sequences for B0 and B, we obtain the exact sequences

B(Kv)pn
pn // B(Kv)pn // H1(Kv,Bpn) ,

B0(OK,v)pn
pn // B0(OK,v)pn // H1(OK,v,B

0
pn) ,

B0
v(kv)pn

pn // B0
v(kv)pn

// H1(kv, (B
0
v)pn) ,

which induce respective injections

B(OK,v)pn B(Kv)pn // // H1(Kv,Bpn) H1(Kv, Bpn) ,
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B0(OK,v)pn // // H1(OK,v,B
0
pn) ,

B0(kv)pn // // H1(kv, i
∗B0

pn) H1(kv, i
∗(B0

v)pn) ,

where i here denotes the natural map Speckv // // SpecOK,v . Taking projec-

tive limits, we obtain, respectively,

B̂(OK,v) B̂(Kv)
// // H1(Kv, TpB) H1(Kv, Tp(B)) ,

̂B0(OK,v)
// // H1(OK,v, Tp(B

0)) ,

B̂0(kv)
// // H1(kv, i

∗Tp(B
0)) H1(kv, i

∗Tp(B
0
v)) .

Together, these form a diagram:

B̂(OK,v) B̂(Kv)
// // H1(Kv, TpB) H1(Kv, Tp(B))

̂B0(OK,v)
// //

OO

OO

��

H1(OK,v, Tp(B
0))

base change

OO

B̂0(kv)
// // H1(kv, i

∗Tp(B
0)) H1(kv, i

∗Tp(B
0
v))

The injection

B0(kv)pn // // H1(kv, i
∗B0

pn) H1(kv, i
∗(B0

v)pn) ,

fits into the exact sequence

B0(kv)pn // // H1(kv, i
∗(B0

v)pn)
// H1(kv,B

0
v) .
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By Lang’s Theorem H1(kv,B
0
v) = 0, so that the map

B0(kv)pn // // H1(kv, i
∗B0

pn) H1(kv, i
∗(B0

v)pn) .

is surjective. By [11], Proposition 2.2.5, we have

H1(kv, i
∗Tp(B

0
v)) = H1(kv, (Tp(B

0))Iv),

The map

̂B0(OK,v)→ B̂0(kv)

is surjective since A0 → OK,v is smooth and OK,v Henselian, injective since

v 6 | p, making ker(B0(OK,v)→ B0(kv)) p-divisible. Since Speckv is proper over

SpecOK,v, then

H1(OK,v, Tp(B
0)) ' H1(kv, i

∗Tp(B
0)).

We obtain this diagram:

B̂(OK,v) B̂(Kv)
// // H1(Kv, TpB) H1(Kv, Tp(B))

̂B0(OK,v)
// //

OO

OO

��

����

H1(OK,v, Tp(B
0))

'

OO

B̂0(kv)
// // // H1(kv, i

∗Tp(B
0)) H1(kv, i

∗Tp(B
0
v))

H1(kv, (Tp(B))Iv)
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From this, we conclude that

B̂(Kv)/H
1(kv, Tp(B)Iv) ' B̂(OK,v)/ ̂B0(OK,v) ' ̂Bv(kv)/B0(kv).

Since Bv(kv)/B
0(kv) is finite, this last equality becomes

B̂(Kv)/H
1(kv, Tp(B)Iv) ' Bv(kv)/B

0(kv).

Proof of Lemma 4.5.1 First suppose v 6 | p. By Lemma 4.5.2 and the

definition of

RΓf(Kv, Tp(B)),

we see that

det
OK,p

RΓf(Kv, Tp(B)) =#
(
B̂(Kv)

)
· det(1− Frobv)

−1

To calculate det(1− Frobv)
−1, we use the exact sequence

Tp(B)Frobv=1 // // Tp(B)
1−Frobv// Tp(B) // // H1(kv, Tp(B)Iv),

0
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which shows that

det(1− Frobv)
−1 = #H1(kv, Tp(B)Iv).

We must now compute

#
(
B̂(Kv)/H

1(kv, Tp(B)Iv)
)
.

But this is given by Lemma 4.5.3 to be

#

(
Bv(kv)

B0
v(kv)

)
.

Now suppose v | p. The term

H0(B,Ω1
B/Kv)

∨

in degree 1 contributes a factor of

det
OK,p

H0(B,Ω1
B/Kv) = d ·

[F :K]∧
j=1

ωj


to

det
OK,p

RΓf(Kv, Tp(B)),

and the factor

#

(
Bv(kv)

B0
v(kv)

)
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is obtained as in the case v 6 | p.

To deal with the second complex (4.9), we use the following lemma, ob-

tained from the computations of Burns–Flach in [2].

Lemma 4.5.4. The cohomology of RΓf(K,Tp(B)) is given by

H0
f (K,Tp(B)) =0, (4.16)

H1
f (K,Tp(B)) =B(K)⊗Z Zp, (4.17)

0→ III(B)p∞ →H2
f (K,Tp(B))→ HomZp(B

∨(K)c,Zp)→ 0 (exact), (4.18)

H3
f (K,Tp(B)) =(B∨(K)p∞)∧, (4.19)

where ∧ denotes the Pontryagin dual.

Proof. From the definition ofRΓf(K,Tp(B)), it is apparent thatH0
f (K,Tp(B)) =

H0(OK,S, Tp(B)), which is 0. This is the statement (4.16).

It is also apparent that

H1
f (K,Tp(B)) = ker

H1(OK,S, Tp(B))→
⊕

v∈S−{∞}

H1(Kv, Tp(B))

H1
f (Kv, Tp(B))

⊕H1(C, Tp(B))

 .

Since C is algebraically closed, H1(C, Tp(B)) = 0. Since for all v,

H1
f (Kv, Tp(B)) = B̂(Kv),

then the above kernel must contain

B(K)⊗Z Zp.
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Since III(B), which is finite, surjects onto the kernel of

H1(OK,S, Vp(B)/Tp(B))

H1
f (K,Tp(B))⊗Qp/Zp

→
⊕

v∈S−{∞}

H1(Kv, Vp(B)/Tp(B))

H1
f (Kv, Tp(B))⊗Qp/Zp

,

B(K)⊗Z Zp is in fact all of H1
f (K,Tp(B)). This is statement (4.17).

To prove the statement (4.18), we use four pairings. The Weil pairing is

Tp(B)× Tp(B∨) // Zp(1) .

Second, we have the Pontryagin pairing

Tp(B)×B∨
p∞

// Qp/Zp(1)

Vp(B
∨)/Tp(B

∨)

.

Third, we have Poitou-Tate duality

H2
c (OK,S, Tp(B))×H1(OK,Sp , Vp(B

∨)/Tp(B
∨)(1)) // H3

c (OK,S,Qp/Zp(1))

trace
��

Qp/Zp.

We obtain

0 // H2
f (K,Tp(B))∧ // H1(OK,S, B

∨
p∞) //⊕

v∈S−{∞}
H1(Kv ,B∨p∞ )

H1
f (Kv ,Tp(B))⊥

.

Then we see that H2
f (K,Tp(B))∧ is just the Selmer group Sel(B∨)p∞ , and

H1
f (Kv, Tp(B))⊥ = (B(Kv))

⊥, which is B∨(Kv)⊗Qp/Zp. Consider the Galois
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cohomology exact sequence

0→ B∨(K)⊗Qp/Zp → Sel(B∨
p∞)→ III(B∨

p∞)→ 0. (4.20)

We use a fourth pairing, the Cassels–Tate pairing, which says that

III(B∨
p∞)∧ ∼ III(B)p∞ .

Also, we know that the Pontryagin dual ofB∨(K)⊗Qp/Zp is HomZp(B
∨(K),Zp).

Therefore, dualizing (4.20), we find that

0→ III(B)p∞ → H2
f (K,Tp(B))→ HomZp(B

∨(K),Zp)→ 0.

The statement (4.19) follows from Tate–Poitou duality:

H3
f (K,Tp(B))

'H3
c (OK,S, Tp(B))

'H0(OK,S, V
∨
p (B)/T∨

p (B)(1))∧

'(B∨(K)p∞)∧

From this lemma we deduce a corollary which identifies the rational coho-

mology.
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Corollary 4.5.5. The cohomology of RΓf(K,Vp(B)) is given by

H0
f (K,Vp(B)) =0, (4.21)

H1
f (K,Vp(B)) 'B(K)⊗Z Qp, (4.22)

H2
f (K,Vp(B)) '(B∨(K)c ⊗Z Qp)

∨, (4.23)

H3
f (K,Vp(B)) =0, (4.24)

where c denotes the conjugate Gal(K/K)-action.

The following lemma describes (4.10), the last of the three complexes.

Lemma 4.5.6. For RΓ(C, Tp(B)) ⊂ RΓ(C, Vp(B)), we have:

det
OK,p

H0(C, Tp(B)) =b−1 ·

[F :K]∧
j=1

γj

 (4.25)

⊂Kp ·

[F :K]∧
j=1

γj

 = det
Kp

H0(C, Vp(B)), (4.26)

det
OK,p

Hj(C, Tp(B)) =OK,p (4.27)

⊂Kp = det
Kp

Hj(C, Vp(B)) for j 6= 0. (4.28)

Proof. This result follows from the definition of b.

The last thing we need to translate Gross’ Conjecture is a map relating KΞ

to the determinant of the complex RΓc(OK,S, Vp(B)).

Lemma 4.5.7. There is a K ⊗Q Qp-linear isomorphism induced by the trian-
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gle (4.7):

Kϑp : detK⊗Qp RΓc(OK,S, Vp(B))−1 ' //
KΞ⊗Q Qp.

Proof. The result will follow immediately from the triangle (4.7) if we can

show that there is a natural K ⊗Q Qp-linear isomorphism

det
K⊗Qp

RΓf(K,Vp(B))−1

⊗ det
K⊗Qp

 ⊕
v∈S−{∞}

RΓf(Kv, Vp(B))


⊗ det

K⊗Qp
RΓ(C, Vp(B))

'→KΞ⊗Q Qp.

Recall that

KΞ = det
K
H0(B,Ω1

B/K)

⊗K det
K
H1(B(C),Q)

⊗K (det
K
B(K)⊗Z Q)

⊗K (det
K
B∨(K)c ⊗Z Q).
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First,

H0(C, Vp(B)) 'H1(B(C),Q)⊗Qp,

Hj(C, Vp(B)) =0 for j 6= 0,

whence

det
K⊗Qp

RΓ(C, Vp(B)) = det
K⊗Qp

(H1(B(C),Q)⊗Qp).

Second, for v | p,

H1
f (Kv, Vp(B))∨

'
exp∗

// H0(B,Ω1
B/K),

Hj
f (Kv, Vp(B) = 0 for j 6= 1,

the isomorphism being given by dual of the exponential map discussed in

Section 4.4, whence

det
K⊗Qp

⊕
v|p

RΓf(Kv, Vp(B))

 ' det
K
H0(B,Ω1

B/K),

while for v 6 | p,

RΓf(Kv, Vp(B)) is acyclic.
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Third, Lemma 4.5.5 says that

H1
f (K,Vp(B)) =B(K)⊗Z Qp,

H2
f (K,Vp(B)) =(B∨(K)c ⊗Z Qp)

∨,

Hj
f (K,Vp(B)) =0 for j 6= 1, 2,

whence

det
K⊗Qp

RΓf(K,Vp(B))−1 =( det
K⊗Qp

B(K)⊗Z Qp)

⊗K⊗Qp ( det
K⊗Qp

B∨(K)c ⊗Z Qp).

We obtain the K ⊗Q Qp-linear isomophism

det
K⊗Qp

RΓf(K,Vp(B))−1

⊗ det
K⊗Qp

 ⊕
v∈S−{∞}

RΓf(Kv, Vp(B))


⊗ det

K⊗Qp
RΓ(C, Vp(B))

'→KΞ⊗Q Qp

and the result follows.

Now we can reformulate the p-part of Gross’ Conjecture.

Theorem 4.5.8. The p-part of Gross’ Conjecture is equivalent to the state-

ment that

L(ψ, s) ∼ c(s− 1)rankOK
B(K) as s→ 1
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for some constant c ∈ C∗ such that

Kϑ
−1
∞ (c) ∈ KΞ⊗ 1

and that

OK,p · Kϑ−1
p (Kϑ

−1
∞ (c)) = det

OK,p
RΓc(OK,S, Tp(B))−1.

Proof. Let us examine the isomophism Kϑ∞. From the pairings (4.1) and

(4.2), we find that the image under Kϑ∞ of the generator of KΞ given by the

chosen bases ({γj}j, {ωj}j, and {xj}j), is

Ω · det
OK,p

(< xj, xk >)j,k = ΩRC

∣∣∣∣B(K)

X

∣∣∣∣ .
So the statements

Kϑ
−1
∞ (c) ⊂ KΞ⊗ 1

and

OK,p · Kϑ−1
p (Kϑ

−1
∞ (c)) = det

OK,p
RΓc(OK,S, Tp(B))−1

are equivalent to

c

RCΩ
∈ K (4.29)

and

OK,p · Kϑ−1
∞

(
c

RCΩ

)
= Kϑp

(
det
OK,p

RΓc(OK,S, Tp(B))−1

)
(4.30)
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(using for the second equality the fact that B∨(K) ' B(K)).

The first statement of Gross’ Conjecture is just inclusion (4.29), and the

p-part of the second is exactly

(
c

RCΩ

)
p

=

b · d ·#(III(B)) ·
∏
v 6 |∞

#

(
Bv(kv)

B0
v(kv)

)
p

, (4.31)

or, equivalently,

OK,p · Kϑ−1
∞

(
c

RCΩ

)
= OK,p · Kϑ−1

∞

b · d ·#(III(B)) ·
∏
v 6 |∞

#

(
Bv(kv)

B0
v(kv)

) .

(4.32)

Comparing (4.30) and(4.32), we see from the triangle (4.7) what must be

proven: that

Kϑp

(
det
OK,p

RΓc(OK,S, Tp(B))−1

)

is generated, in

det
Kp
RΓf(K,Vp(B))−1

⊗ det
Kp

 ⊕
v∈S−{∞}

RΓf(Kv, Vp(B)


⊗ det

Kp
RΓ(C, Vp(B)),

by

b · d ·#(III(B)) ·
∏
v 6 |∞

#

(
Bv(kv)

B0
v(kv)

)
,
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with respect to the chosen bases.

But this follows from Lemma 4.5.1, Lemma 4.5.4 and its Corollary 4.5.5,

and Lemma 4.5.6.
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Chapter 5

Elliptic curves with nonmaximal
endomorphism ring.

In order to study an elliptic curve E with nonmaximal endomorphism ring,

and its Weil restriction B, we employ another elliptic curve isogenous to E

and defined over the same base field F as E.

Lemma 5.0.1 ([21], Exercise II.1.2). Suppose E is an elliptic curve over

a (number) field F with EndF (E) ' O ⊆ OK. Then there exists an elliptic

curve E0 over F with EndF (E0) ' OK, and an isogeny E → E0 over F .

Proof. Say that OK is generated over Z by 1 and α, and that

O = Z + f · OK = Z + fα · Z.

Define E0 by the following commutative diagram, with exact row and di-
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agonal:

0 // Ef //

  @
@@

@@
@@

@ E
[f ] //

[fα]

��

E

E

  A
AA

AA
AA

E0

��@
@@

@@
@@

@

0

We shall construct an OK-action on E0 which agrees with the O-action on

E . We construct morphisms υ1, υ2, υ3, as shown in the following diagram:

Ef

  A
AA

AA
AA

A

0 // Ef //

  A
AA

AA
AA

A E //

��
υ1

��

E

  A
AA

AA
AA

A

υ2

��

E

  B
BB

BB
BB

B E0

��?
??

??
??

?

υ3~~
E0

!!B
BB

BB
BB

B 0

0

The upper diagonal is the same as the lower diagonal. The morphism υ1 is

defined by commutativity. The morphism υ2 is obtained by observing that the

kernel of the morphism

E
[f ] // E

is contained in the kernel of υ1. The morphism υ3 is obtained as follows. The
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kernel of the upper diagonal morphism

E

  A
AA

AA
AA

E0

is the image of the composite morphism:

Ef // E

[fα]

��
E

This image is

[fα]Ef ,

which has pre-image

[fα]Ef2

under

E
[f ] // E ,

whose image under

E

[fα]

��
E
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is

[fα]2Ef2

=[f 2α2]Ef2

=[fα2]Ef

=[f(aα+ b)]Ef2 for some a, b ∈ Z

=([a][fα] + [b][f ])Ef

=[a][fα]Ef ,

which is contained in the kernel of the lower diagonal morphism:

E

  A
AA

AA
AA

E0

Therefore, the kernel of the upper diagonal morphism

E

  A
AA

AA
AA

E0

(in which we were originally interested) is contained in the kernel of υ2, and

υ3 can be constructed making the diagram commute. We then define

[α] : E0 → E0
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to be υ3. The morphisms

1 = id : E0 → E0

and

[α] : E0 → E0

are extended by linearity to an action of OK upon E0.

One checks that this action is a well-defined ring action and agrees with

the action of O upon E. That is, for any x ∈ O ⊂ OK , the diagram

E
[x] //

��

E

��
E0

[x] // E0

commutes.

It is known (see for example [20], Appendix C, Theorem 11.5) that the

j-invariant of E (resp. E0) belongs to the ring class field H(O) associated to

O (resp .the Hilbert class field H = H(OK) of K). We have a tower of fields

K ⊂ H ⊂ H(O) ⊂ F . The curves E and E0 are twists over F of elliptic curves

defined over H(O) and H, respectively.

As before, we have B the Weil restriction of E, and we define B0 to be the

Weil restriction of E0. The varieties B and B0 are isogenous abelian varieties

over K with complex multiplication by O and OK , respectively.
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5.1 The Burns–Flach Conjecture.

The elliptic curve E is defined over F , with complex multiplication by the

order O ⊆ OK , with Weil restriction B := ResFKE, and with E having

Grössencharacter ψ. The Burns–Flach Conjecture concerns the Weil restric-

tion B of the original elliptic curve E.

Let f be the conductor of F . Fix a prime p. Let S, a set of places of K, be

defined as the union of the set of prime divisors of fp, and the set of primes

below those of bad reduction of E/F , along with the infinite place. Then by

the Criterion of Néron–Ogg–Šafarevič, S −{∞} is the set of places where the

extensions F (Epn)/K are ramified.

Conjecture 5.1.1 (Burns–Flach). We have

L(ψ, s) ∼ c(s− 1)rankOK
B(K) as s→ 1

for some constant c ∈ C∗ such that

Kϑ
−1
∞ (c) ∈ KΞ⊗ 1

and

Op · Kϑ−1
p (Kϑ

−1
∞ (c)) = det

Op
RΓc(OK,S, Tp(B))−1. (5.1)

Note 5.1.2. The Burns–Flach Conjecture is a strengthening of the p-part of

Gross’ Conjecture (for primes p dividing the conductor of O). Taking tensor
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products with OK,p in the statement of the Burns–Flach Conjecture, we have

Tp(B)⊗Op OK,p = Tp(B0), and the determinant over Op becomes a determinant

over OK,p, yielding the p-part of the statement of Gross’ Conjecture.

5.2 A refinement in the case F (Etors)/K is abelian.

We wish to refine the conjecture further by considering the full endomorphism

algebra of B, which can be much larger than K. Write R := EndK(B),

R := R⊗Z Q, Rp := R⊗Z Zp, and Rp := R⊗Z Qp = R⊗Q Qp.

Lemma 5.2.1. Suppose F (Etors)/K is abelian. Then R is a commutative

semisimple K-algebra of rank [F : K]. Also, R is projective over O and Tp(B)

is projective over Rp.

Proof. R is computed in [8] Section 4. R = EndK(B) is the Galois invariants

of EndF (B), where B is isomorphic over F to

∏
σ∈G

Eσ.

Therefore R is the Galois invariants of

HomF

(∏
σ∈G

Eσ,
∏
σ∈G

Eσ

)
=

∏
σ1,σ2∈G

Hom(Eσ1 , Eσ2),

which is seen to be ∏
σ∈G

Hom(Eσ, E) · σ.

Thus R is projective over O. As well, as in [8], §4, R is a commutative semisim-



54

ple K-algebra. (In the special case where E is isogenous to a base change from

K to F (as in the examples we construct later), R ' K[G].) We have

Tp(B) =
∏
τ∈G

Tp(E
τ ),

induced by the decomposition

B(K) = E(K ⊗K F ) = E(
∏
τ∈G

K) =
∏
τ∈G

Eτ (K).

We know that Tp(E) is a free Op-module of rank 1. Pick an Op-basis ξ of

Tp(E). And for each σ ∈ G, HomOp(E
σ, E) ⊗Z Zp is also a free Op-module

of rank 1. Pick an Op-basis b(σ) for HomOp(E
σ, E)⊗Z Zp, that is, an isogeny

Eσ b(σ)−→ E of degree prime to p. Composing σ with b(σ), we obtain (since b(σ)

has a kernel prime to p) a map

E(K ⊗K F )
σ // Eσ(K ⊗K F )

b(σ) // E(K ⊗K F ) .

Or, in more detail, where Bσ = ResFKE
σ, we obtain

B(K)
σ // Bσ(K)

b(σ) // B(K)

E(K ⊗K F )
σ //

=

Eσ(K ⊗K F )
b(σ) //

=

E(K ⊗K F )

=

∏
τ∈GE

τ (K)
σ //

' ∏
τ∈GE

τσ(K)
b(σ)τ //

' ∏
τ∈GE

τ (K).

'

The isogeny b(σ) induces an isomorphism Tp(B
σ) ' Tp(B). So, taking Tate
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modules, we obtain the diagram

Tp(B) σ // Tp(B
σ)

b(σ) // Tp(B)

∏
τ∈G Tp(E

τ ) σ //
= ∏

τ∈G Tp(E
τσ)

b(σ) //

= ∏
τ∈G Tp(E

τ )

=

( ξ
τ=1

, 0, . . . , 0)
� //

∈

(0, . . . , 0, ξ
τ=σ−1

, 0, . . . , 0)
� //

∈

(0, . . . , 0, b(σ)σ
−1

τ=σ−1

ξ, 0, . . . , 0)

∈

Since ξ is an Op-basis of Tp(E), then b(σ)σ
−1
ξ is also an Op-basis of Tp(E).

Suppose

(ατ · b(τ)τ
−1

ξ)τ∈G

is any element of ∏
τ∈G

Tp(E
τ ) = Tp(B).

We can write

(ατ · b(τ)τ
−1

ξ)τ∈G =

(∑
τ∈G

ατ · b(τ) · τ

)
( ξ
τ=1

, 0, . . . , 0)

with unique ατ ∈ Op, that is, with unique

(∑
τ∈G

ατ · b(τ) · τ

)
∈ Rp.

Therefore ( ξ
τ=1

, 0, . . . , 0) is an Rp-basis of Tp(B). In particular, Tp(B) is a

projective Rp-module.
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We define an L-function for B as we did for E,

RL(B/K, s) :=
∏
w 6 |∞

RPw(B/K,Nw−s)−1 : C→ R⊗Q C,

where

RPw(B/K, x) = det
R⊗Q`

(1− xφw | (T`(B)⊗Q`)Iw).

Write ϕ for a Grössencharacter of K, which when pre-composed with the

norm, gives ψ. Then, as in [8], the possible choices for ϕ are {ϕχ : χ ∈ Ĝ}.

Writing X for the set of orbits of {ϕχ : χ ∈ Ĝ} under AutKC, we have

R = K ⊗O R = K ⊗O EndKB '
∏
X

K(ϕχ),

where K(ϕχ) is K with the values of ϕχ adjoined. The L-function RL(B, s)

corresponds to the tuple of functions

(L(σ(ϕχ), s))X,σ∈HomK(K(ϕχ),C),

which is considered an element of R⊗Q C, where

R '
∏
X

K(ϕχ).
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Define

RΞ := det
R
H0(B,Ω1

B/K)⊗R det
R
H1(B(C),Q)

⊗R (det
R
B(K)⊗Z Q)⊗R (det

R
B∨(K)c ⊗Z Q),

As with Kϑ∞ in Section 4.3, the integration and modified height pairings

induce a R⊗ R-linear isomorphism

Rϑ∞ : RΞ⊗Q R ' R⊗ R.

We have a Rϑp, which is the analog of Kϑp:

Lemma 5.2.2. There is a R⊗Q Qp-linear isomophism:

Rϑp : det
R⊗Qp

RΓc(OK,S, Vp(B))−1 '→ RΞ⊗Q Qp.

Proof. This is proved in exactly the same way as Lemma 4.5.7.

Now we can state the refined Burns–Flach Conjecture:

Conjecture 5.2.3. We have

RL(B, s) ∼ Rc(s− 1)rankRB(K) as s→ 1

for some Rc ∈ (R⊗ R)∗ such that

Rϑ
−1
∞ (Rc) ⊂ RΞ⊗ 1
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and

Rp · Rϑ−1
p (Rϑ

−1
∞ (Rc)) = det

Rp
RΓc(OK,S, Tp(B))−1. (5.2)

Note 5.2.4. Taking norms from Rp to Op (which is possible by Lemma 5.2.1)

yields the original conjecture of Burns–Flach.
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Chapter 6

Translation into the
terminology of Kato.

In this chapter we pose a conjecture in the terminology of Kato, which is

equivalent to the refined Burns–Flach Conjecture for B.

Assumption 6.0.1. We have rank(E(F )) = 0, or equivalently rank(B(K)) =

0. In particular, this makes

RΞ = det
R
H0(B,Ω1

B/K)⊗R det
R
H1(B(C),Q).
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For ease of notation, we will now write the following:

T :=Tp(B)

V :=Vp(B)

Ξ :=RΞ

ϑ∞ :=Rϑ∞

ϑp :=Rϑp

c :=Rc

The Rp-sheaf T on SpecOK,S is smooth and invertible. Define the invertible

Rp-module

∆Rp(OK,S, T )

to be

(
det
Rp

(RΓ(OK,S, T ))

)−1

⊗Rp

(
det
Rp

(RΓ(OK,S ⊗Z R, T (−1)))

)−1

,

and

∆Rp(OK,S, V )

to be

∆Rp(OK,S, T )⊗Zp Qp

We compute the cohomology of RΓ(OK,S, V ) as follows:

Lemma 6.0.2. • H1(OK,S, V ) is a 1-dimensional Rp-vector space.
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• Hj(OK,S, V ) = 0 for j 6= 1.

Proof. Use the exact triangle

RfΓ(OK,S, V )→ RΓ(OK,S, V )→
⊕
v∈S

R/fΓ(Kv, V )

(see [4], §3.2), which is the complex

0→H0
f (K,V )→ H0(OK,S, V )→

⊕
v∈S

H0
/f(Kv, V )

→H1
f (K,V )→ H1(OK,S, V )→

⊕
v∈S

H1
/f(Kv, V )

→H2
f (K,V )→ H2(OK,S, V )→

⊕
v∈S

H2
/f(Kv, V )

→H3
f (K,V )→ · · · .

Now H0(OK,S, V ) = 0, and since RΓf(K,V ) is acyclic by Assumption 6.0.1,

we have

H1(OK,S, V ) '
⊕
v∈S

H1
/f(Kv, V ),

H2(OK,S, V ) '
⊕
v∈S

H2
/f(Kv, V ),
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the second giving us by duality

H2(OK,S, V ) '
⊕
v∈S

H2
/f(Kv, V )

'
⊕
v∈S

H2(Kv, V )

'
⊕
v∈S

H0(Kv, V
∗(1))∗

'
⊕
v∈S

H0(Kv, V )∗

since V is the Weil restriction of an elliptic curve

=0.

Consider the exact sequence

0 // H1
f (Kv, V ) // H1(Kv, V ) // H1

/f(Kv, V ) // 0

0

.

If v 6 | p, then H1(Kv, V ) = 0, and for v | p, we compute

dimRp H
1(OK,S, V ) =

∑
v|p

dimRp H
1
/f(Kv, V )

=
∑
v|p

dimRp H
1(Kv, V ).



63

Using Kp =
∏

v|pKv we rewrite this:

dimOp Rp · dimRp H
1(OK,S, V ) = dimOp Rp ·

∑
v|p

dimRp H
1(Kp, V )

=
∑
v|p

dimOp H
1(Kp, V )

Applying Tate’s Euler characteristic formula

dimOp H
0(Kv, V )− dimOp H

1(Kv, V ) + dimOp H
2(Kv, V )

=− [Kv : Qp] dimOp ,

with

H0(Kv, V ) = H2(Kv, V ) = 0,

we obtain

dimOp Rp · dimRp H
1(OK,S, V ) =[Kp : Qp] dimOp V

=[Kp : Qp] dimOp Rp,

where the last equality follows from

dimRp V = 1.
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Further, we find

dimOp Rp · dimRp H
1(OK,S, V ) =[Kp : Qp] dimOp Rp,

=[Kp : Qp] dimOp B

= dimOp B̂(Kp)⊗Zp Qp,

⇒ dimRp H
1(OK,S, V ) = dimRp B̂(Kp)⊗Zp Qp,

so that

H1(OK,S, V )

has dimension 1 over Rp.

The dual exponential map (see [13] Chapter II §1.2-§1.4) is

exp∗ : H1(K,V )→ H0(B,Ω1
B/K),

and gives us a map

det
Rp

(exp∗ ⊗ id) : ∆Rp(OK,S, V )→ Ξ⊗Qp,

the determinant of Kato’s exp∗ ⊗ id.

Note that for v ∈ S − {∞}, all terms in RΓf(Kv, V ) are zero except for

possiblyH1
f (Kv, V ), and that all terms in RΓ(C, V ) are zero except for possibly

H0(C, V ).

The modules involved in the refined Burns–Flach Conjecture are in fact

isomorphic to those just defined above. We summarize the situation in the
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following two lemmata.

Lemma 6.0.3.

det
Rp

RΓc(OK,S, T )−1 ' ∆Rp(OK,S, T )

Proof. We use the complex R̃Γc(OK,S, T ) which is defined in this case by

the exact triangle

R̃Γc(OK,S, T )→ RΓ(OK,S, T )→
⊕

v∈S−{∞}

RΓ(Kv, T ).

We consider the following exact triangle which it satisfies:

RΓc(OK,S, T ) // R̃Γc(OK,S, T ) // RΓ(C, T ) (6.1)

Tate–Poitou duality gives

det
Rp

R̃Γc(OK,S, T ) ' det
Rp

RΓ(OK,S, T
∗(1))∗[−3]
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So from (6.1),

det
Rp

RΓc(OK,S, T (1)) ' det
Rp

R̃Γc(OK,S, T )⊗Rp det
Rp

RΓ(OK,S ⊗ R, T )−1

' det
Rp

RΓc(OK,S, T
∗(1))∗[−3]⊗Rp det

Rp
RΓ(OK,S ⊗ R, T )−1

'
−1

det
Rp

RΓc(OK,S, T
∗(1))∗ ⊗Rp det

Rp
RΓ(OK,S ⊗ R, T )−1

' det
Rp

RΓc(OK,S, T
∗(1))# ⊗Rp det

Rp
RΓ(OK,S ⊗ R, T (−1))

since T ∗(1) ' T#, whence T ∗# ' T (−1),

' det
Rp

RΓc(OK,S, T )⊗Rp det
Rp

RΓ(OK,S ⊗ R, T (−1))

where “∗” denotes RHom(•,Zp) and “#” means changing the Rp-action via

the (Rosati) involution on Rp. We conclude that

det
Rp

RΓc(OK,S, T )−1

=

(
det
Rp

(RΓ(OK,S, T ))

)−1

⊗Rp

(
det
Rp

(RΓ(OK,S ⊗ R, T (−1)))

)−1

is isomorphic to

∆Rp(OK,S, T ).

This proves Lemma 6.0.3.

Lemma 6.0.4. The diagram

detRp RΓc(OK,S, V )−1 ϑp //
��

Lemma 6.0.3
����

Ξ⊗Qp

∆Rp(OK,S, V )
detRp (exp∗⊗id)

// Ξ⊗Qp
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commutes, where

det
Rp

(exp∗ ⊗ id)

the determinant of Kato’s exp∗ ⊗ id.

Proof. The map ϑp is constructed from the dual exponential maps

H1
f (Kv, Vp(B))∨

'
exp∗

// H0(B,Ω1
B/K),

for v | p. The left vertical arrow is obtained from dualities and defining

exact triangles, so that the composition of the left vertical map and the lower

horizontal map detRp(exp∗ ⊗ id) is another exponential map, which at v | p is

exp∗.

Knowing that the last two results are true, we can now pose the refined

Burns–Flach Conjecture in the terminology of Kato.

Conjecture 6.0.5. We have

ϑ−1
∞ (RL(B, 1)) ⊂ Ξ⊗ 1 (6.2)

and

Rp · det(exp∗⊗id)−1(ϑ−1
∞ (RL(B, 1)) = ∆Rp(OK,S, T ). (6.3)
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Chapter 7

Proof of the conjecture.

The proof will be indicated in this chapter, with more details being given in

the following chapters.

7.1 A universal situation.

Following Kato, we now pass to a situation universal with respect to invertible

sheaves over p-adic rings such as Tp(B) over Rp.

Write Km for the ray class field modulo m, and let f be the conductor of

B. Recall that S is the set of places of K dividing ∞fp. Put

Λn :=Zp[Gal(K fpn/K)],

Λ∞ :=lim←−
n

Λn = Zp[Gal(K fp∞/K)] (the completed Galois group algebra),

Fn :=(fKfpn )∗(fKfpn )∗(Zp(1)SpecOK,S)

(fL being the canonical morphism SpecOL,S → SpecOK,S),

F∞ :=lim←−
n

Fn
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We write ∆Λ∞(OK,S,F) for the invertible Λ∞-module

(
det
Λ∞

(RΓ(OK,S,F))

)−1

⊗Λ∞

(
det
Λ∞

(RΓ(OK,S ⊗Z R,F(−1)))

)−1

.

The action of Gal(K/K) on Tp(B)(−1) is given by a character

Gal(K/K) // // Gal(K fp∞/K) // R×
p ,

inducing a ring homomorphism Λ∞ → Rp, so that

T ' F∞ ⊗Λ∞ Rp

and

∆Λ∞(OK,S,F∞)⊗Λ∞ Rp ' ∆Rp(OK,S, T ).

To better describe

∆Λ∞(OK,S,F∞),

we calculate the cohomology of OK,S with F∞-coefficients:

Lemma 7.1.1. • H0(OK,S,F∞) = 0

• H1(OK,S,F∞) = lim←−
n

O×
Kfpn ,S

⊗ Zp

• There is a natural short exact sequence

lim←−
n

PicOKfpn ,S ⊗Z Zp // // H2(OK,S,F∞) // // lim←−
n

 ⊕
w|finite v∈S

Zp

sum=0

.
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Proof. We use the short exact sequence

0 // µpk // Gm
pk // Gm

// 0 ,

for which the Kummer sequence yields the following exact sequences:

0 // H0(OKfpn ,S, µpk) // // H0(OKfpn ,S,Gm)pk

H0(OKfpn ,S,Gm)/pk // // H1(OKfpn ,S, µpk) // // H1(OKfpn ,S,Gm)pk

H1(OKfpn ,S,Gm)/pk // H2(OKfpn ,S, µpk) // H2(OKfpn ,S,Gm)pk

BrS(OKfpn )pk

Take projective limits lim←−
k

to obtain the following exact sequences:

0 // H0(OKfpn ,S,Zp(1)) // 0

OKfpn ,S ⊗Z Zp, // // H1(OKfpn ,S,Zp(1)) // // 0

PicOKfpn ,S ⊗Z Zp
// // H2(OKfpn ,S,Zp(1)) // //

 ⊕
w|finite v∈S

Zp

sum=0

Take projective limits again, this time lim←−
n

, we find

H0(OK,S,F∞) = 0
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and

lim←−
n

OKfpn ,S ⊗Z Zp = H1(OK,S,F∞),

and obtain another exact sequence:

lim←−
n

PicOKfpn ,S ⊗Z Zp // // H2(OK,S,F∞) // // lim←−
n

 ⊕
w|finite v∈S

Zp

sum=0

Thus the result is proved.

We now use a construction of Kato ([13], III, §1.2). We will use his

Assumption 7.1.2. K has class number 1.

Kato’s E, and its Grössencharacter ν, we will denote by E0 and ϕ, respec-

tively. Now, our E0/K is an elliptic curve isogenous to our E of Chapter 5

and Chapter 6, and with complex multiplication by the full ring of integers

OK . Then our “ϕ” here is consistent with that of those chapters.

We use the following proposition of Kato (written using our notation).

Proposition 7.1.3 ([13], III, 1.1.5). Suppose a ∈ End(Eχ
0 ), (a, 6) = 1.

Then there exists a unique rational function θa ∈ K(Eχ
0 )× satisfying the fol-

lowing two conditions:

Nb(θa) = θa for any b ∈ End(Eχ
0 ) such that (a, b) = 1. (7.1)

The divisor of θa is deg(a)(e)− ker(a). (7.2)
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Choose a non-zero ideal a of OK prime to 6fp, and such that N(a)ψ(a)−1

is not a root of 1. Set a = ψ(a). Let

Υa,n : H0(K fpn ⊗K R,Zp) '
⊕
ι

H0(C,Zp)→ H1(OKfpn ,S,Zp(1))

be the homomorphism

(aι)ι 7→
∑
ι

aι(ι
−1(θa(exp(hn))),

where ι ranges over all embeddings K fpn → C whose restriction to K concides

with the given embedding of K into C (i.e., over all finite places of K fpn), and

where hn = π−ng−1h, π = ψ(p), g a generator of f. Now hn will be an OK-basis

of (fpn)−1H1(E0(C),Z). (And θa(exp(hn)) is independent of the choice of h

and g because θa ◦ [u] = θa for any u ∈ (OK)×.) Then

lim←−
n

Υa,n : H0(C,F∞(−1))→ H1(OK,S,F∞)

corresponds to an element of

H1(OK,S,F∞)⊗Λ∞ H0(C,F∞(−1))−1,

which we denote by za,Λ∞(OK,S,F∞). Define

za,Rp(OK,S, T ) ∈ H1(OK,S, T )⊗Rp H
0(K ⊗ R, T (−1))−1
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to be the image of za,Λ∞(OK,S,F∞) under the map

H1(OK,S,F∞)⊗Λ∞ H0(K ⊗ R,F∞(−1))−1

��
H1(OK,S, T )⊗Rp H

0(K ⊗ R, T (−1))−1.

Define

zRp(OK,S, T ) ∈ H1(OK,S, T )⊗Rp H
0(C, T (−1))−1

to be (
N(a)−N(a)χT (σa)

−1
)−1

za,Rp(OK,S, T ),

where χT is the action on T . Here N(a) − N(a)χT (σa) is invertible in Rp

because χT (σa) = N(a)ψ(a)−1α for a root α of 1 in K[G]. Then zRp(OK,S, T )

is independent of the choice of a. Define

zΛ∞(OK,S,F∞) ∈ H1(OK,S,F∞)⊗Λ∞ H0(C,F∞(−1))−1 ⊗Λ∞ quot(Λ∞)

to be

(N(a)− σa)
−1 za,Λ∞(OK,S,F∞).

Observe that we have constructed elements

za,Λ∞(OK,S,F∞)
�

))SSSSSSSSSSSSSS,

uulllllllllllll

za,Rp(OK,S, T )
�

))RRRRRRRRRRRRR
zΛ∞(OK,S,F∞).

zRp(OK,S, T )
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7.2 The strategy of proof.

The rest of our exposition has two parts. First, following the approach of

Kato, we show in §8 that zΛ∞(OK,S,F∞) is an Λ∞-basis of ∆Λ∞(OK,S,F∞),

which allows us to conclude that zRp(OK,S, T ) is a Rp-basis of ∆Rp(OK,S, T ).

Second, we find (Theorem 9.0.2), using [13], III, Theorem 1.2.6, that the image

of zRp(OK,S, T ) under the map

det
Rp

(exp∗ ⊗ id) : det
Rp

∆Rp(OK,S, V )→ Ξ⊗Qp

is sent by ϑ∞ to (LS((ϕχ)−1, 0))χ∈Ĝ, where LS((ϕχ)−1, 0) equals the L-value

L(ϕχ, 1), deprived of the Euler factors at primes dividing f. But the Euler

factors at primes of bad reduction are 1, and we shall assume that the Euler

factors at any other primes dividing f, are also units at p. So we may disregard

the missing Euler factors.

Our result on the image of

zRp(OK,S, T )

shows that the image of

det
Rp

∆Rp(OK,S, T )

under exp∗ is generated by (ϑ∞)−1(RL(B/K, 1)), as asserted by the Burns–

Flach Conjecture.

We summarize the strategy of proof, including the translation of the re-
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fined Burns–Flach Conjecture into the terminology of Kato, in the following

diagram:

detRp RΓc(OK,S, V )−1 '
ϑp

//
��

Lemma 6.0.3
����

Ξ⊗Qp
'
ϑ∞

// R⊗ R

∆Rp(OK,S, V ) '
detRp (exp∗⊗id)

// Ξ⊗Qp
'
ϑ∞

// R⊗ R

∆Rp(OK,S, T )

⊂

zRp(OK,S, T )

∈

� //
∑

[χ] L(ϕχ, 1)c+[χ]

∈

� // (L(ϕχ, 1))[χ]

∈

The first line depicts the morphisms involved in the refined Burns–Flach Con-

jecture. The second line shows the translation into the terminology of Kato.

On the third line is given the integral submodule of the vector space just above.

On the fourth line is a basis for the integral submodule (on the left), and its

images under the two maps of the second line. The element c+[χ] is defined to

be the pre-image, under ϑ∞, of the element of R with [χ]-component 1 and all

other components 0.
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Chapter 8

A Λ∞-basis of ∆Λ∞(OK,S,F∞).

We will make an

Assumption 8.0.1. • K has class number 1.

• p 6 | [K(f0p) : K], where f0 | f is the prime-to-p part of f.

• p 6 | µ(HK), where HK is the Hilbert Class Field of K.

In this chapter we prove the following

Theorem 8.0.2. Recall that the finite places of S are exactly those dividing

fp. Then

zΛ∞(OK,S,F∞)

is an Λ∞-basis of

∆Λ∞(OK,S,F∞).

To work more easily with the element

zΛ∞(OK,S,F∞) ∈ H1(OK,S,F∞)⊗Rp H
0(K ⊗ R,F∞(−1))−1,
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we fix a basis

yΛ∞(OK,S,F∞)

of

H0(K ⊗ R,F∞(−1))−1.

Here yΛ∞(OK,S,F∞) is an inverse system of embeddings

K fpn ↪→ C

which could come, for example, from a fixed embedding Q ↪→ C. Now also fix

xa,Λ∞(OK,S,F∞) ∈ H1(OK,S,F∞)

such that

za,Λ∞(OK,S,F∞) = xa,Λ∞(OK,S,F∞)⊗Rp yΛ∞(OK,S,F∞)

and

yΛ∞(OK,S,F∞)

is a basis of H0(K ⊗ R,F∞(−1))−1. Correspondingly, we express

zΛ∞(OK,S,F∞) = xΛ∞(OK,S,F∞)⊗Rp yΛ∞(OK,S,F∞),

where

xΛ∞(OK,S,F∞) = (N(a)− σa)
−1xa,Λ∞(OK,S,F∞).
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The primary result we will be using is the

Theorem 8.0.3 ([17], Theorem 4.1: Main Conjecture).

char(A∞) = char(U∞/C∞),

where

A∞ =lim←−
n

An

U∞ =lim←−
n

Un

C∞ =lim←−
n

Cn,

where An is the p-part of the ideal class group of K fpn, Un is the global units,

and Cn is the elliptic units. The inverse limits are all with respect to the norm

maps.

We need a lemma to permit us to deal with modules over discrete valuation

ring, instead of with the Λ∞-modules themselves.

Lemma 8.0.4. Let N be a local Noetherian integral domain and suppose

I, J ⊂ M are two invertible N-submodules of an invertible quotN-submodule

M . (Since N and quotN are local, “invertible” means free of rank 1.) If N is

Cohen-Macaulay then I = J if and only if Iq = Jq for all height-1 prime ideals

q of N .
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Proof. The result would follow if we could show that

I =
⋂

htq=1

Iq ⊂M and J =
⋂

htq=1

Jq ⊂M.

Since Iq = Nq ⊗N I and Jq = Nq ⊗N J , then this would in turn be implied by

N =
⋂

htq=1

Nq ⊂ quotN.

The inclusion

N ⊆
⋂

htq=1

Nq

is obvious. To prove

N ⊇
⋂

htq=1

Nq,

let

quotN 3 x
y
6∈ N,

where x, y ∈ N . Then y 6∈ N∗,⇒ (y) 6= N , so that y is a (1-term) N -regular

sequence. By [15] §15 Lemma 4, we find that

dimN/(y) = dimN − 1.

But [15] §16 Theorem 31(i) implies that

dimN/(y) = dimN − ht(y).

We conclude that ht(y)=1, which means that y lies in some height-1 prime
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ideal q of N . Therefore x
y
6∈ Nq and in particular

x

y
6∈
⋂

htq=1

Nq.

Note 8.0.5. The ring Λ∞ is

Zp[Gal(K f0p/K)][[Gal(K f0p∞/K f0p)]] ' Zp[Gal(K f0p/K)][[x, y]],

where f0 is the prime-to-p part of f. If p 6 | [K f0p : K] then Zp[Gal(K f0p/K)]

is a product of discrete valuation rings; hence Λ∞ is regular. If p | [K f0p : K]

then Λ∞ is no longer regular. But the ring Λ∞ is a complete intersection and

in particular is Cohen–Macaulay.

We will use the Main Conjecture to analyze ∆Λ∞(OK,S,F∞). The following

lemma relates the cohomology of OK,S to Rubin’s Iwasawa modules, to which

we will then be able to apply the Main Conjecture.

Lemma 8.0.6. • H1(OK,S,F∞) ' US,∞

• 0 // AS,∞ // H2(OK,S,F∞) // XS,∞ // 0 (exact)

Note 8.0.7. The Main Conjecture deals with modules U∞ and A∞, whereas

here we are using the respectively corresponding modules US,∞ and AS,∞, where

the finite primes above those of S are inverted. We have the exact sequence

0→ U∞ → US,∞ → Y ′
S,∞ → A∞ → AS,∞ → 0
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of Λ∞-modules, which gives rise to the following exact sequence of Λ∞-modules

0→ U∞/C∞ → US,∞/C∞ → Y ′
S,∞ → A∞ → AS,∞ → 0.

Moreover, for any height-1 prime q we have char(Y ′
S,∞,q) = 0. (To see this,

consider a place v of K. If v has infinite inertial degree, we have Y ′
{w|v},∞

itself being 0 since the norm maps on units (the maps between the various

components of the projective limit) correspond to multiplication by the inertial

degrees on the corresponding valuations. On the other hand, if v = p, then

since there only finitely many places above p in K∞, then Y ′
{w|v},∞ is finitely

generated over Zp, hence pseudonull.)

Proof of Lemma 8.0.6. Since

lim←−
n

O×
Kfpn ,S

⊗ Zp ' lim←−
n

US,n = US,∞,

lim←−
n

PicOKfpn ,S ⊗Z Zp ' lim←−
n

AS,n = AS,∞,

and

0 // XS,∞ // YS,∞ // Zp
// 0

lim←−
n

 ⊕
finite w|v∈S

Zp


,

then Lemma 7.1.1 immediately yields the desired result.
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Another lemma relates the constructed element

xa,Λ∞(OK,S,F∞) ∈ H1(OK,S,F∞)

to the Iwasawa modules:

Lemma 8.0.8. For all height-1 prime ideals q of Λ∞, we have

lengthΛ∞,q(Λ∞,q/xΛ∞(OK,S,F∞) · Λ∞,q) + lengthΛ∞,qXS,∞,q = lengthΛ∞,qC∞,q.

Proof of Lemma 8.0.8. The ideal q induces a character

Gal(Kfp/K) = Gtor
∞ ⊂ Λ→Λq → Λq/qΛq ' Qp(ψ),

(where the last is some finite extension of Qp) the prime-to-p part of which we

denote d | f0. Now C∞,q is spanned by an elliptic unit xdp∞ , while

xf0p∞ = xΛ∞(OK,S,F∞)

(both denoted using notation of the form Θ(v;L, a) in [19], II, §2), satisfying

the Euler relations

NKf0/Kd(xf0p∞) =

 ∏
p|f0, 6 |d

(1− Frob−1
p )

xdp∞ ,
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where

NKf0/Kd =
∑

σ∈Gal(Kf0/Kd)

σ ∈ Λ.

Localizing at q, the norm element NKf0/Kd becomes a unit in Λq and thus xf0p∞

a multiple of xdp∞ . Moreover, the element

∏
p|f0, 6 |d

(1− Frob−1
p )

is also the charactistic ideal of XS,∞,q. The result follows.

Now we are ready to give the

Proof of Theorem 8.0.2. We will consider the situation locally, one prime

at a time. (We will use the fact that

char(M) =
∏

htq=1

qlengthRq
Mq

for any finitely generated torsion Λ∞-module M .) We aim to prove that

zΛ∞(OK,S,F∞)

is a (Λ∞)q-basis of

∆Λ∞(OK,S,F∞)q,

for any height-1 prime q. We will then conclude from Lemma 8.0.4 that

zΛ∞(OK,S,F∞) is a Λ∞-basis of ∆Λ∞(OK,S,F∞).

Fix a height-1 prime q of Λ∞. We may apply Lemma 8.0.4 here.
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Considering the integral complex

RΓ(OK,S,F∞)q,

the result will follow if we can show that

H1(OK,S,F∞)q/((Λ∞)q · xΛ∞(OK,S,F∞))

and

' H2(OK,S,F∞)q

have the same length as Λ∞,q-modules.

By the first assertion of Lemma 8.0.6, and 8.0.8, this last statement is

equivalent to

charΛ∞,q(US,∞,q/C∞,q) · charΛ∞,qXS,∞,q

=charΛ∞,qH
2(OK,S,F∞)q · charΛ∞,qY

′
S,∞,q,

then by the second assertion of Lemma 8.0.6, to

charΛ∞,q(US,∞,q/C∞,q) · charΛ∞,qXS,∞,q

=charΛ∞,qXS,∞,q · charΛ∞,qAS,∞,q · charΛ∞,qY
′
S,∞,q,
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which is rephrased

lengthΛ∞,q(US,∞,q/C∞,q)

=lengthΛ∞,qAS,∞,q + lengthΛ∞,qY
′
S,∞,q.

In view of Note 8.0.7, the last statement becomes

lengthΛ∞,q(U∞,q/C∞,q) = lengthΛ∞,qA∞,q.

Consequently, the statement to be proved follows from the Main Conjec-

ture.
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Chapter 9

The image of the basis.

We wish to consider the [χ]-components of R individually, where [χ] is the

orbit of χ ∈ Ĝ under AutKC. Accordingly, choose for each [χ] a pre-image

c+[χ], under ϑ∞ in Ξ, of the element of R with [χ]-component 1 and the other

components 0.

We rephrase a result of Kato to identify the image of the basis zΛ(OK,S, T ).

In his setting, it is assumed that the class number of K is 1, but that assump-

tion is not actually used in the result we apply here.

First we introduce Kato’s notation. Let A be a finite product of finite

extensions of K. Let Λ = A ⊗ Qp. Let F be an invertible smooth Λ-sheaf

on X = Spec(OK,S) such that there exists an integer r ≥ 1 and a homomor-

phism λ : Gal(Kab,S/K) → A× which is continuous for the discrete topol-

ogy of A× satisfying the condition that χF = χcyclo(σ)χE(σ)λ(σ)−r for all

σ ∈ Gal(Kab,S/K), where χF : Gal(Kab,S/K) → (OK ⊗ Zp)
× ⊂ A× is the

action on F. Define Σ = H1(B(C),Q)−1 and Ω = H0(B,Ω1
B/K).

The result, in the notation of Kato, is:

Theorem 9.0.1 ([13], Theorem III.1.2.6). The element zΛ(X,F) is sent
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by the map

exp∗ ⊗ id : H1(X,F)⊗A Σ−1 → (Ω⊗A Σ−1)⊗Qp

to an element of Ω⊗A Σ−1 whose image in A⊗ R coincides with

(−1)r−1LA,S(X,F
∗(1), 0).

In our case r = 1, F = T , A = R, and LA,S(X,F
∗(1), 0) = LS((ϕχ

−1, 0).

Kato’s result becomes:

Theorem 9.0.2. The image of zΛ(OK,S, T ) under the map

exp∗⊗id : H1(OK,S, T )⊗RH1(B(C),Q)→ H0(B,Ω1
B/K)⊗RH1(B(C),Q)⊗Qp,

with respect to the chosen bases, has [χ]-component LS((ϕχ)−1, 0).

We recall in this chapter the proof of this theorem. Fix, for the proof, an

embedding ι : Kab,S → C, and thus, by restriction, embeddings ιn : K fpn → C.

Denote by u := (un)n the norm-compatible system

(ι−1
n (θa(exp(hn)))n ∈ ((K fpn)×)n.

Define the OK,p-basis ξ of H0(Kab,S, T ) to be the image of g−1h under the

isomorphisms

H1(E
χ
0 (C),Z)⊗ Zp ' H0(C, T ) ' H0(Kab,S, T )
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(where the right-hand isomorphism is induced by ι). Let ξn = π−nξ mod T ∈

V/T . Then the Coleman power series gu,ξ associated to u and ξ is the function

z 7→ θa(z + ι−1(exp(g−1h)))

on Êχ
0 .

Fix n for the rest of the proof. Define s ∈ H1(K fpn , T∨(1)) to be the image

of u under

lim←−
m

(K fpn)× // lim←−
m

H1(K fpn ,Zp(1))

∪(ξm)∨m
��

lim←−
m

H1(K fpn , T∨(1)/πm)

'
��

lim←−
m

H1(K fpn , T∨(1)/πm)
trace
oo

H1(K fpn , T∨(1))

.

We will shortly apply the

Theorem 9.0.3 (Explicit Reciprocity Law). ([13], II, 2.1.7) The function

exp∗ : H1(K fpn , T∨(1))→ coLie(Eχ
0 )⊗OK K

fpn

sends s to

π−nω ⊗
((

d

ω

)
log(ϕ−n(gu,ξ))

)
(ξn)

(Here ω can be taken to be any OK-basis of coLie(Eχ
0 ).)
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Consider the composite map

H0(B,Ω1
B/K)∨ →H1(OK,S, T )

→H1(OKfpn ,S), T
−1(1))

→H1((K fpn)p, T
−1(1)),

where the first arrow is defined by the element za,Λ(OK,S, T ).

Consider the element of H∨
B whose v-component is h−1

v if v agrees with our

embedding ι : Kab,S → C and is 0 if v does not. This element is sent to

g−1 · s ∈ H1(K fpnKp, T
−1(1))

by the above composite map. (We have related the Coleman power series gu,ξ

to the element za,Λ(OK,S, T ).)

Applying the Explicit Reciprocity Law, we find that this element is sent

by exp∗ to

g−1 · π−nω ⊗
((

d

ω

)
log(ϕ−n(gu,ξ))

)
(ξn) ∈ coLie(Eχ

0 )⊗OK K
fpn ,

where ξn denotes ξ restricted to K fpn .

To put this expression in useful form we apply a lemma. We use θ(ϕχ)(a),

as described by Proposition 7.1.3:

Lemma 9.0.4. ([13], III, 1.1.6) Write τ =
(
Kfpn/K

a

)
∈ Gal(K fpn/K), and let
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α = exp(hn) ∈ (Eχ
0 )fpn(C) = (Eχ

0 )fpn(K
pn), σ ∈ Gal(K fpn/K). The value of

(
d

ω

)
log(θ(ϕχ)(a))

at σα is equal to

(∫
hn

ω

)−1

·

(
N(a)Lσ-part((ϕχ)−1, 0)− (ϕχ)(a)Lστ-part((ϕχ)−1, 0)

)
.

Choose a ≡ 1( mod f), so that τ = 1 and the above expression is simplified.

The image of za,Λ(OK,S, T ) we wish to ascertain is

g−1 · π−nω ⊗
(∫

hn

ω

)−1

·

(
N(a)− (ϕχ)(a)

)
LS((ϕχ)−1, 0)

It follows that the image of

zΛ(OK,S, T ) =
(
N(a)−N(a)χT (σa)

−1
)−1

za,Λ(OK,S, T )

is

g−1 · π−nω ⊗
(∫

hn

ω

)−1

· LS((ϕχ)−1, 0)

=g−1 · π−nω ⊗
(∫

π−ng−1h

ω

)−1

· LS((ϕχ)−1, 0),

=ω ⊗
(∫

h

ω

)−1

· LS((ϕχ)−1, 0),

=c+[χ] · LS((ϕχ)−1, 0)

=c+[χ] · LS(ϕχ, 1).
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This proves Theorem 9.0.2.
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Chapter 10

Examples.

In this chapter we will find examples, or show the existence of examples, of

elliptic curves to which the our main theorem applies.

We search for elliptic curves E/F , having complex multiplication by a

nonmaximal order O = Z + f · OK , for which the Mordell-Weil group E(F )

has rank 0.

We will make some simplifying assumptions:

Assumption 10.0.1.

• K has class number 1.

• f is a prime ≥ 3.

The field F contains the j-invariant of E. The ring class group is Gf :=

If
ZfPf

, where If is the group of fractional ideals prime to f , Zf is the group of

principal ideals with a generator in Q ⊂ K, and Pf is the group of principal

ideals with a generator ≡ 1 mod f . The ring class field of O is a field Hf

such that Gal(Hf/K) ' Gf . The theory of complex multiplication shows that

we may take also:

• F = Hf .
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10.1 Elliptic curves with rank 0.

Note 10.1.1. If E/F and E0/F are two elliptic curves isogenous over F , then

L(E/F, s) = L(E0/F, s).

We have the following theorem of Coates and Wiles ([5]), a generalization

of a result of Arthaud:

Theorem 10.1.2. If rank(E0(F )) ≥ 1 then L(E0/F, 1) = 0.

Accordingly, we search for elliptic curves E0 for which

L(E0/F, 1) 6= 0.

Then we will try to show the existence of elliptic curves E/F , isogenous over

F , with complex multiplication by O = Z + f · OK .

10.2 Elliptic curves with complex multiplica-

tion by a nonmaximal order.

Suppose E0/K is an elliptic curve with complex multiplication by OK . There

exists an elliptic curve E/K, with complex multiplication by O, fitting into

the short exact sequence

0 // C // E0
// E // 0 ,
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with C finite.

Theorem 10.2.1. E is defined over Hf .

To prove this theorem we use the following

Lemma 10.2.2. There exists a short exact sequence

0 // TfE0
// TfE // C // 0.

Proof of lemma. For each n ≥ 1, we have the diagram, with exact rows and

columns:

0

��

0

��
E0,fn

//

��

Efn //

��

C ′
n

// 0

0 // C //

·fn

��

E0
//

·fn
��

E //

·fn

��

0

0 // C // E0
//

��

E //

��

0

0 0

The leftmost vertical map is 0 since C is f -torsion. By diagram-chasing, we

get an isomorphism C ′
n → C. Chasing the diagram

E0,fn
//

·f
��

Efn //

·f
��

C ′
n

// 0

E0,fn−1 //

��

Efn−1 //

��

C ′
n−1

// 0

0 0
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shows that there is an isomorphism C ′
n → C ′

n−1 which is compatible with the

isomorphisms C ′
n → C and C ′

n−1 → C constructed above, in that the diagram

C ′
n

'
��@

@@
@@

@@
@

' // C ′
n−1

'
}}zz

zz
zz

zz

C

commutes. Then, taking the projective limit over diagrams

E0,fn
//

·f
����

Efn //

·f
����

C ′
n

//
��

����

0

E0,fn−1 // Efn−1 // C ′
n−1

// 0,

we conclude that there is an exact sequence

0 // TfE0
// TfE // C // 0.

Proof of Theorem 10.2.1. Consider the action of OK,f upon TfE0. It gives

rise to a representation

Zf [Gal(K/K)]→ O×
K,f .

The image of

Zf [Gal(K/Hf )]

lies in (Zf + fOK,f )
×. Therefore, Gal(K/Hf ) acts on TfE, compatibly with
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the Gal(K/Hf )-action on TfE0. As a result of the exact sequence

0 // C // E0
// E // 0 ,

Gal(K/Hf ) acts on C. The short exact sequence

0 // TfE0
// TfE // C // 0

from Lemma 10.2.2 illustrates that C is Gal(K/Hf )-stable. Consequently, we

see from the previous exact sequence

0 // C // E0
// E // 0

that E is also Gal(K/Hf )-stable. The result follows.

Our strategy will be to find ring class fields Hf and elliptic curves E0 over

F := Hf with

L(E0/F, 1) 6= 0.

These will be examples of rank-0 elliptic curves, to which Gross’ Conjecture

applies. Moreover, this will show the existence of rank-0 elliptic curves E with

nonmaximal endomorphism ring, to which only the more general Burns–Flach

Conjecture applies.

By Theorem 10.2.1, we may as well search for E0 with complex multipli-

cation by OK . We will in fact use curves E0 which are defined over K.

Write, as before, ϕ for a Grössencharacter of K, which when pre-composed
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with the norm, gives the associated Grössencharacter ψ of E0 over Hf . Then,

as explained in [8], we have

L(ψ, s) =
∏

χ∈ ̂Gal(Hf/K)

L(ϕχ, s).

Since, by a result of Deuring for elliptic curves E0 with End(E0) = OK (see

[21], II, Theorem 10.5(a)), we have

L(E0/F, s) = L(ψ, s)L(ψ, s),

then we must verify exactly that

L(ϕχ, 1) 6= 0 ∀χ ∈ ̂Gal(Hf/K).

Let us examine the characters ϕ and χ more closely. We know, by the

property of the associated Grössencharacter, that for x ≡ 1 mod c0, where c0

is the conductor of E0/K,

ϕ((x)) = x.

Since OK by assumption is a principal ideal domain, then ϕ is essentially the

identity function on K×. Now χ may be considered a map

Gf ' Gal(Hf/K)→ C×
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Lemma 10.2.3. Gf is a group of order

2Φ(f)

φ(f)w
,

where w = |O×
K |, φ is Euler’s φ-function, and Φ is its obvious analog defined

on ideals of OK.

(A more precise description of this group will be given for examples we

find.)

Proof. First,

Gf =
If

ZfPf
' (OK/f)×

(Z/f)×im(O×
K)
.

Consider the archimedean absolute value. We observe that 1+f ·OK intersects

the unit circle at only 1 point if f > 2, which is true here by assumption.

Therefore, the group homomorphism O×
K → (OK/f)× is an injection, and

|im(O×
K)| = |O×

K | = w. Since there are two roots of unity in Z×, the image of

(Z/f)× in (OK/f)×

im(O×K)
has order φ(f)

2
. Since

∣∣∣∣(OK/f)×

im(O×
K)

∣∣∣∣ =
Φ(f)

w
,

the order of

(OK/f)×

(Z/f)×im(O×
K)

is

2Φ(f)

φ(f)w
,

as desired.
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10.3 A first attempt.

Here we examine a first and mostly unsuccessful attempt to find examples.

We also explain why many of the curves of the class searched, can be ruled

out by theory alone.

Use K = Q(i), which has class number 1. If f ≡ 1 mod 4, then f is split

in K, and |Gf | = 2(f−1)2

4(f−1)
= f−1

2
. If f ≡ 3 mod 4, then f is inert in K, and

|Gf | = 2(f2−1)
4(f−1)

= f+1
2

.

Consider the Gauss curve y2 = x3 − x, which we denote E0. It has

abelian torsion, so that the above considerations for ψ apply. If we knew

that L(ϕχ, 1) 6= 0 for all χ ∈ Ĝf , then we would be guaranteed the existence

of an elliptic curve E, defined over Hf , with complex multiplication by exactly

Z + f · OK and rankZE(Hf ) = 0.

As a preliminary search, a necessary (though insufficient) condition was

checked. The L-function satisfies the functional equation

Λ(ϕχ, s) = T (ϕχ)Λ(ϕχ, 2− s),

where

Λ(ϕχ, s) = (DN(ϕχ))
s
2 (2π)−sΓ(s)L(ϕχ, s),

where N(ϕχ) ∈ N is the norm of the conductor c(ϕχ) (an ideal of OK) and D

is the discriminant of K. And T (ϕχ) is related to the root number W (ϕχ) by

T (ϕχ) = −i W (ϕχ)√
N(ϕχ)

.



100

Since E0 is defined over Q, then ϕ is anticyclotomic, i.e., ϕ(n) = ϕ(n). The

same is true of χ. On the ideals of Z, χ is trivial (since all ideals of Z represent

the trivial class in the ring class group). The Grössencharacter ϕ satisfies

ϕ((a)) = a for a ≡ 1 mod (1 + i)3,

so that for a ∈ Z, ϕ((a)) = a for a ≡ 1 mod 4 and ϕ((a)) = −a for a ≡ 3

mod 4. This means that the value of ϕ is real on the ideals of Z. Thus

L(ϕχ, 1) = L(ϕχ, 1), which means that any root numberW (ϕχ) being unequal

to 1 will force the L-value to be 0.

For each prime f between 3 and 250, the root number W (ϕχ) was checked

numerically for all characters χ of Gf . W (ϕχ) was found to be -1 for at least

one χ for each f 6= 3. This can in fact be proven for all f > 3:

Proposition 10.3.1. Let f be any prime > 3. Then there exists χ ∈ Ĝf such

that W (ϕχ) 6= 1.

Proof. We shall restrict our attention to nontrivial χ. We have as in Miyake

([16], 3.3.11), the formula for the root number of ϕχ:

W (ϕχ) = W (ϕ)W (χ)
ϕ(cχ)

|ϕ(cχ)|
χ(cϕ),

where cϕ and cχ are the respective conductors of ϕ and χ. Let us examine

the factors W (ϕ), W (χ), ϕ(cχ)

|ϕ(cχ)| , and χ(cϕ). We shall determine the first two,

and show that the fourth can be chosen, depending on the third, making the

whole product -1.
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We know that W (ϕ) = 1 since the Gauss curve is a rank-0 elliptic curve.

Second, let us examine W (χ). The character χ is a character of the Galois

group of the extension F = Hf/K. Consider the representation

ResQ
KIndQ

Kχ

formed by induction and then restriction. It is

x 7→

χ(x) 0

0 χ(x)

 .

Now since xx ∈ Z for x ∈ OK , and since the image of Z in Gf is trivial, then

χ(x)χ(x) = χ(xx) = 1,

so that χ is anti-cyclotomic (i.e., χ(x) = χ(x)). It follows that the character

associated to the representation

ResQ
KIndQ

Kχ
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is

tr(ResQ
KIndQ

Kχ) =tr

χ(x) 0

0 χ(x)



=tr

χ(x) 0

0 χ(x)


=χ(x) + χ(x)

∈R.

One also checks that tr(IndQ
Kχ)(x) ∈ R for x ∈ GQ\GK . The work of Fröhlich

and Queyrut ([7]) tells us that for a real character which comes from a real

representation, the root number is 1. Though the representation IndQ
Kχ is not

itself real, it is conjugate to a real representation. Thus its root number is also

1. Since the L-function is unchanged by induction or restriction of characters,

we see that W (χ) must be 1.

Next, we examine the factor ϕ(cχ)

|ϕ(cχ)| . Since the conductor of χ is f if χ is

nontrivial, then ϕ(cχ) ∈ Z, and the factor ϕ(cχ)

|ϕ(cχ)| is ±1 .

The class of cϕ = (1 + i)3 is of order exactly 2 in Gf since its square is

the class of the ideal (8), which is trivial, while the class of (1 + i)3 is itself

nontrivial. Therefore, there exists a character χ of Gf which has value −1 at

cϕ. Since f > 3, then Gf 6=< 1 + i >, so that there is a nontrivial character

of Gf which factors through Gf/ < 1 + i >.
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Whether ϕ(cχ)

|ϕ(cχ)| is 1 or -1, we find a χ ∈ Ĝf for which the product

ϕ(cχ)

|ϕ(cχ)|
χ(cϕ),

and thus the product

ϕ(cχ)

|ϕ(cχ)|
χ(cϕ)W (ϕ)W (χ),

is -1. Thus, for f > 3, there exists χ ∈ Ĝf such that W (ϕχ) = −1.

The curve E0/H3 turned out to have non-zero L-value, and so E3 was the

lone example obtained from this search.

10.4 A second search.

A different class of curves was searched, yielding 15 elliptic curves over ring

class fields F := Hf with

L(E0/F, 1) 6= 0.

These are examples of rank-0 elliptic curves, to which Gross’ Conjecture ap-

plies. Moreover, this shows the existence of 15 rank-0 elliptic curves E with

nonmaximal endomorphism ring, to which only the more general Burns–Flach

Conjecture applies.

Here the Gauss curve E0 is replaced by a quartic twist thereof. Let E4,0

be given by the equation

y2 = x3 − (1 + 4i)x.
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This curve is isomorphic to the Gauss curve over F (4
√

1 + 4i), using the co-

ordinate change (x, y) = (β2x′, β3y′), where β = 4
√

1 + 4i. Since the Gauss

curve y2 = x3 − x has abelian torsion, then E4,0 does also. If we knew that

L(ϕ′χ, 1) 6= 0 for all χ ∈ Ĝf , where ϕ′ is the Grössencharacter of E4,f , then we

would be guaranteed the existence of an elliptic curve E4,f , defined over Hf ,

with complex multiplication by exactly Z + f · OK .

The Grössencharacter of E4,0 is ϕ′ = ϕε, where ε is the character associated

to the quartic twist E0 7→ E4,0. We have

ϕ′((α)) =

(
1 + 4i

α

)
4

α, α ≡ 1 mod (1 + i)3.

(See [12], Chapter 19, Theorem 5.) The conductor of ε is 1+4i, which is prime

to the conductor of ϕ, and to the conductor of χ if f 6= 17. In this case, the

root number of ξ = ϕ′χ can be calculated using the formula

W (ϕ′χ) =
ϕ′(cχ)

|ϕ′(cχ)|
ε(cϕ′)W (ϕ′)W (χ),

where the root number of ϕ′ = ϕε is calculated using the formula

W (ϕε) =
ϕ(cε)

|ϕ(cε)|
ε(cϕ)W (ϕ)W (ε).

The values of L(ϕ′χ, 1) were checked for all ring class characters χ, for all

primes f between 3 and 61, excluding 17. The values L(ϕ′χ, 1) were found

all to be non-zero, except when f = 5 and χ was the non-trivial character of

the two-element group G5. In this case, L(ϕ′χ, 1) appeared to be zero, though
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this could not be deduced from the numerical calculations. In any case, it was

determined that E4,0/Hf had non-zero L-value for the following 15 values of

f :

3, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61.

Thus there exists an example E4,f for each of these values of f .

10.5 The code.

Here we give the code used in PARI to find the examples. With some mod-

ification, many other similar classes of elliptic curves could be searched. Ex-

planation is given interspersed with the code. Comments generally follow the

line or lines to which they refer.

bnf=bnfinit(y^2+1);

Initializes the number field ‘bnf’= Q(i).

bnr2=bnrinit(bnf,[1,4]~,1);

Initializes ‘bnr2’, which is Q(i) with the structure of the ray class group mod-

ulo 1 + 4i.

initialize(f)=

Initializes the data involving f =‘eff’.

{

eff=f;
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Sets f , called ‘eff’.

bnr=bnrinit(bnf,eff,1);

Initializes ‘bnr’, which is Q(i) with the structure of the ray class group modulo

f .

bnr3=bnrinit(bnf,eff*[1,4]~,1);

Initializes ‘bnr3’, which is Q(i) with the structure of the ray class group mod-

ulo f(1 + 4i).

prim=znprimroot(eff);

for(index=1,eff,

if(prim==Mod(index,eff),

prim=index

)

);

prim=bnrisprincipal(bnr,prim)[1];

Sets a generator ‘prim’ of (Z/fZ)∗.

chi=vector(length(bnr.clgp[2]));

Sets χ to be the trivial character.

}

h1generator(bnf,ideal)=

Extracts a generator of ‘ideal’ in ‘bnr’, assuming the class number of ‘bnr’ is

1.

{

dec=factor(idealnorm(bnf,ideal));
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gen=1;

for(index=1,matsize(dec)[1],

fac1=[dec[index,1],0]~;

fac2=[1,0]~;

for(a=1,sqrt(dec[index,1]),

for(b=1,a,

if(a^2+b^2==dec[index,1],

fac1=[a,b]~;

fac2=[a,-b]~;

)

)

);

gen=nfeltmul(bnf,gen,

nfeltpow(bnf,fac1,idealval(bnf,

ideal,idealfactor(bnf,fac1)[1,1]))

);

if(fac1!=[1,1]~& fac2!=[1,0]~,

gen=nfeltmul(bnf,gen,

nfeltpow(bnf,fac2,idealval(bnf,

ideal,idealfactor(bnf,fac2)[1,1]))

);

);

);

gen
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}

phieval(ideal)=

Evaluates the character ϕ =‘phi’ (factor of the Grössencharacter) at ‘ideal’,

given by a generator, expressed as a column vector on the integral basis.

{

for(o=0,3,

if(nfeltmod(bnf,

nfeltmul(bnf, ideal,nfeltpow(bnf,[0,1]~,o))-[1,0]~,

nfeltpow(bnf,[1,1]~,3))

==[0,0]~,

ideal=nfeltmul(bnf, ideal,nfeltpow(bnf,[0,1]~,o));

);

);

if(nfeltmod(bnf,ideal,[1,1]~)==[0,0]~,

ideal=[0,0]~;

);

ideal[1]+ideal[2]*I

}

epsiloneval(ideal)=

Evaluates the character ε =‘epsilon’, associated to the quartic twist of E by

1 + 4i, at ‘ideal’. We know the character is either [1] or [3] as a character of

the cyclic 4-group ‘bnr2.clgp’, and, twisting three times if necessary, we may
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assume without loss of generality that it is [1].

{

if(idealnorm(bnr2,idealcoprime(bnr2,[1,4]~,ideal))!=1,

0,

exp(2*Pi*I*bnrisprincipal(bnr2,ideal)[1][1]

*1/bnr2.clgp[2][1])

)

}

rnepsilon=bnrrootnumber(bnr2,[1]);

Calculates the (fixed) root number of ε =‘epsilon’.

phiprimeeval(ideal)=

Evaluates ϕ′ =‘phiprime’= ϕε at ‘ideal’.

{

phieval(ideal)*epsiloneval(ideal)

}

cophiprime=nfeltmul(bnf,[1,4]~,nfeltpow(bnf,[1,1]~,3));

Calculates the conductor of ϕ′ =‘phiprime’= ϕε.

rnphiprime=(1+4*I)/sqrt(17)

*epsiloneval(nfeltpow(bnf,[1,1]~,3))

*1*rnepsilon;
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Calculates the (fixed) root number of ‘phiprime’=‘phi’·‘epsilon’. (At 1+4i, the

conductor of ‘epsilon’, ‘phi’ takes the value 1+4i.)

chieval(ideal)=

Evaluates the character χ =‘chi’ of the ray class group modulo f , at ideal.

{

if(idealnorm(bnr,bnrconductorofchar(bnr,chi))==1,

1,

if(idealnorm(bnr,idealcoprime(bnr,

bnrconductorofchar(bnr,chi),ideal))!=1,

0,

exp(2*Pi*I*(

sum(index=1,length(bnr.clgp[2]),

bnrisprincipal(bnr,ideal)[1][index]*chi[index]

/bnr.clgp[2][index]

)

))

)

)

}

xieval(ideal)=

Evaluates the character ξ =‘xi’= ϕ′χ = ϕεχ at the ideal generated by ‘ideal’.

{
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phiprimeeval(ideal)*chieval(ideal)

}

rnxi()=

This calculates the root number (varying with χ) of ξ =‘xi’= φ′χ = φεχ.

{

cochi=h1generator(bnr,bnrconductorofchar(bnr,chi));

fact=phiprimeeval(cochi);

if(fact==0,0,

fact/sqrt(norm(fact))

*chieval(cophiprime)

*rnphiprime

*bnrrootnumber(bnr,chi)

)

}

isring(upsilon)=

Tests whether ‘upsilon’, a character of the ray class group modulo f (‘bnr.clgp’),

factors through the ring class group modulo f , and thus is a valid χ to con-

sider. Uses the constant ‘prim’, which is a generator of (Z/fZ)∗ , expressed

as an element of ‘bnr.clgp’.

{

if(length(bnr.clgp[2])==1,

upsilon[1]*prim[1]%(bnr.clgp[2][1])==0,
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(upsilon[1]*prim[1]*bnr.clgp[2][2]

+upsilon[2]*prim[2]*bnr.clgp[2][1])

%(bnr.clgp[2][1]*bnr.clgp[2][2])==0;

Tests whether ‘upsilon’ factors through the quotient by (Z/fZ)∗ ,i.e., whether

it gives character on the ring class group as well as the ray class group.

)

}

getapbp(p)=

Sets ap =‘ap’ and bp =‘bp’ for the modular form.

{

if(idealprimedec(bnr,p)[1][4]==2,

ap=0;

bp=-xieval([p,0]~);

);

if(idealprimedec(bnr,p)[1][3]==2,

for(i=1,sqrt(p),

for(j=1,i,

if(i^2+j^2==p,

ap=xieval([i,j]~);

bp=0

);

);

);
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);

if(length(idealprimedec(bnr,p))==2,

for(i=1,sqrt(p),

for(j=1,i,

if(i^2+j^2==p,

v1=xieval([i,j]~);

v2=xieval([i,-j]~);

ap=(v1+v2);

bp=(v1*v2)

);

);

);

);

}

add(n,P,y,z)=

This function calls itself, and is the heart of the Gross–Buhler recursion.

{

Sum=Sum+y*expq^n/n;

forprime(p=2,min(P,bound/n),

getapbp(p);

x=y*ap;

if(p==P,x=x-z*bp);

add(p*n,p,x,y);
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)

}

GB(bound)=

{

f1=expq;

a1=1;

Sum=a1*f1;

forprime(p=2,bound,

getapbp(p);

add(p,p,ap,1);

);

Sum

}

The preceding two functions comprise the algorithm of Gross and Buhler,

as described in [1]. This algorithm can be described as “computationally min-

imal” in the sense that, using the known relations between the various an and

bn (surely the most efficient way to calculate the terms), the minimum num-

ber of them necessary for the rest to be calculated, are kept in memory at once.

Lval(xx,bound)=
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This function approximates the L-value L(ξ, 1), using the formula

L(ξ, 1) =
∞∑
n=1

an
n
e
− 2πnx√

N + T (ξ)
∞∑
n=1

an
n
ne

− 2πn

x
√
N ,

where N = |D|N(ξ), D being the discriminant of K. The computaion uses

the cutoff point x =‘xx’ ≈ 1, and ‘bound’ terms of each series. Varying x does

not change the infinite sum, of course, and this was used as a way to check

the correctness of the calculation.

{

expq=exp(-2*Pi/sqrt(4*2^3*17*idealnorm(bnf,

bnrconductorofchar(bnr,chi)))*xx);

term1=GB(bound);

expq=exp(-2*Pi/sqrt(4*2^3*17*idealnorm(bnf,

bnrconductorofchar(bnr,chi)))*(1/xx));

term2=conj(GB(bound));

term1+rnxi*term2

}

multichi1()=

Checks the L-value for fixed f and all possible χ, for cyclic ray class group

modulo f . Note that in all cases the ring class group modulo f is cyclic, but

it is more convenient here to examine the characters of the ray class group,

finding the L-value only for those which factor through the ring class group.

(In some cases, the ray class group is not cyclic.)
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{

indicator=1;

for(a=0,bnr.clgp[1]-1,

if((isring([a])==1)&(indicator==1),

chi=[a];

if(truncate(norm(1000*Lval(1,500)))==0,

indicator=0

);

);

);

if(indicator==1,

print("GOOD f=" eff ),

print("BAD f=" eff)

)

Prints “GOOD” if Ef is an elliptic curve of the desired type, and “BAD” oth-

erwise.

}

multichi2()=

Checks the L-value for fixed f and all possible χ, for ray class group modulo f

with 2 cyclic components. Again, only those characters which factor through

the ring class group are considered.

{

for(a=0,bnr.clgp[2][1]-1,
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for(b=0,bnr.clgp[2][2]-1,

if((isring([a,b])==1)&(indicator==1),

chi=[a,b];

if(truncate(norm(1000*Lval(1,500)))==0,

indicator=0

);

);

);

);

if(indicator==1,

print("GOOD f=" eff ),

print("BAD f=" eff)

)

Prints “GOOD” if Ef is an elliptic curve of the desired type, and “BAD” oth-

erwise.

}

multieff(lower,upper)=

Checks the L-value for all (prime) f from ‘lower’ to ‘upper’. Note that for

all f ≡ 3 mod 4, f is inert, which implies that the ray class group modulo

f is cyclic. For all f > 5,≡ 1 mod 4, f is non-inert and the ray class group

has two cyclic components. For f=5, the ray class group is cyclic. We do not

wish to examine f = 2 or 17 because they are not prime to the conductors of

φ and ε, respectively. Thus ranges [‘lower’,‘upper’] are chosen, when this code
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is used, which exclude 2 and 17.

{

forprime(index=lower,upper,

initialize(index);

if(length(bnr.clgp[2])==1,

multichi1,

multichi2

);

);

}
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[7] Fröhlich A. and Queyrut, J., “On the functional equation of the Artin L-

function for characters of real representations.” Invent. Math. 20 (1973),

125—138.

[8] Goldstein, C. and Schappacher, N., “Séries d’Eisenstein et fonctions L de
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[10] Gross, B., Arithmetic on elliptic curves with complex multiplication.

Springer Lecture Notes Math. 776.
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