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Chapter 2 Theory of Optical Phase lock 
Loops  

A Phase Lock Loop (PLL) is a negative feedback control system, which forces a local 

oscillator (LO) to track the frequency and phase of a reference signal within the loop 

bandwidth. This same idea can be used to construct an Optical Phase Lock Loop (OPLL), 

in which a slave laser tracks the frequency and phase of the optical signal of a master 

laser. In this chapter, I will study the theory of an OPLL in detail. I will first summarize 

the basic concept and theory of OPLLs and present both the time domain and the 

frequency domain analyses of an OPLL. I will then linearize the system using the small 

signal approximation and utilize the transfer function methodology to study the stability, 

acquisition range, holding range, and the residual phase noise of the OPLLs. Finally the 

effect of the loop delay and the non-uniform FM response will be considered. 

 

2.1 Principle of operation 

 

Fig. 2.1 Schematic diagram of an OPLL.  

 

A schematic diagram of a typical heterodyne OPLL is plotted in Fig. 2.1. The optical 

signals of the master laser ( )sinm m mA tω φ+
 
and the slave laser ( )sins s sA tω φ+  are 

combined at a photodetector, which detects the phase and frequency differences. The 

output of the photodetector is further mixed with a reference signal ( )sinr r rA tω φ+ . The 
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down-converted phase error signal passes through a loop filter and is fed back to the 

slave laser. The frequency and phase of the slave laser are modulated by the feedback 

current, and are forced to track those of the master laser with a frequency and phase offset 

determined by the reference signal. A rigorous analysis of the OPLLs can be performed in 

either the time domain or the frequency domain. 

 

2.2 Time domain analysis 

The operation principle of an OPLL is very similar to the well-studied electronic PLLs. 

Therefore the theoretical analysis of OPLL can be directly borrowed from the theoretical 

framework of PLLs[1, 2]. In Fig. 2.1 the photodetector and the radio frequency (RF) 

mixer together play the role of a phase detector. The master laser signal and the slave 

laser signal are mixed and fed into the photodetector (with a built-in trans-impedance 

amplifier), the resulting output is given by  

 ( ) ( ) ( ) ( )1 2 sinpd m s m s m st R P P t t tν ω ω φ φ⎡ ⎤= − + −⎣ ⎦  (2.1) 

where pdR  is the responsivity of the photodetector, mP and sP  are the optical power of 

the master laser and the slave laser respectively. ( )1 tν is further mixed with a RF 

reference signal ( )( )cosr r r rE A t tω φ= +  using a RF mixer. Neglecting the sum 

frequency term, the down-converted phase error current signal provided by the mixer is 

 ( ) ( ) ( ) ( ) ( )sin sinpd e pd m s r m s ri t K K t t t tφ ω ω ω φ φ φ⎡ ⎤= = − − + − −⎣ ⎦  (2.2) 

where pd pd m s rK R P P Aη=  is defined as the gain of the phase detector, and η  is the 

current responsivity of the RF mixer. Care must be taken when determining η  since 

most mixers are neither ideal current sources nor ideal voltage sources, and η  also 

depends on the load applied to the output port of the mixer. The down-converted phase 

error signal is fed back to the slave laser, whose phase is modulated as  
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 ( ) ( ) ( ) ( ){ }s
s flt s

d t
K i t f t f t

dt
φ

= ⋅ ∗ ∗  (2.3) 

where sK is the current FM sensitivity of the slave laser and ( )fltf t  and ( )sf t  are the 

impulse response of the loop filter and the slave laser respectively. By setting all the 

/d dt  terms equal to zero in Eq. (2.3), the steady state solution is obtained as 

 
( ) ( )

0

0 ,

,     

/
s m r s m r e

e m s fr r dcsin K

ω ω ω φ φ φ φ

φ ω ω ω

= − = − −

= − −
 (2.4) 

where ,s frω is the frequency of the free-running slave laser, dc pd f sK K K K=  is the loop 

DC gain, fK  is the DC response of the loop filter, and 0eφ  is the steady state phase 

error. Eq. (2.4) shows that the frequency and phase difference between the locked slave 

laser and the master laser are set by the RF reference signal. This configuration is called 

heterodyne OPLL. If there is no frequency offset, i.e., 0rω = , when the loop is in lock 

s mω ω=  and the system becomes a homodyne OPLL. The analyses of heterodyne and 

homodyne OPLLs are similar, except that the frequency and phase of the RF reference 

signal have to be considered in Eq. (2.2) and the conversion gain of the mixer has to be 

included while calculating the loop gain. For the sake of simplicity, I will use the 

homodyne OPLL scheme to perform the analysis in the remainder of the thesis, unless 

explicitly stated otherwise. 

 In general Eq. (2.3) is a complex nonlinear differential equation involving 

convolutions and there is no simple analytic solution. To understand the fundamental 

dynamic process of this feedback control system, I assume that the response of the slave 

laser is instantaneous, i.e., ( ) ( )sf t tδ= . Ignoring the loop filter and using the dynamic 

variable e m sφ φ φ= − , Eq. (2.3) reduces to  

 ( ) ( ) ( )' 'sine dc e mt K t tφ φ φ+ =  (2.5) 
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where dc pd sK K K=  is the loop DC gain. Assuming a small phase error ( ) 1e tφ << , the 

solution to this differential equation takes the form  

 ( ) ( )' ' ' 'dc dc dcK t K t K t
e mt e e t dt ceφ φ− − −= +∫  (2.6) 

 It is instructive to look at two simple cases. The first case is one starting with a 

constant phase error, i.e., ( )0eφ φ= Δ , then the solution is  

 ( ) dcK t
e t eφ φ −= Δ  (2.7) 

Eq. (2.7) corresponds to an exponentially decaying phase error with a time constant 

1/ dcK , so that the phase of the slave laser eventually tracks the phase of the master laser. 

The loop gain dcK  determines the speed of phase-tracking, or the loop bandwidth. 

 Another typical case is one of a phase ramp ( )m t tφ ω= Δ ⋅ . This is the case when 

there exists an initial frequency offset ωΔ  between the slave laser and the master laser. 

The solution to this case is 

 ( ) ( )1 dcK t
e

dc
t e

K
ωφ −Δ

= −  (2.8) 

In this case in the limit t →∞  there is a nonzero steady state phase error 

 0 /e dcKφ ω= Δ  (2.9) 

which results in a constant feedback current, that forces the frequency of the slave laser to 

track that of the master laser. Eqs. (2.7) and (2.8) show that the function of an OPLL is to 

force the phase and frequency of the slave laser to track that of the master laser. 

 

2.3 Frequency domain analysis 

2.3.1 Transfer function method 

Frequency domain analysis is a more convenient and powerful tool in characterizing 

OPLLs. In the time domain, solving Eq. (2.3) involves a complicated and 
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time-consuming convolution algorithm. In the frequency domain, Eq. (2.3) involves only 

products of Fourier transforms, i.e., the transfer functions. The performance of OPLLs 

such as their stability, the loop bandwidth, the compensation filter design can be analyzed 

by means of the transfer function formalism and Bode plots. 

 

Fig. 2.2 The frequency domain representation of OPLLs. 

 

The schematic frequency domain representation of a homodyne OPLL is shown in 

Fig. 2.2. s jω=  is the Laplace variable, ( )exp dsτ−  represents the delay of the loop, 

( )fF s  is the normalized transfer function of the loop filter, and ( )FMF s  is the 

normalized transfer function of the FM response of the slave laser. The 1/s block 

originates from the fact that the phase φ , which is the dynamic variable, is the 

integration of the frequency over time. By using the small signal perturbation to linearize 

Eq. (2.3) about the steady state locking point 0eφ , and taking the Fourier transform, the 

open loop transfer function is derived as 

 ( ) ( )
( )

( ) ( ) ( )expdc f FM ds
op

e

K F s F s ss
G s

s s
τφ

φ
′ −

≡ =  (2.10) 

where 0cosdc dc eK K φ′ = . The closed loop signal transfer function is defined as 
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 ( ) ( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

exp
1 exp

ops dc FM d
o

m op dc FM d

G ss K F s F s s
H s

s G s s K F s F s s
φ τ
φ τ

′ −
≡ = =

′+ + −
 (2.11) 

and the error transfer function is 

 ( ) ( )
( ) ( )

1 1
1

e
e o

m op

s
H s H

s G s
φ
φ

≡ = = −
+

 (2.12) 

The closed loop signal transfer function ( )oH s  acts as a low pass filter, which means 

that the phase of the slave laser tracks the phase of the master laser within the bandwidth 

of the filter. On the other hand, the phase error transfer function ( )eH s  behaves as a 

high pass filter. The differential phase error within the loop bandwidth is thus suppressed 

by the OPLL. In practice, the loop bandwidth is limited mainly by the non-negligible 

loop delay and the non-uniform FM response of the slave laser. These issues will be 

discussed in detail in Section 2.5.  

 

2.3.2 Acquisition and holding range  

Two important parameters describing the locking capability and the stability of the OPLL 

are the acquisition range acqfΔ (the maximal frequency difference between the 

free-running slave laser and the master laser for the OPLL to acquire lock), and the 

holding range hfΔ (the maximal frequency difference between the free-running slave 

laser and the master laser for the OPLL to stay in lock). The acquisition and holding 

ranges of a PLL generally depend on the loop gain and the loop order[32]. 

First order PLL 

The first order PLL is defined as one with no loop filter, i.e., ( ) 1fF s = . If I assume that 

the slave laser has a flat frequency modulation response ( ) 1FMF s = , then the open loop 

gain is found from Eq. (2.10) as 

 ( ) dsdcKG s e
s

τ−=  (2.13) 
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In this case, the acquisition and holding ranges are simply[1]  

 / 2acq h dcf f K πΔ = Δ =  (2.14) 

Second-order PLL 

Traditionally three types of loop filters are typically used to make the second-order PLL: 

the lowpass(LP) filter, the passive lead-lag (or lag-lead) filter, and the active second-order 

filter. An active second-order filter has a transfer function of 

 ( ) 2

1

1 sF s
s
τ
τ
+

=  (2.15) 

Since this type of filter has an integration term 1/ s , the loop has very high open loop 

gain at low frequency and provides the best performance with respect to phase noise 

reduction[1]. The acquisition and holding ranges are theoretically infinite for such a loop 

filter. 
 

2.3.3 Bode plot and stability criterion 

 

Fig. 2.3 The Bode plot of a PLL with a second-order low pass filter. The gain margin is 

10.5 mG dB=  and the phase margin is 038mP = . 

 
The Bode plot is a powerful graphic tool in studying the performance and stability of 
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PLLs especially when various compensation filters are included. Fig. 2.3 shows the Bode 

plot of a PLL with a second-order low pass loop filter, in which both the amplitude 

( )opG jω  (dB scale) and the phase ( )opArg G jω⎡ ⎤⎣ ⎦  (in degrees) are plotted as a 

function of the frequency.  

Stability criterion: The stability criterion of an OPLL can easily be derived from its 

Bode plot: if the amplitude of ( )opG s  crosses 0 dB at only one frequency, the amplitude 

( )G j πω  must be smaller than 1 at the π  phase lag frequency πω  

( ( ) 180o
opG j πω∠ = − ). Equivalently, the phase lag ( )op gcG jω∠  must be bigger than 

180o−  at the gain crossover frequency gcω ( ( ) 1op gcG jω = )[1]. This can be understood 

by the following intuitive reasoning. At the π  phase lag frequency πω  the original 

negative feedback system becomes a positive feedback system. If the amplitude of the 

loop gain is higher than 1, any noise in the system will be amplified in each round-trip, 

eventually leading to oscillations. 

Stability margins 

Based on the stability criterion, one can define two stability margins: the phase margin is 

defined as ( )op gcG jω π∠ + , and the gain margin is defined as ( )20log opG j dBπω− . 

Sufficient phase margin or gain margin are necessary to guarantee the stability of the loop. 

Based on the time domain simulation, the gain margin is generally chosen to be within 

the range 8~10 dB to suppress excessive ringing during the acquisition[33].  

 

2.4 Loop noise characterization  

In an OPLL, various noise sources affect the loop performance and need to be considered. 

Among these noise sources, the phase noise of the SCLs, is the dominant one, since SCLs 

typically possess a linewidth between hundreds of KHz and a few MHz. Other noise 

sources include the photodetector shot noise and the electronics noise. A schematic 
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diagram of the various phase noise sources and their points of entry in an OPLL is shown 

in Fig. 2.4. The phase noise of the master laser and the slave laser are accounted for by 

n
mφ  and n

sφ . snφ  stands for the photodetector shot noise. The electronics noise is small 

and can be ignored. 

 

Fig. 2.4 Sources of phase noise in an OPLL 

 

Following the standard negative feedback analysis, one obtain the phase of the locked 

slave laser and the differential phase error as  

 ( ) ( ) /n n
s m m o sn pd o s es H K H Hφ φ φ φ φ= + ⋅ + ⋅ + ⋅  (2.16) 

 ( ) ( ) /n n
e m m s e sn pd os H K Hφ φ φ φ φ= + + ⋅ + ⋅  (2.17) 

The corresponding spectral power density functions are 

 ( ) ( ) ( ) ( ) ( ) ( )2 22
,/s m sn pd o s fr eS f S f S f K H f S f H f⎡ ⎤= + +⎣ ⎦  (2.18) 

 ( ) ( ) ( ) ( ) ( ) ( )2 22
, /e m s fr e sn pd oS f S f S f H f S f K H f⎡ ⎤= + ⋅ + ⋅⎣ ⎦  (2.19) 

where , , ,s fr m snS S S  are, respectively, the spectral density functions of phase noise of the 

free-running slave laser, the phase noise of the master laser, and the shot noise.  

 Here I will only use the differential phase error to characterize the noise level of an 

OPLL. A detailed analysis and measurement of the phase noise of the slave laser in an 

OPLL will be given in Chapter 6 (Coherence cloning using OPLLs). Assuming that the 
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frequency noise of the lasers has a white Gaussian distribution, the double-sided spectral 

densities of the different noise sources are given by [19]  

 ( ) ( ) ( ) ( )2 2,   ,  2
2 2

m s
m s sn s m

f fS f S f S f eR P P
f fπ π

Δ Δ
= = = +  (2.20) 

where mfΔ  and sfΔ are the FWHM linewidths of the master laser and the free-running 

slave laser, R is the responsivity of the photodetector. Fig. 2.5 shows the power spectral 

density of the differential phase error eφ  in a typical OPLL with a loop delay of 100 ns. 

At low frequencies, the phase error is significantly reduced by the feedback loop. As the 

loop gain increases, the bandwidth and ratio of the noise reduction increase. However, as 

the gain approaches the maximum allowable loop gain, as per the stability criterion, a 

spectral peak appears and the noise at the corresponding frequency is significantly 

amplified. In Fig. 2.5(b) an active second-order filter ( ) ( )0 01 / / /f f f f+  is used to 

further reduce the phase noise at low frequencies. 
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Fig. 2.5 The spectral density functions of the differential phase error eφ  for different 

small signal loop gain K. mK  is the maximum allowable loop gain determined by the 

stability criterion. (a) No loop filter is used. (b) An active second-order filter 

( ) ( )0 01 / / /f f f f+  is used. In both (a) and (b), a loop delay of 100 ns is assumed. 

  

 An important parameter called the phase error variance can be obtained by 

integrating the phase noise spectral density over all frequencies 

 ( )2 S f dfσ
∞

−∞

= ∫  (2.21) 
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Thus the variance of the differential phase error is  

 ( ) ( ) ( ) ( ) ( )2 22 2
, /

e e m s fr e sn pd oS df S f S f H f S f K H f dfφ φσ
+∞ +∞

−∞ −∞

⎡ ⎤= = + ⋅ + ⋅⎣ ⎦∫ ∫  (2.22) 

Combining Eq. (2.20) with the definitions 

 ( ) ( ) 2

0 0

 and /n o p eB H f df I H f f df
∞ ∞

= =∫ ∫  (2.23) 

Eq. (2.22) is simplified to 

 ( )2
e

n m s
p

m s

eB P Pf I
RP Pφσ π

+Δ
= +  (2.24) 

where m sf f fΔ = Δ + Δ  is the sum of the linewidths of the master laser and the slave laser.

 In the presence of phase noise, the loop loses lock through cycle slipping (the output 

phase error rotates through 2π  after initially starting at zero)[1], and the noise in the 

OPLL can be evaluated by the average time between cycle slips csT . For the first order, 

the modified first-order, and the second-order type II loops, csT  is related to 2σ  by, 

respectively[1]  

 
2 22 / / 2/ 4 ,    /cs I n cs II nT e B T e Bσ π σπ− −� �  (2.25) 

 

2.5 Practical limitations of the loop bandwidth 

In the previous analysis, the bandwidth, acquisition range, holding range and noise 

reduction capability of an OPLL all rely on one critical parameter: i.e., the loop gain dcK . 

Therefore, a large, loop gain is desired. However, dcK  is limited by two major practical 

constraints – namely, the non-negligible loop delay and the non-uniform frequency 

modulation response of SCLs. In this section I will analyze the loop performance limited 

by these two factors.  
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2.5.1 The non-negligible loop delay 

Loop delay exists in all practical feedback control systems. In the presence of the loop 

delay, the phase lag increases unbounded as the frequency increases. As described in 

Section 2.3.3, the stability criterion requires the loop gain to be restricted to less than 1 at 

the 180 degree phase lag frequency. Hence the loop gain and the resulting loop 

bandwidth will be limited. In electronic PLLs made of integrated circuits, the length of 

the loop is at most a few mm and the delay is not a serous concern. In constructing an 

OPLL, either using micro-optics or using fiber optical components, the delay can be as 

big as a few ns. As the desired loop bandwidth is equal or greater than tens of MHz, due 

to the large linewidth of SCLs, the effect of the loop delay at these frequency ranges can’t 

be ignored. Here I first restrict the analysis to the case where the loop bandwidth is only 

limited by the loop delay. The FM responses of the slave laser and all the electronics are 

assumed to be ideal. With the above assumption, and in the absence of a loop filter, the 

open loop transfer function (Eq. (2.10)) is simplified to  

 ( ) ( )exp d
op dc

s
G s K

s
τ−

′=  (2.26) 

and the 1800 phase lag frequency is  

 / 2   or  1/ 4d dfπ πω π τ τ= =  (2.27) 

Considering the stability criterion described in Section 2.3.3, the maximum loop gain 

dcK  is / 2 dπ τ . The resulting maximum holding range and acquisition range are 

1/ 4 dfπ τ= . In practice, this number is even smaller since a gain margin of 8~10 dB is 

needed to avoid excessive ringing.  

I have studied the dynamic locking process in the time domain using the Simulink 

toolbox in MATLAB®. The FM response of the slave laser is assumed to be uniform, and 

the laser is modeled as an ideal integrator 1/s. As an example, I assume that the delay 

time is td = 5 ns, the frequency difference between the free-running slave laser and the 
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master laser is ωΔ = 2 MHz. No loop filter is used. The corresponding maximum loop 

gain in this case is 710 10 /rad sπ × . The simulated temporal dependence of ( )sin e tφ  is 

plotted in Fig. 2.6. When the loop gain is 74 10 /rad sπ × (corresponding to a gain margin 

of 8dB), the photodetector output ( )sin e tφ  quickly settles down to the steady state 

locking point. As the loop gain is increased to 78 10 /rad sπ × , ( )sin e tφ  converges to 

the steady state locking point with significant ringing. As the loop gain is further 

increased to 710.2 10 /rad sπ × , the loop becomes unstable and starts oscillating. From 

this time domain simulation, one can see that a gain margin of at least 8 dB is needed to 

suppress ringing effects.  

 

     

Fig. 2.6 Temporal dependence of sin eφ  for different DC loop gain dcK . A loop delay of 

5 ns and a free-running frequency difference of 2 MHz are assumed in the simulation. 

 

 The variance of the differential phase error can be calculated according to Eq. (2.22). 

Using the parameters 1m sP P mW= = , R = 0.5A/W, and a gain margin of 8 dB, I 

calculate the variance of the differential phase error as a function of the loop delay and 

the summed linewidth of the lasers. From the calculation one observes that the variance 

of the differential phase error is only dependent on the summed linewidth normalized by 
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the π  phase lag frequency, i.e. /f fπΔ , not on the absolute value of the delay time. 

This observation can be proved rigorously. By plugging Eq. (2.26) and Eq. (2.27) into Eq. 

(2.26) one obtains 

 

( )
( )

( )

2

0

2

0

exp / 2
=  

exp / 2

1 1 /
exp / 2

mg
n

mg

p
mg

G f
B f df f

f G f

I df f
f f G f

π π

π
π

π
β

π

α
π

∞

∞

′−
′= ⋅

′ ′+ −

′= ⋅ =
′ ′+ −

∫

∫

 (2.28) 

where /f f fπ′ =  is the normalized frequency, ( )max/mg dc dcG K K=  is the gain margin, 

α  and β  are dimentionless numbers which only depend on the gain margin. Next I 

plug Eq. (2.28) back into Eq. (2.27) and get 

 ( )2
e

m s

m s

e P Pf f
f RP Pφ π
π

σ α β
π

+Δ
= +  (2.29) 

Using typical values for ~ 1f MHzΔ  for SCLs, 8mgG dB= , ~ 0.5 /R A W , ~ 1sP mW , 

~ 0.01mP mW  and 100f MHzπ ≤ , I estimate that the second term (~ 6 210 rad− ) is much 

smaller than the first term(~0.01rad2 ) in Eq. (2.29). Therefore 2
eφ

σ  only depends on the 

normalized laser linewidth, i.e., 2 /
e

f fφ πσ α π= Δ . In Fig. 2. I plot the variance of the 

differential phase error as a function of the normalized summed laser linewidth /f fπΔ . 

If one uses =10yearscsT as the figure of merit for a high performance OPLL, the summed 

laser linewidth has to be smaller than ~1/60 of 1/ 4 dfπ τ= . When fiber optical 

components are used, dτ  is typically 5 ns. It can be reduced to ~0.5 ns if microoptics are 

used instead. The corresponding summed laser linewidth has to be smaller than ~0.8MHz 

or ~8 MHz separately to achieve =10yearscsT . 
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Fig. 2.7 The variance of the differential phase error as a function of the normalized 

summed laser linewidth /f fπΔ . 1/ 4 dfπ τ=  is the π phase lag frequency given by the 

loop delay. csT  is the average time between cycle slips defined in Eq. (2.25). 

 

2.5.2 The non-uniform frequency modulation (FM) response of SCLs 

In an SCL based OPLL, the SCL acts as a current-controlled oscillator (CCO) and its 

frequency is directly modulated by the current feedback signal[34, 35]. In the previous 

analysis I have assumed that the slave laser is an ideal CCO with a flat FM response. In 

practice, the FM response of SCLs is not uniform and exhibits different characteristics 

depending on the range of the modulation frequency. For a typical single-section SCL, 

the low frequency (smaller than 10MHz) FM response is dominated by the thermal effect 

and the carrier-induced effect. At the intermediate frequency (above 100MHz), the 

thermal effect fades out and the carrier-induced effect is the summation of an adiabatic 

term and a transient term[35]. As the modulation frequency further increases to a few 

GHz, the relaxation resonance effect becomes significant. All these phenomena 

contribute to the FM response and need to be examined in the OPLL analysis. 

First, the relaxation resonance effect is excluded in this analysis since it is significant 
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only at frequencies above a few GHz, which is far beyond the OPLL bandwidths (< 

10MHz) encountered in this work.  

In the intermediate frequency range, the FM response is composed of two terms, the 

adiabatic term and the transient term[35]. Using the results of [35], the current-phase 

modulation of a SCL is given by  

 sd dA i Bi
dt dt
φ

= +  (2.30) 

where A and B are respectively the adiabatic and the transient modulation coefficients, 

and i is the modulation current. Taking the Fourier transform of Eq. (2.30) and 

substituting it into Eq. (2.10), the open loop transfer function becomes  

 ( ) ( )1 expdc
op d

K AG s s s
s B

τ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (2.31) 

In Eq. (2.31) A/B is typically around 10-11[35], which means the adiabatic term becomes 

significant only at frequencies above 1 GHz. One can thus ignore its effect within the 

typical OPLL bandwidths studied in this work. 

At frequencies smaller than 100MHz, the FM response of SCLs is composed of the 

thermal effect and the carrier-induced effect. While the carrier-induced effect is in phase 

with the modulation current and results in a blue shift with increasing current, the thermal 

effect is out of phase with the modulation current and produces a red shift. Due to the 

competition between the thermal and the carrier-induced effects, the FM response of a 

single section SCL exhibits a characteristic π  phase reversal in the frequency range 100 

kHz~10 MHz[23]. Compared to the loop delay, this phenomenon imposes a more serious 

constraint on the achievable loop bandwidth[22, 23, 36]. In this section I will analyze the 

influence of the thermal FM response on the performance of an OPLL.  
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Fig. 2.8 FM response of single-section DFB lasers calculated with the modified low-pass 

filter model. The fitting parameters are: 1cf MHz=  and b = 1, 2 and 3. 

 

The thermal effect dominates at low frequency and fades out with the increase of the 

modulation frequency. Employing a modified low-pass filter model, an empirical FM 

transfer function of the thermal effect is given by[23, 37]  

 1( )
1th th

c

H f K
j f f

= − ⋅
+

 (2.32) 

where thK  is the thermal FM efficiency in Hz/mA and cf  is the thermal cut-off 

frequency. The fitting parameter cf is structure-dependent and is typically in the range of 

10kHz-10MHz[22]. The carrier-induced FM response is flat from DC to frequencies in 

the neighborhood of the relaxation frequency, and is in phase with the modulation current, 

i.e.  

 el elH K=  (2.33) 

Combining the thermal and carrier-induced effects, the total FM response is described by
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 0( ) 
1

cDFB
FM

c

b j f fKH f
b j f f

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

 (2.34) 

where 0K  is the DC current-frequency tuning sensitivity and / 1th elb K K= −  is related 

to the relative strengths of the carrier-induced effect and the thermal effect. In Fig. 2.8 I 

plot the FM responses for 1cf MHz=  and b = 1, 2 and 3, respectively. 

 

Fig. 2.9 (a) The Bode plots of the open loop transfer functions for different values of the 
fitting parameter b in Eq. (2.34).  (b) The variance of the differential phase error as a 

function of the normalized laser linewidth /f fπΔ . 

 

 Substituting Eq. (2.34) into Eq. (2.10), I proceed to calculate the open loop transfer 
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function and the results are plotted in Fig. 2.9(a). The gain margin is 8 dB and the other 

parameters are the same as those in Fig. 2.8. The corresponding π  phase lag frequencies 

fπ  are 1, 3.2 and 6.6MHz respectively. I further calculate the variance of the differential 

phase error with Eq. (2.22). The results are shown in Fig. 2.9(b) as a function of the 

normalized summed laser linewidth /f fπΔ . Similar to the loop delay case, the variance 

of the differential phase error only depends on /f fπΔ  for a given gain margin. 

 In conclusion, to phase lock SCLs with reasonably small residual differential phase 

error, the summed linewidth has to be significantly smaller than the loop bandwidth. The 

bandwidth of the OPLL, however, is limited to a few MHz due to the non-uniform FM 

response of the single section SCLs. Historically, specially designed SCLs, such as 

multi-section DFBs, have been demonstrated to have flat FM response up to a few 

GHz[11]. However, these lasers are not commercially available and their stability needs 

to be improved. On the other hand, the linewidth of SCLs can be reduced by introducing 

optical feedback. Therefore external cavity SCLs with sub-MHz linewidth have been 

used to build OPLLs. In the next chapter, I will present and characterize the experimental 

study of OPLLs built using different commercial SCLs.    

 

 

 

 

 

 

 

 

 

 


