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ABSTRACT

A new modelling method for magnetic circuits 1is presented in
this thesis. This method can be used to model magnetic circuits with
any number of windings. The models incorporate adequate information
about the correct distribution of leakage energy, the presence of gaps
throughout the core, the arrangement of the windings, and the type of
core used.

These mnew electric «ecircuit models (physical models) are
"physically matural”; i.e., the elements in the models have a one-to-
one relationship with corresponding physical quantities 1in the
original magnetic structure.

Several commonly wused arrangements such as toroids with
uniformly distributed turns, and bobbin core structures with multiple
windings were modelled with the new technique. The measured electric
circuit model wvalues always compared favorably with the predicted
physical values derived with the new method.

By breaking the windings of the magnetic circuit into their
separate layers, a more elaborate and accurate set of models (layer-
to-layer models) can be obtained. These models incorporate additional
information about the correct distribution of the windings and
interwinding self-capacitances. Because of the complicated nature of
these elaborate models, they are more suitable for computer analysis

of magnetic circuits.
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CHAPTER 1

INTRODUCTION

In recent years, the use of magnetic components in switching
converters has been greatly affected by new developments in the
disciplines that form the basis for power electronics.

In the field of semiconductor devices, the development of new
high-power switching devices (FET's etc.) prompted designers of power
conversion equipment to increase the switching frequency at which the
main semiconductor devices are operated. In consequence, the size and
weight of the magnetics, and therefore of the entire power supply have
been considerably reduced.

As the switching frequency is increased, a point is reached at
which the bottleneck of such designs is not in the semiconductor
devices but, on the contrary, in the magnetics design.

For example, even after careful layout of the isolation
transformer in a switching power supply, a small residual leakage
inductance can have severe adverse effects on the power supply
operation and design, from requiring sizable power dissipative
networks to making the design completely inoperable when the switching
frequency is sufficiently increased.

The development of new topologies for switching power
converters, together with the discovery of the zero-ripple phenomena

in coupled inductors and integrated magnetic structures [1, 2, 3], has



also played a very important role in the development of new magnetic
circuits for switching power converters.

For example, in many multiple-output switching converters, the
output and input inductors can be combined into a single magnetic
structure [4]. The resultant savings in the cost and reduced size of
the converters are further augmented by improved performance through
reduced ripple currents. However, the actual ripple current
distribution among the wvarious output windings is, to first-order,
dependent on the distribution of leakage energy in the windings of the
magnetic structure. Hence, in these coupled-inductors and recently
proposed integrated magnetic structures, the magnetic leakages also
play a first-order role, improving the performance of such converters
by reducing the amount of current ripple in some of the windings.

Because leakage can have both positive and negative effects in
different applications, it is important to know, for each case, the
correct distribution of leakage energy in the windings of the magnetic
structure under investigation.

In the case of transformers, this can lead to further
improvements in the selection and design of transformers with minimum
leakage.

For coupled-inductors and integrated magnetic structures where
leakage has positive effects, a better assessment of the improvements
can be made.

Unfortunately, conventional modelling methods for magnetic

circuits have always fallen short of predicting the correct



distribution of leakage energy in the windings of a magnetic
structure.

A new modelling method for magnetic circuits is introduced in
this thesis. The technique involves determination of the approximate
flux pattern inside the actual magnetic structure under investigation,
and the analytic determination of all the parameter values in the
electric circuit model derived from the flux pattern.

This method can be used to model magnetic circuits with any
number of windings. The models contain adequate information about the
correct distribution of 1leakage energy, the arrangement of the
windings, the presence of gaps throughout the core, and the type of
core used.

The electric circuit models (physical models) obtained with this
method are physically natural; i.e., the elements in these models have
a one-to-one relationship with corresponding physical quantities in
the original magnetic structure. This simplifies the task of finding
analytic expressions for all the elements in the models, and it also
makes it easy to relate these elements to their corresponding physical
parameters in the original magnetic structure.

These models can be particularly useful in prediction of the
effects of second-order parasitics on switching converters. For
example, for a particular application, different arrangements can be
studied through their physical models, and the one that gives the best
performance can easily be chosen. All this can be accomplished

without going through the usual "trial and error" process.



CHAPTER 2

MAGNETIC DEVICES IN SWITCHING CONVERTERS

One of the principal goals of any switched-mode power converter
is to process power at the maximum possible efficiency, which is why
resistors, and semiconductor devices operated in their linear-mode,
are avoided in the power stage of any switching converter. Only
lossless elements such as magnetic components {(transformers,
inductors, etc.), capacitors, and switches are wused in power
processing circuits.

This chapter reviews some of the basic magnetic components

commonly used in switching converters.

2.1 Inductors

Inductors are used as energy storage elements to transfer energy
from one point in the switching circuit to another.

Figure 2.1 illustrates a simple buck-boost converter. During
the first part of the cycle (DT,), energy is transferred from the
source V, to the inductor L, and this energy is then released into the
load during the reminder of the c¢ycle D'T,. The inductor current

waveform is illustrated in Fig. 2.1.

2.2 Coupled-Inductors
Sometimes it 1is possible to couple several inductors into a
single magnetic component, resulting typically in considerable savings

in magnetic material, size, weight, and cost of the power supply.
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Fig. 2.1. Buck-boost dc-to-dc converter.



For example, in the Cuk dc-to-dc converter in Fig. 2.2a, since
the inductor voltages v; and v, are identical, then, in principle, the
two inductors can be combined into a single magnetic component as
illustrated in Fig. 2.2b.

In general, it can be shown that any number of inductors can be
coupled into a single coupled-inductor structure, if all the uncoupled

inductor voltages are proportional to each other [3, 4, 5).

2.3 Transformers

Transformers provide electric isolation between the input and
the output(s) of a switching converter. Also, because of the natural
transformer turns ratio, the voltage and current gains can be either
stepped up or down by proper selection of this ratio.

The non-isolated and isolated versions of the four basic de-to-
dc converters (buck, boost, buck-boost, and Cuk) are illustrated in
Fig. 2.3. Notice that in all the isolated versions the voltage gain M
is proportional to the transformer turns ratio N.

The isolation transformer used in the buck-boost (flyback)
converter (Fig. 2.3c) 1is significantly different from those in the
buck, the boost, and the Cuk converters. The transformers in these
three converters are transparent to the energy transfer process; i.e.,
no significant amount of energy is stored in them. The flyback
transformer, on the other hand, is the energy storage and transfer
element itself,

In general, the four isolated converters can be easily extended
to give multiple isolated outputs. For example, a multiple-output

version of the Cuk converter is shown in Fig. 2.4,
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2.4 Integrated Magnetic Structures

In the same way that it is sometimes possible to couple several
inductors into a single piece of magnetics, it 1is also possible to
integrate several inductors and transformers into a single magnetic
component [3, 5]}. Again, substantial savings in magnetic material,
size, weight and costs result from the integration.

For example, careful examination of the isolated Cuk converter
in Fig. 2.4 shows that the inductors and transformer voltage waveforms
are all proportional to each other {3, 5]. Therefore, these separate
elements can be integrated into a single magnetic structure as shown
in Fig. 2.5.

In the next chapter, some of the same magnetic components and
converters that were briefly discussed in this chapter are used to
illustrate how leakage, a second-order parasitic phenomenon in

magnetic circuits, can have first-order effects on some of these

converters.
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CHAPTER 3

LEAKAGE PHENOMENA IN SWITCHING CONVERTERS

Some of the basic magnetic components commonly used in switching
converters were reviewed in the previous chapter.

In this chapter, it 1is shown how magnetic leakage, usually
considered to be a second-order parasitic phenomenon in magnetic

circuits, can have first-order wuseful effects in switching

applications.

3.1 Adverse Leakage Effects in Transformers

Transformers provide isolation, step ratios and, sometimes,
energy storage capabilities in switching converters. The transformer
in the isolated flyback converter in Fig. 3.1 has these three
properties.

During the time DT,, the transistor is turned on, and energy is
stored in the inductance of the transformer. During D'T,, when the
transistor is off, the inductance energy flies-back to the output,
turns the diode on, and releases energy into the load. The ideal
current and voltage waveforms of the transistor switch are
illustrated in Fig. 3.1.

Application of volt-second balance [6] across the inductance of

the transformer results in

\Y D
M=-2=N-— 3.1
v D (3.1)
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Mathematically, the input-output characteristics of any magnetic
circuit with two windings can be represented by the electric circuit
model shown in Fig. 3.2 [7]. If the mutual inductance L, of the
transformer is much larger than the "leakage inductances" £;, and UI,,
the electric circuit model in Fig. 3.2 can be reduced to that in

Fig. 3.3, where

2,

(3.2)

This approximate model can be used to find the actual (non-
ideal) wvoltage and current waveforms of the transistor switch, as
shown in Fig. 3.4.

On the assumption that a steady-state condition has been reached
by the circuit after a few switching cycles, every time the transistor
is turned off, the mutual inductance L, releases its energy into the
load, but the "leakage inductance" £, which carries the same current
as the mutual inductance during the on-time of the switch, does not
have a path into which to release its energy. However, since the
transistor switch is mnot ideal, it does not turn off in =zero
time. During the very small turn-off time of the transistor, the
leakage inductance has a path through which it can discharge, namely,
the transistor collector-emitter junction.

If the transistor turn-off time 1is At, and the leakage
inductance current at turn-off is I, then a wvoltage spike of

approximate value

V, = £ — =~ 4 — (3.3)
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appears across the collector-emitter terminals of the transistor. The
approximate current and voltage waveforms of the transistor are shown
in Fig. 3.4b.

For example, for a turn-off time of 0.5 uS, a leakage inductance
of 100 pH, and an input current of 1 A at turn-off, a voltage spike
of about 200 volts is generated across the collector-emitter junction
of the transistor. This can be fatal for almost any low-to-medium
power switching transistor.

By increasing the switching frequency, the size and weight of
the transformer can be decreased. 1In Chapter 14, it is shown that
this also results in an increase in the transformer’s Ieakage
ratio. Also, with the development of new faster semiconductor devices
(FET's etc.), the turn-off time of the switches (At in Eq.(3.3)), can
be dramatically reduced. All this results in an increase of the
spikes generated across the switching elements.

Several methods for protecting the switches from spurious turn-
off voltage spikes due to leakage inductances have been developed in
the past. They range from using special winding techniques to reduce
the leakage inductance of the transformers, to introducing extra
elements in the circuit to protect the switches. These extra elements
absorb most of the energy in the turn-off voltage spikes. A commonly
used protection circuit known as a snubber is illustrated in Fig. 3.5.

During the turn-off time of the switch (Fig. 3.5b), the snubber
diode turns on, the leakage current flows through the diode (away from
the transistor), and charges the capacitor C. This capacitor absorbs

all the energy that otherwise would be released through the transistor
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in a very short period of time. When the transistor is turned back
on, the capacitor energy is released through the resistor R and,
finally, through the transistor to ground as shown in Fig. 3.5c.

As the switching frequency is increased, the size and weight of
the additional circuits necessary to protect the switches can
eventually overcome any savings obtained by reducing the size of the
magnetics. Obviously, there most be some switching frequency at which
no further reduction in size or weight of the power supply is
obtained. The problem of finding the optimum switching frequency is

illustrated with more detail in Chapter 14.

3.2 Leakage Effects in Coupled Inductors

Power electronics engineers usually associate leakage with the
adverse effects it produces in transformers. The discovery of the
"zero current-ripple phenomena" in coupled-inductors [1] changed this
unique perception. It is now very well understood that this second-
order phenomenon can have not only mnegative effects (as in
transformers), but also positive and very desirable effects in
coupled-inductor applications.

Coupled inductors can be used in a variety of switching dc-to-dc
converters. The following example illustrates how leakage in the
coupled inductors of the dc-to-dc converter can drastically change the
performance of the converter.

Application of volt-second balance across the inductors, and
current-second balance across the energy transfer capacitor of the Cuk

converter in Fig. 2.2, results in
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vV, D

M= 2= — 3.4
V Y (3.4)

vV, = =V, (3.5)

Since both the inductors voltages and currents are known, the
flux in each inductor can be determined. The inductor fluxes are
illustrated in Fig. 3.6. Since ¢, and ¢, are identical, if the two
inductors are brought together as shown in Fig. 3.7a, the two fluxes
in the center legs add to zero. The center legs can therefore be
removed as shown in Fig. 3.7b. The new magnetic structure is a simple
two-winding coupled inductor, which is smaller and weighs less than

the two separate inductors in Fig. 3.7a.

3.2.1 Analysis of Current Ripple in Coupled Inductors

The following analysis shows how proper design of the parameters
in the coupled inductors (including the leakage inductances), can lead
to substantial reduction of the ripple currents.

Since the electric circuit model in Fig. 3.2 can be used to
model the input-output characteristics of any two-winding magnetic
structure, it can be wused to model the coupled inductors in
Fig. 3.7b. This in turn can be used to investigate the effects of the
leakage inductances £; and 2, on the a-c ripple currents i, and i,.

Since the voltages applied to the input and output inductors are
equal (Fig. 2.2), the ac ripple currents i; and i, can be obtained
using the circuit model shown in Fig. 3.8, where the coupled inductors

have been substituted by the electric circuit model in Fig. 3.2.
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From the circuit in Fig. 3.8,

i b 1 i N - £2 ] (3.6)
R NS 2 L, (1-N) '
Now if P
N=1+2% (3.7)
L,
then
i, =0 (3.8)

Condition (3.7) is known as the "zero output ripple condition."

Similarly, if

1 4
= =1+ 2 (3.9)
N N2L,
then
i, =0 (3.10)

Equation (3.9) is the "zero input ripple condition."

This example illustrates how proper selection (design) of the
parameters in the magnetic circuit can lead to a drastic reduction of
the ripple currents in a switching converter. One of these parameters

is the coupled inductor's leakage inductance.

3.3 Conclusions

Although leakage in magnetic circuits has always been considered
a second-order parasitic phenomenon, it can have first-order effects
in switching applications.

In transformers, leakage can generate spurious turn-off voltage

spikes across the switches, which in turn will need to be
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Fig. 3.8. The m-model for two-winding magnetic circuits can be used
to investigate the ac ripple currents i, and i, in the
Cuk converter with coupled-inductors.
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protected. As the switching frequency is increased, the increasing
relative size and weight of the protection circuits might overcome any
savings obtained by reducing the size of the magnetics.

In coupled inductors the leakage inductances in the magnetic
circuit can be used to reduce, and sometimes even eliminate, the
current ripple in either the input or the outputs of a switching
converter. This is not an adverse, but a very positive and desirable
effect.

The development of mnew models for magnetic circuits that
incorporate information about the correct distribution of the leakage
energy in the windings of the magnetic circuit, can have important
implications on either of these applications. In transformers, these
models can serve as a tool for designing transformers with minimum
leakage and, in coupled inductors and =zero current ripple
applications, they can be used to design magnetic structures that
should satisfy some ripple conditions. All this can be accomplished
without going through the usual trial and error process generally

associated with such design problems.
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CHAPTER 4

FUNDAMENTAL ELECTROMAGNETICS

4.1 Introduction

In general, solution of the 1leakage problem 1involves
determination of the leakage flux intensity throughout the windings of
the magnetic structure. After all the fluxes inside the structure
have been determined, a reluctance model is constructed based on the
approximate flux pattern inside the core and windings.

To determine the leakage flux intensity throughout the windings
requires the use of some of Maxwell’s equations, in particular, those
derived from Ampere’s and Faraday’s laws. Also, to find reluctance
models, the relation between the magnetic flux density B and the
magnetic field intensity H, and the electromagnetic energy equations
are used. |

This chapter reviews these fundamental relations, which

constitute the mathematical background for the rest of this thesis.

4.2 Maxwell’s Equations

Maxwell’s equations, together with boundary and other auxiliary
relations, form the basic tool of analysis for most electromagnetic

problems, and in integral form are:

§ H-df = JI (J + ég)ds (4.1)
at
c
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§ E-df = gE-d 4.2
i at S (4.2)
§§>B~ds =0 (4.3)
#D'ds ”J pdv (4.4)

Equation (4.1), Maxwell'’s equation as derived from Ampere’s law,
relates the field intensity H to the total current enclosed by the
integration path c.

Equation (4.2), Maxwell’s equation as derived from Faraday’s
law, yelates the electric field intensity E to the magnetic flux
density B. This field relation is a generalization of Faraday's

circuit law.

Equations (4.3 and 4.4) are Maxwell’s field equations derived

from Gauss’ law.

These equations will be used throughout this thesis under the

following assumptions:

1. Displacement currents are negligible compared to

conduction currents.

2. The frequencies of the time-varying quantities
involved are low enough so that quasi-static

approximations and lumped parameter models apply.

3. The material of which the magnetic structures are

made is homogeneous and isotropic [8].
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4.3 Ampere’s Law

Under the previous assumptions, Eq. (4.1) can be written as

§ H-df = Jdes (4.5)

c

This relation is known as Ampere’s law. It states basically that the
closed line integral of H is equal to the total current enclosed by
the integration path c¢. Figure 4.1 illustrates this relation with a
simple example in which the integration path c¢ goes along the center
of the toroid. The toroid is surrounded by N uniformly distributed
turns, each of which carries a current I. The total current enclosed

by ¢ is therefore

JI J-ds = NI (4.6)

If the toroid is made of ferromagnetic material, the field intensity H
can be assumed "almost" uniform throughout the toroid and parallel to

the path c¢. Under these conditions, Egs. (4.5) and (4.6) give

H(2nR,) = NI (4.7)

which yields
H ks 4.8
T (4.8)

where R, is the mean radius of the toroid.
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integrotion poth ¢

Fig. 4.1. Illustration of the use of Ampere’s law to compute the
field intensity H inside a toroid.
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In Chapter 5, a more accurate solution of the field intensity H
inside the toroid 1Is obtained. It is also compared to this simple

approximation.

4.4 Faraday'’s Law
According to this law, if a magnetic flux ¢ links N turns of a
conductor, a time-varying voltage v is induced at the terminals of the

conductor. The relation between v and ¢ is given by

dé
v =N ac (4.9)

Conversely, if a wvoltage v is applied across the terminals of
the N turns conductor, a magnetic flux ¢ is induced, and it is related

to v by

¢ = % J v(t)dt (4.10)

4.5 Relation Between B and H

4.5.1 Free space

In free space, the relation between the field density B and the
field intensity H is linear.
B = pu,H (4.11)

where u, is the permeability of free space

Bo = 47x10"7 H/m (4.12)
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4.5.2 Ferromagnetic Materials

If H is considered the cause and B the effect, ferromagnetic
materials can be defined as those that are capable of producing a
larger effect (larger B, hence more flux), with a smaller means
(smaller H, hence smaller current).

If the material is homogeneous, isotropic and 1linear, the

relation between B and H is given by

B = pgp H (4.13)

where p, 1s the relative permeability of the material, which is
typically in the range of 100 to 100,000. In other words,
ferromagnetic materials are capable of producing 100 to 100,000 more
flux than free space for the same amount of H.

Equation (4.13) can also be written as

B = uH (4.14)

where
Bo= popy (4.15)

4.5.3 Saturation and Hysteresis in Ferromagnetic
Materials

Ferromagnetic materials are not perfectly linear as expressed by
(4.15). After a certain amount of flux density B 1is reached, the
material saturates, and further increase in H produces only a small

increase in B. This saturation phenomenon 1is illustrated in

Fig. 4.2b.
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Fig. 4.2. Ideally linear (a) and actual (b) B-H characteristics of
ferromagnetic materials.
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Saturation is mnot the only mnon-linear characteristic of
ferromagnetic materials; the relation between B and H is not a single-
valued function. The non-linear phenomenon that causes B to lag
behind H is called hysteresis.

Figure 4.2 illustrates the differences between the ideal and the
non-ideal B-H relations for ferromagnetic materials.

In general, the width of the hysteresis loop and the saturation
flux density B,,;, are functions of the operating temperature, the
excitation frequency, and other external parameters. Soft materials,
like ferrites, usually have a very thin hysteresis loop, and their B-H
characteristics are in general considered piecewise linear.

Only the ideally linear characteristics will be used in this
thesis, and it will also be assumed that the magnetic structures are

operated below saturation.

4.6 Energy in Magnetic Fields

In general, the energy possessed by any form of inductance is
stored in its magnetic field. If the value of the inductance is L and
the current in the inductor is I, the energy stored in the inductor is

given by
|
E = > LI (4.16)

If the magnetic field intensity H inside the inductor is known,

the energy stored in the inductor can also be computed as

E - % ”J HZ dv (4.17)
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The above volume integral should be evaluated throughout the

volume of the inductor. For example, for the toroid in Fig. 4.1, it

was found before, that

NI
H =
2nR,

(4.8)

Substitution of this equation into (4.17) and evaluation of the

integral throughout the volume of the toroid gives

2
E = % [ 2:§m ]12 (4.18)

If the quantity in parenthesis is defined as L, Eq. (4.18) reduces to
Eq. (4.16).

The above example illustrates the equivalence of Egs.(4.16) and
(4.17), but these two equations can also be used to obtain the
"equivalent" or "effective inductance” of some volume of material with

a known field intensity H. For instance, equating (4.16) to (4.17)

gives

L = %3 JJJ HZdv (4.19)

Again, using the toroid in Fig. 4.1 as an example, substitution

of (4.8) into (4.19) results in

uN?s
27R,,

(4.20)
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Equation (4.19) will be used often in this thesis to compute the
"effective inductance" of some part of a magnetic structure for which

the field intensity H has previously been determined.

4.7 Magnetic Circuits and The Reluctance Concept
Circuit models for magnetic structures can be constructed, based
on the analogy that exists between the equations that describe

electric and magnetic fields.

I = ” Jds ¢ = ” Bds (4.21)
v—§E-d£ F = NI =§H-dz (4.22)
J = oE B = pH (4.23)

Electric circuits are based on the three equations on the left and,
because of the perfect analogy, the same laws and relations that apply
to electric circuits also apply to magnetic circuits, which can be

defined based on Egs. (4.21) through (4.23).

4.7.1 The Reluctance Concept

From Eqs. (4.21) through (4.23), if a voltage v is applied
across a cylindrical conductor of length £, cross section S, and
conductivity o, the resultant current I through the conductor can be
determined using the left sides of (4.21) through (4.23).

oS
I = JS = gES = —z— v (4.24)
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The quantity £/0S = R 1is the electrical resistance of the

conductor, and Eq. (4.24) can be written as

I v (4.25)
R .

which is Ohm's law. The same procedure can be wused to obtain
relations that involve magnetic quantities. For example, from
Fig. 4.3, if the field intensity inside the toroid is uniform, the
resultant flux ¢ due to the magnetomotive force NI can be obtained

using the magnetic field relations (4.21) through (4.23):

S
$ = BS = pHS = %— NI (4.26)

m

where 2,=2nR; is the mean length of the toroid.

The field equations can be completely bypassed, and the flux ¢

could be obtained as

PR (4.27)
z .
where
Lo
R =— (4.28)
usS

Equation (4.27) is Ohm's law applied to magnetic circuits, where
R is defined as the reluctance, and ® = 1/R is the permeance of the
magnetic path. Reluctance circuits can be constructed based on these

analogies. The reluctance circuit for the toroid is illustrated in
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Fig. 4.3b. In general, the laws and relations used in electric

circuit analysis can also be used in magnetic circuits.

4.7.2 Air Gaps in Magnetic Components
If a small air gap is introduced along the magnetic path of the
toroid as shown in Fig. 4.4a, the effect of the gap can be modelled as

illustrated in Fig. 4.4b, where

2 2
R, = m R = —& (4.29)
pS ® BoS

The flux ¢ can then be obtained as

b= 4.30
R, + R, (4.30)
In general, R, >>> R;, and (4.30) reduces to
b = NI 4,31
~R8 (4.31)
The inductance of the toroid is then

N¢  N?

L= — = — (4.32)
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(a) (b)
@=NI/R

Fig. 4.3. Reluctance model for toroid with N turns cross section §
and mean length 1.

(a) (b)

Fig. 4.4. Reluctance model for gapped toroid.
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CHAPTER 5

A SIMPLE LEAKAGE ESTIMATION PROBLEM: THE ONE-TURN INDUCTOR

The leakage flux in the neighborhood of a one-turn inductor is
investigated. The attempt that is made in this chapter to solve this
"simple" problem mathematically serves to 1illustrate some basic
approximations that are used throughout this thesis, and also to

motivate the much simpler estimation method discussed in the next

chapter.

5.1 Infinitely Small Wire
Figure 5.1 shows a simple toroid with one turn of infinitely
small wire. The energy stored in the magnetic field inside the toroid

can be associated with the inductance of the toroid L and can be

computed as

E, - g JJJ H, 2dv (5.1)

where H; is the magnetic field intensity inside the toroid.
The energy stored in the magnetic field outside the toroid can

be associated with the leakage inductance £ and can be computed as

Ep = gﬂjjj H 2dv (5.2)

where H, is the magnetic field intensity outside the toroid.
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leokoge flux

infinitely
small conductor /

Fig. 5.1. Toroid with one turn of infinitely small wire.
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Evaluation of these two integrals requires the determination of
the field intensities H; and H,. In general, if the toroid is made of
ferromagnetic material, the field intensity inside the toroid H; can
be considered almost constant throughout the wvolume of the toroid,

which in the previous chapter was found to be approximately

1
27R,

H = (5.3)

A more accurate solution can be obtained if it is assumed that
the field intensity is constant only along a radial line around the
toroid but changes as this line gets closer or farther from the center
of the toroid. This is illustrated in Fig. 5.2. The field intensity
H; can then be obtained by substitution of R, for R, in

Eq. (5.3). That is,

I

H : =
* 27R,

(5.4)

where R, can be written in terms of the coordinates (r,§) as

illustrated in Fig. 5.2,
R, = (R,2 + r? + 2R_rcosf)™ (5.5)
Substitution of Eq. (5.5) into (5.4) gives

H (r,6) = ! (5.6)

2n(R,2 + r? + 2Rmrcos€);'2

Equation (5.6) gives the field intensity everywhere inside the

toroid as a function of the coordinates r, f#. For example, at the

boundary r=r,, H; is only a function of § and is given by
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Fig. 5.2. The field intensity H;(r,#) can be obtained more
accurately if it is assumed to change as the coordinates
r and § change inside the toroid.
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I
Hy (8) = 5 (5.7)
2n(R,%2 + 1,2 + 2R,r, cosf)

This function is plotted as a function of § in Fig. 5.3. The

field intensity is strongest at the inner section of the toroid (f=r),

where

1
27R_ (1 + (r,/R,)2)%

Hopax =

and weakest at the outer-most section (§=0,2xn), where

I
T 2R (1 + r4/Ry)

Hmin

The deviation of the maximum and minimum values from the average
H,yg is a function of the geometric ratio of the toroid r,/R;.
If r,/R, << 1, H; can be approximated to

I
H, =
27R,,

(5.8)

This approximation will be used in the analysis that follows as

the field intensity at the boundary of the toroid.

5.1.1 Flux Density Qutside Toroid
Figure 5.4 shows a magnified view of a small section of the
toroid that contains the current-carrying conductor. The flux density

B at any point P outside the toroid can be obtained as

B =B, + B (5.9)
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H = L
_ . — ' 'MAX 27rRm(|"'[ro/Rm)2 )l/2
L N o1
I ovg 27Rmp
= —— H -
MIN® 27R_(I+1g/Rp)
L 1 i 1 —> f

Fig. 5.3.

/2 T 3n/2 er

Plot of the field intensity at the boundary of the toroid
(r = ry). The deviation of the maximum and minimum
values from the average is a function of the geometric
ratio of the toroid ry/R,. If ry/R, << 1, H,(ry,,0) =
I/27Ry, = Hpyy -
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Fig. 5.4. [Illustration of coordinate system used to determine the
flux density B outside toroid.
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where B, is derived from the particular solution of the magnetic

vector potential (which satisfies Poisson’s equation), and is given in

[9, 10]) as
B, = pB, + kB, (5.10)
where
1 z al + p2 + zZ2
B, - £ K+ £ E (5.11)
2r  pl(a + p)? + z%]" (a - p)2 + 22
and
I 1 2 _ .2 _ L2
B, = ko R+——F "% g (5.12)
2 [(a + p)? + z2)% (a - p)2 + z2

where K and E are elliptic integrals of the first and second kind,

which are given by

/2 /2
dé
K = E = (1 - k%sing)”* ds
(1 - kK%sing)™
0 3]
with
W2 = bap

[(a + p)? + 22|

The homogeneous solution B, can be obtained solving the equation

B, = -V& (5.13)
where & is a solution of

V2% = 0 (5.14)
From Eqs. (5.13) and (5.14),

B, = pCie 227, (ap) + QCZe'azJo(ap) (5.15)
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where

(-1)! (ap/2)m* 2t
Jn(@p) = (5.16)
it(n+i)!

The constants C; and C, are evaluated using Eq. (5.9) and the boundary
condition given in Eq. (5.8).

The particular solution B, when evaluated at any point on the
wire loop is infinite. 1In other words, the energy density at any
point on the wire is infinite. This is due to the original assumption
that the wire’'s cross-sectional area is infinitely small, which in
turn means that the total energy in the winding of the toroid (leakage
energy) is infinite.

Although the solution given by Egs. (5.9) through (5.16) is
mathematically correct, it is of little practical importance, since in
any practical situation the wires are of finite size, and so is the

magnetic leakage energy.

5.2 Finite Wire Size

The infinitely small wire loop in Fig. 5.1 can be replaced by
tﬁe wire loop of finite size shown in Fig. 5.5. The magnetic field
intensity inside the toroid remains the same as before, and so does
the homogeneous solution B, of flux density outside the
toroid. However, the particular solution B, in Eq. (5.9) becomes

mathematically intractable and can be solved only numerically.



Fig. 5.5.
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The infinitely small wire loop in Fig. 5.1 is replaced by
a wire loop of finite cross-section. The field intensity
inside the toroid remains the same as before, as well as
the homogeneous solution B, of the flux density outside
the toroid, but the particular

solution B, is now
mathematically intractable.
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5.3 Superposition and the "N" Turns Inductor

Magnetic components in general contain many turns for every winding in
the structure. Superposition can in general be used to find the field
intensity in the windings of such structure. For instance, at any
given point outside the core, the field intensity due to each turn is
calculated and the total intensity at that point is the vector sum of
all the separate components of the field due to each turn. But as
before, the flux density due to each turn of wire of finite size can

be solved only numerically.

5.4 Conclusions

The complicated nature of the field solutions for the one-turn
inductor suggests that a simpler approach must be used to find simple
analytic expressions for the field quantities in the windings of
practical magnetic structures. A simplified method to estimate this

energy is discussed in the next chapter.
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CHAPTER 6

SIMPLIFIED METHOD FOR ESTIMATING THE LEAKAGE ENERGY
IN THE WINDINGS OF A MAGNETIC STRUCTURE

6.1 Introduction

The single-turn inductor discussed in the previous chapter
illustrated that although analytic or numerical solutions can be
obtained for certain simple field problems, the nature of the
solutions can be so complicated that any possible use of such
solutions in the process of designing magnetic circuits 1is almost
hopeless.

Fortunately, the windings of most practical magnetic structures
consist of large numbers of turns which are, with very few exceptions,
arranged in an organized manner.

In this chapter a simplified method for estimating the field
intensity inside the windings of practical magnetic structures is

discussed. The method is based on the following assumptions:

1. The windings are made of large numbers of turns with all
the turns very close to each other, and each turn is made
of very thin wire compared to the total area of the
winding.

2. The field intensity inside the ferromagnetic materials is

uniform and constant.
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6.2 Toroid with Uniformly Distributed Turns
To illustrate the method, a simple toroidal core with N

uniformly distributed turns is used. This is illustrated in Fig. 6.1.

6.2.1 Field Intensity Inside the Toroid and Winding
The field intensity inside the toroid was obtained in Chapter 5

and is given by
Hy = — (6.1)

where {£;=27R;, 1is the mean length of the magnetic path of the
toroid. Since the turns are made of thin wires, the shape of the
winding can be assumed to be that of a thick uniform layer around the
toroid that carries a total current NI. This is illustrated in
Fig. 6.2.

To visualize the next steps better, the toroid is "cut" and
stretched open as shown in Fig. 6.3. The winding is now a cylindrical
conductor of thickness h and of internal radius r,, which surrounds
the toroid.

The field intensity H inside the winding (leakage field

intensity) can be obtained using Ampere’'s law in its most general

form,

§ H-dZ = II Jds (6.2)

(e}
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Toroid with N uniformly distributed turns.
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Fig. 6.1.
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be a thick uniform layer which carries a total current

The shape of the winding in Fig. 6.1 can be considered to
NI.

Fig. 6.2.
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"cut line"

(a)

llopenll

(b)

/m=27rRm

Fig. 6.3. The original circular toroid in (a) is "cut" and
stretched open into the shape shown in (b). The winding
is now a cylinder surrounding the toroid.
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The integration path ¢ can be selected as shown in Fig. 6.4,
which is closed because the bottom of the figure is actually connected
to the top.

If H(p) is assumed normal to the current density J, the left

side of Eq. (6.2) becomes

2=1,
§H-dz = | H(p)ds = H(p)4, (6.3)

2=0
c

The right-hand side of Eq. (6.2) is the total current enclosed
by the integration path c¢. If the current density J is constant
throughout the entire cross section of the conductor cylinder, the

total current enclosed by ¢ is then

I. = J(h-p)4, (6.4)
where
J §£— (6.5)
hi, '

where hf, is the area of the cross section of the conductor cylinder.

Substitution of Eq. (6.5) into (6.4) gives

I, = NI [1- 5] (6.6)

Finally, from Egs. (6.3) and (6.6)

NI
H(p)w—[l-ﬁ] (6.7)
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..l _—integration path C
NI
£ m=27R, o \
)
A current enclosed
by C
1 \
winding toroid

Fig. 6.4. Illustration of the integration path used to evaluate
Ampere’s law to obtain the field intensity H(p) across
the winding and the toroid.
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or

p
H(p) = H, [1 - h] (6.8)

where H;=NI/f, is the field intensity inside the toroid.

Figure 6.5 illustrates the variation of the field intensity H
inside and outside the toroid. At the boundary between the toroid and
the winding (p=0), the field intensity is H;. This is as expected
since one of the boundary conditions for magnetic fields is that
tangential components of the field intensity are equal on both sides
of a boundary. Finally, at the end of the winding (p=h), the field
intensity reduces to zero.

If the toroid is closed into its original circular form, it is
possible to draw the direction of the fluxes inside the winding and
the toroid. This is shown in Fig. 6.6. In the figure, except for a
very small amount of flux that might escape the outer layers of the
winding, the leakage flux (winding flux) as well as the toroid’'s flux
is self contained inside the structure. In other words, this inductor
configuration generates very little directly radiated electromagnetic
interference (EMI). Other inductor configurations such as the EI core
shown in Fig. 6.7 have part of their winding outside the core, and
the leakage flux that goes through this section of the winding is

directly radiated towards the outside of the structure.

6.2.2 Inductance Calculation
In Chapter 4 it was shown that the inductance of any volume of
material for which the field intensity H has previously been

determined can be obtained as
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Fig. 6.5. Plot of the field intensity inside the toroid and the
winding.
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winding

Fig. 6.6. The toroid and the winding in Fig. 6.5 can be closed back
into their original circular shape to illustrate the

direction of the flux inside the toroid ¢, and the
leakage flux ¢p.
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L = %5 jjj H2 dv (4.19)

This equation can now be used to find both the inductance of the
toroid as well as the "equivalent" or "effective" inductance of the
winding, i.e., the leakage inductance. The inductance of the toroid
was found in Chapter 4 and is given by

L= (6.9)

NZ
Ry

where R, = uS/2, is the reluctance of the toroid.
The effective (leakage) inductance of the winding is computed

using

2= %% JJJ H2 (p)av (6.10)

where it has been assumed that the magnetic permeability of the
winding is that of air pu,, which is very closely the case if the
winding is made of copper wire (pcopper= 0.9999914,).

Substitution of H(p) from Eq. (6.8) into Eq. (6.10) gives

p=h
" AN
2 = f% B - - )]2n£m<p+r°)dp (6.11)
p=0

h h
£ == N%nu, o [ o + ] (6.12)
m
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where £ is the effective leakage inductance of the winding. The total
inductance of the toroid is the sum of the inductance of the toroid L

and the leakage inductance £.

6.3 Other Inductor Configurations

Figures 6.7 and 6.8 illustrate other commonly used inductor
configurations. The field intensity and the flux pattern inside the
core and the winding of a pot core are illustrated in Fig. 6.8.
Equation (4.19) can again be used to compute the inductances of the
core and the winding. As before, the total inductance of the
structure is the sum of these two.

From the circuit point of view, the only effect that magnetic
leakage has in inductors is to increase the total inductance of the
structure. Other than that, it is of little importance. The effects
of leakage are far more important in multiple-winding structures such
as transformers and coupled-inductors.

6.4 Multiple-Winding Structures and the General Solution to

the Leakage Problem

The previous inductor examples illustrated how to obtain simple
aﬁalytic approximations for the field intensity inside the windings of
a magnetic circuit. It also showed how Eq. (4.19) can be used to
compute the effective inductance of some volume of material for which
the field intensity has been previously determined.

However, for multiple-winding structures mnot only 1is it
necessary to estimate the energy of the magnetic fields inside the
windings but also it is very important to know how this energy is

distributed among the different windings.
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Fig. 6.7. Another common inductor configuration is the EI core
arrangement shown. As illustrated in (b), part of the

leakage flux is directly radiated towards the outside of
the structure.

I

e

Fig. 6.8 Pot core configuration with field intensity inside the
core and the winding illustrated.
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The general solution to the leakage problem is divided in
various steps. First, the intensity of the fields inside the
structure is determined so that an approximate flux pattern can be
established. Based on this ‘“"pattern,"” a reluctance or electric
circuit model is constructed. Finally, the elements of the electric
circuit model are analytically determined including all leakage
parameters.

This process generates electric circuit models that are
physically natural. The elements in these Physical Models have a one-
to-one relationship with corresponding physical parameters in the
original magnetic structure. The complete method for obtaining the
physical model of a magnetic circuit is described in detail in
Chapter 8.

In the past, magnetic circuits have been modelled based on
mathematical descriptions of "generic” magnetic circuits with the same
number of windings (7]. Unfortunately, these mathematical models have
always fallen short of predicting the correct distribution of leakage
energy in the windings of a magnetic structure. The next chapter

reviews the concepts and steps involved in the determination of these

mathematical models.
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CHAPTER 7

MATHEMATICAL DESCRIPTION OF MAGNETIC CIRCUITS: MATHEMATICAL MODELS

The conventional method for modelling magnetic circuits [7] is
reviewed in this chapter. It is shown with some examples that
although these models are conceptually right, the meaning of the
models and its elements can sometimes be reduced to mere mathematical

abstractions with no physical interpretation.

7.1 Mathematical Description of Magnetic Circuits

The input-output characteristics of any magnetic circuit can be
described in terms of simple differential equations. An electric
circuit model <can be constructed based on this mathematical
description. The circuit model thus obtained is a mathematical model
for the original magnetic structure.

7.1.1 Mathematical Models for Two-Winding Magnetic
Circuits

Figure 7.1 shows a simple two-winding transformer. One possible
way to model such a structure is to consider the two-winding toroid
shown in Fig. 7.2 a "generic"” case for all two-winding transformers.
Figure 7.2 also illustrates the assumed flux pattern inside the
generic toroid and its windings.

The total flux enclosed by N; is

$n1 = ¢ + &1 (7.1)
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Fig. 7.1. Example of a two-winding bobbin core transformer.

Fig. 7.2. Generic two-winding transformer.
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Similarly, the total flux enclosed by N, is

P2 = bu - ¢2 (7.2)

Using Faraday'’s law, one can also write

dén, déy, d¢,
=N, — =N + — .3
Vi T e 1[ dt = dt 7.3

déy s d¢, d¢,
= —= =N, — - —= A
Ve T % Tgp 2lde 4t 7.4)

The leakage fluxes ¢, and ¢, can also be expressed as

¢ = N6 1, (7.5)
¢, = N6, 1, (7.6)

where ®, and ®, are the permeances of the magnetic paths of ¢; and ¢,
(71.
By Lenz's law the relation between ¢, and the currents i; and i,

can be written as
qu =6>m(Nlil- Nziz) (7.7)

where ®, is the permeance of the path of the magnetization flux ¢,

[7]. Substitution of Egs. (7.5), (7.6) and (7.7) into Eqs. (7.3) and

(7.4) gives
d . di,
Vl = N1 @m 'd—t[Nlll he N212] + 01 'a_t’_ (7.8)
d . . di,
VZ ad NZ @m E—E[Nlll - N212] - @2 E‘ (7.9)

which can be rearranged to
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di di N, di
v 2 1 2 1 2 91z
- -—= 4+ N ® _— . S s 7
1= N6 dt 1o [ dc N, dt ] (

di, N2 El_l_?_ ] (7

dt N, dt

2

The unit for permeance @ is Henry/turns® and consequently

following inductances can be defined in terms of the permeances

®,, and @,:
L, = N, %0, .
2, = N %6, (7
£, = N,%¢, 7

Substitution of Egqs. (7.12), (7.13) and (7.14) into Egs. (7

and (7.11) gives

di, di N, di
v, = 8 =L, S 2z S22 (7.
dt dt N, dt
di, N di, N, di
V2=‘22’—'2_+—£1-m --1r 2 772 (7
at N, dt N, dt

.10)

.11)

the

12)

.13)

.14)

.10)

15)

.16)

Equations (7.15) and (7.16) are a mathematical description of

the 1input-output characteristics of the generic transformer

Fig. 7.2.

Electric Circuit Model

An equivalent electric circuit model that satisfies Eqs. (7.

in

15)

and (7.16) is illustrated in Fig. 7.3. This model is known as the -

model for a two-winding transformer,



Fig. 7.3.
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° o +
v| Lm Va
N, N2
o= -0

Electric circuit model (m-model) for the generic two-
winding transformer in Fig. 7.2. The leakage inductances
2, and £, can be directly associated with the paths of
the leakage fluxes ¢, and ¢, in Fig. 7.2. This circuit
model can also be mathematically forced to satisfy the
input-output characteristics of the two-winding
transformer in Fig. 7.1, but the meanings of the elements
in the model are reduced to mere

mathematical
abstractions with no physical interpretation.
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The voltages across the leakage inductances £, and £, correspond
to the leakage fluxes ¢; and ¢, in the generic toroid. The voltage
across the magnetizing inductance L, corresponds to the magnetization
flux ¢,.

Because of the physical correspondence between the elements in
the n-model and those in the generic two-winding transformer, this =-

model can be called a physical model for the generic transformer in

Fig. 7.2. However, for any other two-winding configuration, the
elements in the n-model lose their physical meaning.

For instance, the =n-model in Fig. 7.3 can be mathematically
forced to satisfy the input-output characteristics of the two-winding
transformer in Fig. 7.1. However, since the elements in this model
represent physical quantities associated with the generic transformer
in Fig. 7.2 and not the actual one in Fig. 7.1, the meanings of the
elements in this model are reduced to mere mathematical abstractions
with no physical interpretation.

In general, for any two-winding transformer configuration other
than the generic two-winding transformer in Fig. 7.2, the w-model is
just a mathematical description, i.e., a mathematical model of the

transformer characteristics.
7.1.2 Mathematical Models for Three-Winding Magnetic
Circuits
The same procedure used to model the generic two-winding
transformer can be used to find an electric circuit model for the

generic three-winding transformer shown in Fig. 7.4. Because of the
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additional winding N; there are several additional flux
components. The seven flux components are illustrated in Fig. 7.4.
The differential equations that relate the winding voltages and

currents can be derived as before [7] and are given by

g, By | 8 (i,- Ai,- Bij) (7.17)
v, = — — - - .
1 1 3¢ o dc 1 1z 3
di, da . . .
v, = -2, Fra + M,A [ at (i,- Ai;- Bij) ] (7.18)
di d 3 . 3
V3 = -23 a‘t_:'s— + MOB [d_t' (11‘ Alz' Bls) ] (7.19)
where
0 N2 (O + 0p3)0, + Cp3(Cy + Cyp + Cr13) - 01,04 (7.20)
! ! (@m + 6>23) )
g =2 (82 * €13)0y + ®13(0; + @1, + Cp3) - 6,50, (7.21)
2t (®n + C13)
2, = N2 (O3 + 01,)0; + C1,(C3 + C13 + @3) - C13F;, (7.22)
3 (Op + ©15) '
M, - N,2 (@, + C1,) (@, + @13) (7.23)
© (Cn + Cp3)
Ny (8 + 855) (7 209
N, (@p + ®,3) ’
N ®. +
g~ o (O * O23) (7.25)

Ny (&, + @13)

The @®'s are the permeances associated with the different flux
paths shown in Fig. 7.4. The n-model that corresponds to Egqs. (7.20)

through (7.22) is shown in Fig. 7.5. This time, though, a general and
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Fig. 7.4. Generic three-winding transformer with the seven flux
components illustrated.

2
+
Y Mo

Fig. 7.5. Electric circuit model for the generic three-winding
transformer in Fig. 7.4.
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Fig. 7.6. Three-winding bobbin core transformer.
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simple interpretation of the electric circuit model in terms of the
generic three-winding transformer is not always possible.

Furthermore, if this model is used to characterize a "real"
structure such as the one in Fig. 7.6, any interpretation is almost
hopeless.

7.1.3 Mathematical Models for Four-Winding Magnetic

Circuits

As more windings are added to the generic toroid, the
mathematical description of the transformer becomes more complicated.
For the four-winding toroid in Fig. 7.7, the electric circuit model
can be derived as before. Unfortunately, for any transformer with
more than three windings it is not possible to represent in general
the input-output characteristics with a n-model.

The electric circuit model (mathematical model) for the generic
transformer in Fig. 7.7 1is shown in Fig. 7.8. As before, any

interpretation from this model is almost hopeless.

7.2 Conclusions

Mathematical models for magnetic circuits can be used as an
analysis tool in switching converters. For instance, the input-output
characteristics of the coupled inductors in a Cuk converter can be
measured, the measurements can be associated with the corresponding
mathematical model, and finally the parameters in the model can be
estimated in terms of the measurements. The electric circuit model of
the coupled inductors obtained this way can be used in the model of
the entire converter to find other quantities of interest external to

the magnetic structure.
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Fig. 7.7. Generic four-winding transformer.

|| 2l 3I4I

Fig. 7.8. Electric circuit model for the generic four-winding
transformer in Fig. 7.7.
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With respect to design of the magnetic structure, mathematical
models are not very useful. They do not contain adequate information
about the correct distribution of the 1leakage energy, about the
presence of pgaps throughout the core and, in general, about the
geometric and structural properties of the magnetic component under
investigation.

Electric circuit models that are derived from the actual
magnetic structures under investigation and are such that the
parameters in the models (leakage inductances, etc) have a one-to-one
relationship with corresponding physical quantities in the original
magnetic structure, can be used not only as analysis tools, but also
as design-oriented tools for magnetic structures.

These models, which are physically natural, are the main topic
of this thesis. The general method to obtain the physical model of a

magnetic structure is discussed in the next chapter.
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CHAPTER 8

PHYSICAL DESCRIPTION OF MAGNETIC CIRCUITS: PHYSICAL MODELS

8.1 Introduction

Mathematical models are based on generic magnetic circuits with
the same number of windings as the original magnetic structure.

Physical models, on the other hand, are based fundamentally on a
knowledge of the distribution and intensity of the fluxes inside the
actual magnetic structure under investigation. To obtain the physical
model of a magnetic structure, a new modelling technique is used.

The general modelling procedure for physical models is
illustrated in Fig. 8.1. The first step involves the determination of

the flux pattern 1inside the actual magnetic structure under

investigation. Based on this pattern a set of algebraic flux equations

is derived. These equations, which simply describe the distribution of
the fluxes inside the structure, are used to construct the reluctance

circuit model for the magnetic structure. The glectric circuit model

is then derived from the reluctance model using the principle of
duality (Appendix A). Finally, all the parameter values in the
electric circuit model are analytically determined in terms of the
geometry of the structure.

The method is described next with the help of a simple example.

The merits and limitations of this technique are also discussed.
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Fig. 8.1 General procedure to obtain the physical model of a
magnetic structure.



76

8.2 Physical Description of Magnetic Circuits

The two-winding toroid in Fig. 8.2 is used as an example to
illustrate the steps involved in the process of determination of the
physical model of a magnetic structure.

The primary is wound first and it is uniformly distributed
around the toroid. The secondary is wound on top of and uniformly
around the primary. For simplicity, the space between the primary and
the toroid and the space between the secondary and the primary, are
assumed negligible when compared to the widths of the windings. In
later chapters of this thesis some configurations are studied in which
these spaces are accounted for.

It is easier to visualize the process if the toroid in Fig. 8.2
is "cut" and stretched open as shown in Fig. 8.3. This is similar to
what was done before in the case of the toroid used for the inductor
in Chapter 6.

The toroid and windings have mnow been "transformed" into
cylinders of an average height £,=2aR,.

While the actual lengths of the inner sections of the windings
are smaller than the 1lengths of the outer sections, all the
integration steps involved go around the toroid and the windings,
which to a large extent average out these differences and, since the
"cut and stretched" toroid is assumed to be of average length £ =27R_,
the error in the calculations is very small.

What follows is a step-by-step description of the new modelling

technique as it is wused to model the two-winding transformer in

Fig. 8.3.
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Fig. 8.2. Two-winding toroid with uniformly distributed turns.

h|
h2~_~
— Ni Np
elo elo Pz 27Rm
A

Fig. 8.3. Cut and stretched toroid. The primary N, surrounds the
toroid, while the secondary N, surrounds both the primary
and the toroid.
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8.2.1 Approximate Flux Pattern Inside The Magnetic
Structure

In the previous chapter it was shown how the electric circuit
model (mathematical model) of a generic transformer was obtained based
on an "assumed flux pattern" inside the generic structure and its
windings.

To obtain the physical model of a magnetic structure, it is
necessary to find approximately the flux pattern everywhere inside the
actual structure wunder investigation. The flux pattern inside a

magnetic structure can in general be obtained using Ampere’s law in

its most general form,

§ H-d2 = JI J-ds (4.5)

(o4

For the stretched toroid in Fig. 8.3 the integration path ¢ in
Eq. (4.5) can be selected as shown in Fig. 8.4, and since the bottom
of the figure is actually connected to the top, the line c constitutes
a closed integration path.

The right side of Eq. (4.5) represents the total current

enclosed by c¢, which is indicated by the hatched area in Fig. 8.4 and

can be computed as

JJ Jods = Jy(hy-p) 4y - N;I, 0<p=<h (8.1)

where J; is the current density in the primary, which for a uniform

distribution of the turns can be written as
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N, I,
J; = —= (8.2)
hl‘gm
Substitution of Eq. (8.2) into (8.1), gives
J'J J'dS=N111{1 "E_] - NzIz OSpShl (8.3)
1

If the field intensity H is constant along c, the left side of

Eq. (4.5) can be computed as

£=0y,
§ H-df =~ | H(p)dL = H(p)4, (8.4)

2=0
c

where H(p) 1s the unknown field intensity at a radial position p
inside the primary as illustrated in Fig. 8.4.

Finally, combining Eqs. (8.3) and (8.4) results in

&’t—-‘

H(p) = [Nlll( l'ﬁ_) ‘NzIz] 0<p=h (8.5)
m 1

The field intensity H can be computed this way for any position
inside the toroid or the windings. The result is plotted in Fig. 8.5.
On the plot the field intensity H; corresponds to the

magnetizing flux of the transformer, which is given by

- NI, - NI
2

m

Hy (8.6)

The boundary conditions are satisfied between the toroid and the

primary and the primary and the secondary. For example, at the
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Fig. 8.4. Illustration of integration path used to determine the
field intensity inside the windings and the toroid.
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Fig. 8.5. Plot of the field intensity H inside the toroid and the
windings.
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boundary between the primary and the secondary the field intensity is
the same on both sides of the boundary.

To solve for the field intensity in Eq. (4.5), it was assumed
that the intensity in the windings and the toroid is constant in a
direction along the integration path c¢. Part of the proof that this
is approximately the case is the relatively strong field intensity
that results from the integration process along such a direction for
most of the winding's width with respect to other components of the
field in different directions. For example, if a closed integration
path is taken in a normal direction to ¢ as shown in Fig. 8.6, the
right side of Eq. (4.5) is reduced to zero, because the total current
enclosed by any such path is zero. Consequently the field intensity
along a direction normal to H(p) is either very weak or zero.

Although this simple analysis does not constitute an exact
proof, it is sufficient to justify the assumption that the £field
intensity inside the toroid and the windings is largely in a direction
parallel to the integration path ¢. Other components of the field in
different directions are very weak, and are not likely to change
noticeably the direction of H(p).

With the field intensity across the windings and toroid
determined, the flux pattern inside the structure can be approximately
established. This is illustrated in Fig. 8.7a. The sign of H(p) in
Fig. 8.7a indicates the direction of the fluxes inside the windings
and the toroid.

The actual flux pattern inside the toroid in its original

circular form can be obtained if the "stretched" toroid in Fig. 8.7a
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Fig. 8.6. Any integration path normal to ¢ encloses zero net current.



Fig. 8.7. Flux pattern inside two-winding toroid (a) cut and
stretched version, (b) transformer in its original
circular form.
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is bent back into its original form as shown in Fig. 8.7b. The
leakage flux inside the windings runs parallel to the toroid and, as
in the case of the inductor discussed in Chapter 6, no significant
amount of leakage flux leaves the windings, thus keeping the nearby

environment free of directly radiated magnetic fields.

8.2.2 The Flux Equations

The next step to determine the physical model of a magnetic
circuit is to write down a set of algebraic flux equations which are
based on the flux pattern previously determined and on the following
definitions.

The total flux enclosed by the primary winding is defined as
that which is enclosed by the infinitely small source N;I; shown in

Fig. 8.8.

¢y1 = Total flux enclosed by N; = ¢, (8.7)

Similarly, the total flux enclosed by the secondary N, is the
sum of all the flux enclosed by the infinitely small source N,I, shown

in Fig. 8.8.

én, = Total flux enclosed by N, = ¢, - (¢ + ¢3) (8.8)

In defining these two equations two fundamental approximations are
made. The first one incorporates all the mmf of the windings into the
infinitely small sources N;I, and N,;I,. The ideal situation would be
to consider each turn as a separate source of mmf. This can

unnecessarily complicate the results and make the process intractable,
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An intermediate solution is to break the windings into their
separate layers as they are physically wound. Each layer would then
be treated as a separated winding, each carrying a current N;I, where
N; is the number of turns in the i*® layer, and I is the current of
each turn in the layer. The case where the windings are broken into
their separate layers is discussed in detail in Chapter 12.

The second approximation has to do with the position of the
infinitely small sources N;I; and N,I, at the edges of the windings as
indicated in Fig. 8.8. The purpose of this is to ensure that all the
leakage fluxes ¢, and ¢, are contained within these two sources. If,
for instance, the position of N;I; is selected somewhere in the middle
of the primary as shown in Fig. 8.9, the amount of leakage inside N; I,
can be mistakenly taken as part of the "mutual”™ flux of the
transformer. This approximation can also be significantly improved
by breaking the winding into layers.

Later in the thesis experimental results show that both of these
approximations do not introduce significantly large errors in the
predicted models. However, if more accurate models are desired, the

layer-to-layer models discussed in Chapter 12 provide a better answer.

8.2.3 Construction of the Reluctance Model

The reluctance model is another intermediate step in the process
of determining the electric circuit model (physical model) of a
magnetic structure. The reluctance model gives a "circuit 1like"

description of the flux distribution in the original magnetic

structure.
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infinitely smoll source
¢ ~of mmf:=N,I,
infinitely small source -
of mmf=N,I;

Fig. 8.8. Illustration of definition and positioning of the
infinitely small sources of mmf N;I, and N,I,.

N, N, N, N,
Pm

¢ lle ® $

D19 2, 1192

Fig. 8.9. If the position of the mmf source N;I, is selected

somewhere in the middle of N,, the amount of leakage flux

inside NI, can be mistakenly taken as part of the mutual
flux of the transformer.
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The currents in the reluctance circuit represent the different
flux quantities in the magnetic structure which are also
mathematically described by the flux equations. The mmf sources
translate into voltage sources as described earlier in Chapter 4.

Each node in the reluctance model satisfies one of the flux
equations, and each branch of the reluctance circuit is associated
with the corresponding flux path in the magnetic structure. The
reluctances represent the the ability of the structure to store
magnetic energy along that particular path.

For the two-winding toroid in Fig. 8.2, the reluctance model is

obtained as follows.

The flux quantities ¢y; and ¢y,, which were previously defined

as

¢x1 = Total flux enclosed by N;
¢z = Total flux enclosed by N,

are the "currents" associated with the “voltage sources" N;I; and
N,I,, as illustrated in Fig. 8.10a. Notice that the "current" ¢y, in
the figure, together with the sign of the "voltage source" N,I,
indicates the "load nature" of N,I,.

The first node in the reluctance circuit satisfies Eq. (8.7),
which simply states that the mutual flux ¢, is the same as ¢y, .

For the second node, substitution of Eq. (8.7) into (8.8) gives

dn2 = ény1 - ($1 + 62) (8.9)
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This nodal equation can be used to connect the sources N;I;, and N,I,.
Figure 8.10a illustrates the implementation of Egqs. (8.7) and (8.9) in
the reluctance circuit.

The energy storage capabilities of each one of the flux paths in
the flux pattern is represented in the reluctance circuit by
reluctances in the different branches of the circuit. This is
illustrated in Fig. 8.10b. The reluctance R, represents the ability
of the structure to store magnetic energy inside the toroid (energy
stored in Hg). Similarly, the energy storage capability of the
primary is represented by R;, and that of the secondary by R,.

Finally, Eq. (8.8) 1is used to close the reluctance model. The
complete circuit is shown in Fig. 8.11. The circuit can be rearranged

into a more conventional way as shown in Fig. 8.12.

8.2.4 Electric Circuit Model (Physical Model)

In Appendix A a method for obtaining the electric circuit model
given the reluctance circuit is reviewed. The technique is known as
the principle of duality. The electric circuit model derived from the
reluctance model in Fig. 8.12 using the principle of duality is shown
in Fig. 8.13. Since the two leakage reluctances R; and R, are in
parallel in the reluctance model, their duals, the leakage inductances
2, and 2, appear in series in the electric circuit model.

The relations between the inductances in the electric circuit

model and the reluctance elements in the reluctance model are given by

Lm = —— (8.10)



(a)

(b)

Fig. 8.10. Construction of reluctance model using the flux
equations. Equations (8.7) and (8.9) are synthesized in
(a). The reluctances associated with the different flux
paths in the structure are introduced in the reluctance
model as shown in (b).
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1~ O™ O~ (0, +0,)

Fig. 8.11. Complete reluctance model for two-winding toroid.

N L, R, Rz% Nyl

Fig. 8.12. The reluctance model in Fig. 8.10 can be rearranged into
a more conventional way.
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2, = §li (8.11)
1 R, .

y) ﬁli (8.12)
2 R, .

The two leakage inductances £; and £, can be combined into one

inductance 2, as illustrated in Fig. 8.14, where

2 = 21 + 22 (8.13)

If the inductance of the toroid L, is much larger than £,, the
leakage inductance £, in Fig. 8.13 can be "pushed" through the node of
the mutual inductance L, without significantly changing the other
parameters in the model. This is illustrated in Fig. 8.15.

The electric circuit model shown in Fig. 8.15 is widely used by
engineers in design and analysis of transformers. However, if the
inductance of the toroid L, is not large compared to £;, as can be the
case in coupled inductors, the electric circuit model in Fig. 8.15
does not represent the characteristics of the structure.

For simplicity, the resistances of the windings were ignored but
they can be easily accounted for in the usual form. The electric
circuit model shown in Fig. 8.16 contains these additional elements.

8.2.5 Analytic Estimation of the Parameters in the

Electric Circuit Model

To completely define the electric circuit model for the two-

winding toroid, it 1is necessary to find approximate analytic

expressions for all the inductances in the model L, and Z.
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Fig. 8.13. Electric circuit model for two-winding toroid.

£=4+ 4,

Fig. 8.14. The leakage inductances £, and £, in Fig. 8.13 can be
combined into one single inductance £ = 2, + £,.
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Fig. 8.15. If L, >>> £y, the leakage inductance 2, can be pushed
through the node of L, without significantly changing any
of the elements values. However, if L, is not much
larger than 1#,, this circuit does not represent the
characteristics of the two-winding toroid.

Fig. 8.16. Electric circuit model for the two-winding toroid with
the windings resistances ry and r,.
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The inductance of the toroid L, was obtained in Chapter 6 and is

given by

Y (8.14)

To estimate the wvalue of the leakage inductance £, it 1is
sufficient to excite the circuit in such a way that most or all of the
energy is stored in £. For instance, if the primary is shorted and a
current source 1is connected across the secondary as illustrated in
Fig. 8.17, the voltage across the magnetizing inductance L; is zero
and all the energy from the current source I, is stored in £. Also,
since the voltage across the inductance Lm is zero, there is no flux
inside the toroid as indicated in Fig. 8.18.

The field intensity through the windings can be determined as
before, using Ampere’s law. The only difference now is that because
the primary 1is shorted, the magnetizing current 1is =zero and
consequently, N;I,=N,I,.

A plot of the field intensity across the windings is shown in
Fig. 8.18. The shaded area under the H plot corresponds to the energy
stored in 2.

The leakage inductances £ can now be obtained by evaluation of

Eq. (4.19) together with the plot of the field intensity given in

Fig. 8.18 as

JR— J” H2 dv (8.15)
Il
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Fig. 8.17. With the primary side shorted, all the energy from I, is
stored in the leakage inductance L.
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in windings

Fig. 8.18. Field intensity inside the windings with the primary
shorted.
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Solving the integral gives

2, 1 3 h,
£ = E Nl Ly Zn- hl(ro +Zh1) + hz(ro + hl + ‘A—) (8.16)

If the widths of the windings are the same (h;=h,=h/2), Eq. (8.16)

reduces to

2 , h
£ =5 NPmug = (xg + hy2) (8.17)

The electric circuit model in Fig. 8.16 together with the

expressions given by Eqs. (8.14) and (8.16) completely defines the

physical model of the two-winding toroid in Fig. 8.2.

8.3 Interpretation of Physical Model of the Two-Winding Toroid

The physical model of a magnetic structure can be easily
interpreted in terms of the parameters and the geometry of the
magnetic structure.

For example, for the two-winding toroid in Fig. 8.2 the elements
in the electric circuit model (physical model) shown in Fig. 8.13 can
be associated with the structure in the following way. The magnetizing
inductance I, represents the energy storage capabilities of the
toroid. The leakage inductances £y and £, represent the energy storage
capabilities of the windings. Finally, because the primary, is
physically "sandwiched" between the toroid and the secondary as
illustrated in Fig. 8.2 or 8.3, any flux enclosed by the primary, is
also enclosed by the secondary, which is why the leakage inductance 2,

appears in series with £, so that
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N
v2=iqi[vm+v1+vz] (8.18)
1
o o on [, 4 ae (5.19)
2 2 | 4t dt dt ’

Stated in words, the voltage across the secondary winding N, is
the sum of the voltages due to the magnetizing flux ¢, and the leakage
fluxes ¢, and ¢,.

The expression given by Eq. (8.16) for the leakage inductance £
in can also be related to the geometry of the windings and the
toroid. For instance, if the toroid is longer and the winding widths
h; and h, are reduced, the leakage inductance £ can be decreased. If
on the other hand the toroid is shorter and the windings are made
thicker, the leakage inductance £ can be increased. Both of these
cases are important in switching applications. Some examples are

discussed later in Chapter 11 and 13.

8.4 Experimental Results

A toroidal core (TDK T-19-31-8 H7Cl) was wound as shown in
Fig. 8.2. The primary consisted of one layer of 62 turns of #18 AWG
copper wire. The secondary was also wound on one layer of #18 AWG
copper wire with 52 turns.

Since the toroid was not gapped, the inductance of the toroid L
is very high, and either the circuit model given in Fig. 8.14 or that
in Fig. 8.15 can be wused to model the characteristics of this

transformer.

The values for the toroid and the windings dimensions are:
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r, = radius of the toroid = 0.43 cm
£, = mean length of the toroid = 7.55 cm

h; = h, = width of the windings = 0.1 cm

Substitution of these values into Eq. (8.17) gives

2~ 1.4 uH (8.20)

Such a small value of inductance can only be directly measured
using a very sophisticated inductance meter. An alternative way of
accurately measuring small inductances is to use the HP Network
Analyzer. The arrangement is illustrated in Fig. 8.19.

The resistances r; and r; are the primary and secondary winding
resistances, and R,y is an external resistance of known value. With the

primary shorted, the ratio of the voltages v, and v, is approximately

given by
s
— + 1
Vp, W,
v - Gy —;~—~———- (8.21)
B — + 1
¥p
where
r
Go ="r—:—R— (822)
t
W, 1 Y
f, = = T (8.23)

21 21 (N, /N; )24

£ - Y 1 r + Ry
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and

N, )?
r =71, N + r, (8.25)

The HP Network analyzer is used to measure the transfer function
vy, /v, and, since R, is known, the low frequency gain G, can be used to

measure accurately the winding resistance r, which from Eq. (8.22) can

be derived as

GO

r-R, —2— 8.26
1 -6, (8.26)

Finally, either the pole f, or the zero f, of the measured

transfer function can be used to measure the leakage inductance 4.

That is,
g = 2 I ) (8.27a)
2x £, 1772 e
ot 1 r+ R
L == ———% (N, /N,)? (8.27b)
2 fp

The measured transfer function v,/v, 1is 1illustrated in

Fig. 8.20. From the measurements and using Eqs. (8.26) and (8.27a)
r=0.1510 (8.28)
2 =1,6 pH (8.29)

The value of the measured leakage inductance £ is in good

agreement with the predicted value of 1.4 uH.
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Fig. 8.19. Set up used to measure indirectly the leakage inductance
L. The HP-network analyzer measures the transfer
function vy, /v, from which £ can be determined.

0ds

f,=21kHz

a2t sl A ta sl gl Y W 1

IkHz 10 100 1000

Fig. 8.20. Measured transfer function vy/v,. G, = -25.6 db, f, = 21
kHz, Ry = 2.72 Q.
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8.5 Conclusions

In this chapter the general steps necessary to determine the
electric circuit model (physical model) of a magnetic structure are
described with the help of a simple example. The example also
illustrates how the parameters in the physical model of a magnetic
structure can be easily associated with corresponding quantities in
the original magnetic structure.

In the next chapters this method is used to obtain the physical

model of some commonly used arrangements.
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CHAPTER 9

PHYSICAL MODELS FOR TWO-WINDING BOBBIN CORE MAGNETIC STRUCTURES

9.1 Introduction

In the previous chapter the method for obtaining the physical
model of a magnetic structure is 1illustrated using a simple two-
winding toroid as an example. Although this configuration is
sometimes used in transformer and inductor designs, the closed nature
of the core makes it very difficult to "thread" the windings through
the toroid.

Figure 9.1 illustrates a different type of core in which the
windings are first wound on a bobbin, and the bobbin is then put
together with the two cut pieces of the core. The advantages of this
type of configuration over the simple toroid are wvarious. For
instance, the windings can be wound much more easily on the bobbin
than on a toroid, and also, gaps can be easily introduced along the
magnetic path of the core as shown in the figure.

Bobbin core structures come in several shapes, some of which are

illustrated in Fig. 9.2.

9.2 Open and Closed Cores

There is one noticeable difference between the cores illustrated
in Fig. 9.2a and the one in Fig.9.2b. The shape of the pot core in
Fig. 9.2b is closed, while that of the cores in Fig. 9.2a is partially

open. Because of the closed nature of pot cores, the magnetic fields
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Illustration of bobbin core structure.
wound on a bobbin, which is then assembled with the two

cut pieces of the core.

The windings are
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(b)

Fig. 9.2  FExamples of bobbin core structures.

(a) Partially open
cores, (b) closed pot cores.
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inside the structure (including the leakage flux) remain inside the
core.

For the partially open cores, however, the leakage flux through
the outside sections of the windings is partially radiated away from
the structure. Although this might be an important qualitative
difference between these two types of cores, quantitatively it makes
no significant difference, which is why both types of cores have been
classified under the same general category of bobbin core structures.

Of the many possible ways of arranging the windings on the
bobbin of this type of core, two arrangements are the most widely

used. The physical models for these arrangements are discussed in the

sections that follow.

9.3 Two-Winding Side-by-Side Arrangement

Figure 9.3 illustrates what is probably the most common way of
arranging the windings in a bobbin core. The primary is wound first
on the bobbin, and the secondary is then wound on top of and around
the primary. In the figure, the bobbin is omitted for clarity.

The two sections of the core are shown separated by a small gap.
Although sometimes only the center leg is gapped, or a gap is not used
at all (as might be the case in a transformer design), it is shown
later that these two special cases are particular cases of the more

general one shown in Fig. 9.3.

9.3.1 Flux Pattern inside the Structure
The flux pattern inside the windings of the structure in Fig.

9.3 is obtained using Ampere’s law in its most general form. The
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Fig. 9.3 Two-Winding side-by-side arrangement.
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|

Fig. 9.4 Illustration of integration path used to obtain the field
intensity inside the windings H(p). The hatched area is
the total current enclosed by the integration path. Also
illustrated is the mean length of the magnetic path of
the core 1.



107

integration path can be selected as indicated in Fig. 9.4. This time,
the windings are cylinders surrounding the center leg of the core, and
therefore there is no need to transform or stretch the structure as
was done for the toroid.

With use of the integration path shown in Fig. 9.4, Ampere’s law

can be written as

§ H-d2 = JJ J-ds (9.1)

C

The right-hand side of this equation is the total current enclosed by

the integration path; therefore Eq. (9.1) reduces to

3§ H-d2 = J,bp (9.2)

c

where J; is the current density in the primary which is given by

Nlll
h;b

J, (9.3)

Substitution of Eq. (9.3) into (9.2) and evaluation of the integral on

the left side gives

H(p) = Hy - —— — (9.4)

where H(p) 1is the field intensity inside the primary at a radial
distance (p + r,) from the center of the core, and H, is the field

intensity inside the core, which is approximately given by
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- N111 - NzIz

o 2

(9.5)

m

where £, is the mean length of the magnetic path ofvthe core.

The field intensity through the secondary winding and the rest
of the core is obtained in a similar way. The complete result is
illustrated in Fig. 9.5. The sign of the field intensity determines
the direction of the fluxes inside the windings and the rest of the
core. This, in turn, is used to establish the approximate flux

pattern inside the structure, which is also illustrated in Fig. 9.5.

9.3.2 The Flux Equations

Before writing the flux equations it is necessary to define the
infinitely small sources of mmf that represent the windings N; and N,.
This is similar to what is done with the two-winding toroid.

The two sources of mmf are shown in Fig. 9.6. Again, they have
been positioned at the extremes of the windings, so that all the
leakage flux is contained within the two.

The flux equations can now be written according to the following

definitions:

#y1 = Total flux enclosed by N; I, (9.7)

#n2 = Total flux enclosed by N, I, (9.8)

and the flux pattern in Fig. 9.5. This yields

1 = & (9.9)
Pz = b - (1 + ds5 + ¢2) (9.10)
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Fig. 9.5 Field intensity inside the windings and the core.
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Fig. 9.6 Illustration of the flux pattern inside two-winding side-
by-side arrangement. It is determined with the use of the
field intensity plot. Also shown are the infinitely
small sources of mmf NI, and N,I,.
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Substitution of Eg. (9.9) into (9.10) gives

by = dn1 - P2 (9.11)

where ¢p=¢,+ds+¢, .
Finally, the last flux equation gives the relation between the
flux through the center leg of the core ¢.,, and the flux through the

outer legs ¢,. That is,

¢o = Qsc - ¢£ = ¢N2 (9.12)

9.3.3 Construction of Reluctance Model

The reluctance circuit model is constructed using Egs. (9.9)
through (9.12). Each node in the reluctance circuit model satisfies
one of these equations, and each branch in the circuit represents a
corresponding flux path. The infinitely small sources of mmf N,I, and
N,I, are represented by two voltage sources. The complete reluctance
circuit model is illustrated in Fig. 9.7.

The reluctances in the circuit represent the ability of the
structure to store energy along that particular path. For instance, Ry
represents the ability of the structure to store energy in the

windings; R, is the reluctance of the center leg gap and R,, that of

the outer legs.

9.3.4 Electric Circuit Model

The electric circuit model derived from the reluctance model
using the principle of duality discussed in Appendix A is illustrated
in Fig. 9.8. The relations between the inductances in the electric

circuit model and the reluctances in the reluctance model are given by
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¢N1= ¢C o — ¢C— ¢l ¢N2= ¢0

R. ¢cl R. @,
¢N1 ¢,¢ ¢N2
N111 Rﬂ Nala

¢N1= ¢N2— ¢£

Fig. 9.7 Reluctance circuit model for two-winding side-by-side
arrangement. The "voltage" sources represent the mmf
sources N;I, and NI, in Fig. 9.6, and the reluctances
the energy storage capabilities of each path in the flux

pattern. Each node in the reluctance circuit satisfies a
flux equation.

i { i

Fig. 9.8 Electric circuit model for two-winding

side-by-side
arrangement.
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N, 2
L = 9.13
° TR ( )
N, 2
L, = — 9.14
° TR ( )
N, 2
= —= (9.15)
Ry

9.3.5 Estimation of Parameters in Electric Circuit Model
The two inductances L, and L, in the electric circuit model are
easily obtained since they are directly associated with the center and

outer leg gaps, respectively. That is,

N, 2 N, 2
L. = = (9.16)
R, 2g/p°sc
and
N, 2 N, 2
L, = — 1 (9.17)

R, Rs/poso

where S, 1s the effective area of the center leg of the core, S, the
total area of the outer legs, and £; the length of the spacer gap.

The leakage inductance £ can be calculated by shorting the
secondary and exiting the primary with a current source. This is
illustrated in Fig. 9.9.

If the leakage inductance £ is much smaller than L., most of the
energy from the current source is stored in the leakage inductance £
and not in L. The field intensity inside the windings with the
secondary shorted can be obtained using the same integration path that

was used in Fig. 9.4. The result is illustrated in Fig. 9.10. Since
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Fig. 9.9 With the secondary shorted, most of the energy from I, is
stored in the leakage inductance £.

Hn~0

NlIl ~ N!Il
b ~ b

Fig. 9.10 Illustration of field intensity inside the two-winding
side-by-side arrangement when the secondary is shorted.
The field intensity inside the core H, is reduced to
almost zero.
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the secondary is shorted, N;I; = N,I,, therefore, the mutual flux ¢,

is approximately zero.

The leakage inductance £ can now be computed by evaluation of

2 = be, JJI H(p)2dv (9.18)
I

throughout the volume of the windings, where H(p) is given in Fig.

9.10. Evaluation of this integral gives

1 h
£ = 2mp N, ? o hl[ gg + Zl ] +

)
+ 6[ r, + h; + IS ] +
r. + h, + 6§ h
+h | =——21 2 9.19
z[ 3 12 ] (9.19)

If the widths of the windings are the same, i.e., h;=h,=h/2, and § <<

h, Eq. (9.19) reduces to

i
t
|

2 , h
3 ™HoM® (o + h/2) (9.20)

oY

, h
HoNy? = MLT (9.21)

[

where MLT = 2n(r, + h/2) is the mean length per turn of the bobbin.
The electric circuit model in Fig. 9.8, together with Egs.

(9.16), (9.17) and (9.19) define the physical model for the two-

winding transformer in Fig. 9.3.
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9.3.6 Relation Between Physical Model and Mathematical
Model

The electric circuit model (physical model) in Fig. 9.8 can be
transformed to the mathematical model shown in Fig. 7.3 by performing
a V-to-Y transformation as shown in in Figs. 9.1la and 9.11b. The
relations between the elements in Fig. 9.1la and the ones in Fig.

9.11b are given by

2L
g = —— (9.22)
2 + L, + L,
2L
By = —— 9.23
2 2+ L, + L, ( )
L L,
- 9.24
b= 7+L + L, (9.24)

The elements in the mathematical model in Fig. 9.11lb, £,, 4£,,
and L, are a mathematical function (Egs. (9.22) through (9.24)) of the
parameters in the physical model £, L, and L,.

9.3.7 Special Cases of the Two-winding Side-by-Side

Arrangement

The configuration in Fig. 9.3 can be considered a general case
for the two-winding side-by-side arrangement. The case where the core
is ungapped and the case where only a gap in the center leg is used
can be considered special cases of the arrangement in Fig. 9.3.

If the core is ungapped, the two inductances L, and L, in Fig.
9.8 are very large compared to 2, and consequently, the electric

circuit model can be reduced to that shown in Fig. 9.12. The
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Fig. 9.11 The electric circuit model for the two-winding side-by-
side arrangement in Fig. 9.8 is shown here (a) with the A
connection of the inductances more explicit to illustrate
how it can be transformed into the mathematical model in

(b).
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expression for the leakage inductance 2 in this circuit is still given

by Eq. (9.19), and the mutual inductance is now given by

Ly = —— (9.25)

where R,=2,/uS is the reluctance of the magnetic path of the core.

If a gap is present in the center leg only, then L, >>> L., and
the electric circuit model in Fig. 9.8 can be approximated by that in
Fig. 9.13. The expression for the inductance of the center leg is

given by Eq. (9.16), and the leakage inductance, by Eq. (9.19).

9.3.8 Examples
Various bobbin cores of different sizes were wound as shown in

Fig. 9.3. Two examples are given in this section to illustrate how the

models are experimentally verified.
The first example is a small P-2213 pot core with a spacer gap.

The length of the gap and the size of the windings and the core are

summarized below.

N, = 65, N, = 61

r, = radius of bobbin = 0.5 cm

h = width of each winding = 0.2 cm

b = height of the windings = 0.8 cm (9.26)
S, = effective area of the center leg = 0.542 cm?

S, = effective area of the outer legs = 1.04 cm®

£, = length of the spacer gap = 0.28 mm
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o

Fig. 9.12 Reduced electric circuit model for ungapped two-winding
side-by-side arrangement.

~

3

Fig. 9.13 Reduced electric circuit model for two-winding side-by-
side arrangement with only a center leg gap.
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The predicted electric circuit model (physical model) obtained
by substitution of these values in Eqs. (9.16), (9.17), and (9.20) is
shown in Fig. 9.l4a.

To experimentally verify the model, the four parameters L., L,

2, and N can be derived from the following measurements.

With the secondary open, measure the impedance looking into the

primary. This gives
s(L, | (L + 2)) (9.27)

Similarly, with the primary open, measure the impedance looking into

the secondary, which gives

N, )2
s | =2 | (Ll + &) (9.28)
Ny

Next, measure the impedance looking into the primary with the

secondary shorted. This gives
s (Le | £) (9.29)

Similarly, the impedance looking into the secondary with the primary

shorted gives

N, )2
s | == | @] (9.30)
N
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o—— 411 >
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1 mH mH 2
(b)
Fig. 9.14 (&) Predicted electric circuit model values for two-

winding side-by-side arrangement on a P-2213 pot core
with a 0.28 mm spacer gap. (b) Measured electric circuit

model.
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Finally, measure the open circuit voltage ratios

2 N L

-2 _ s (9.31)
Vi Nl Ls + £

Vi N, L

—_ == — 9.32
v, N L, + 4 ( )

All the measurements are performed with the HP network analyzer.
The frequency of the measurements 1is sufficiently high that the
resistances of the windings are negligible when compared to the
reactances of the inductances in the circuit.

The electric circuit model values derived from these
measurements are illustrated in Fig. 9.14b and compare favorably with
the predicted values in Fig. 9.1l4a.

The second example is a similar pot core (P-2213) but with a
very large center leg gap only. The length of the gap is 1.2 mm, which
for a core this size (= 22 mm x 13 mm) is significantly large. The
predicted electric circuit model is illustrated in Fig. 9.15a. The
measurements are performed in a similar way by substitution of L, = =
in Egqs. (9.27) through (9.32).

The measured electric circuit model values are shown in Fig.
9.15b. Although the errors between the measured and the predicted
values have increased (probably due to the large size of the gap), the
measurements still compare well with the predictions.

Other examples were also investigated, and the results always

compared favorably with the predictions.
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1 39 uH i

V 240 uH 1 0.94 v2

(a)

28 uH

V 252 uH 1 0.96 V2

(b)

Fig 9.15 (a) Predicted electric circuit model values for two-
winding side-by-side arrangement on a P-2213 pot core
with a 1.2 mm center leg gap. (b) Measured electric
circuit model.
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9.4 Two-Winding Top-Bottom Arrangement

Another commonly wused two-winding configuration is the top-
bottom arrangement illustrated in Fig. 9.16. A special bobbin with a
divider disk is required to arrange the windings this way. Most core

manufacturers supply this type of bobbin for their cores.

9.4.1 Physical Model of Top-Bottom Arrangement

The physical model of this structure is obtained the same way as
before. The flux pattern inside the core and the windings is derived
using Ampere’'s law and the integration path shown in Fig. 9.17a. The
field intensity throughout the core and the windings is illustrated in
Fig. 9.17b.

The sign of the field intensity determines the direction of the
fluxes inside the core and the windings. This in turn determines the
flux pattern inside the structure that is illustrated in Fig. 9.17b.

The infinitely small sources N;I; and N,I, are positioned at the
extremes of the windings as indicated in Fig. 9.17b. The fluxes
enclosed by each one of these mmf sources (flux equations) are

obtained from the flux pattern in Fig. 9.17b and are given by

#y1 = Total flux enclosed by N; I, = ¢, + ¢, (9.33)

#y2 = Total flux enclosed by NI, = ¢, - ¢, (9.34)

and also, from the figure

. = %o (9.35)
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Fig. 9.16 Two-winding top-bottom arrangement.
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Fig. 9.17 Illustration of integration path (a) used to determine
the field intensity (b) in the windings. The flux
pattern inside the structure is also illustrated in (a).
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Equations (9.33) through (9.35) are used to construct the
reluctance circuit model shown in Fig. 9.18. The electric circuit
model derived from the reluctance model is illustrated in Fig. 9.19.

Because of the series connection of R, and R, in the reluctance
circuit, the corresponding inductances L, and L, in the electric
circuit model appear as a parallel combination.

The expressions for L. and L, are again given by Eqs. (9.16) and
(9.17), since they also represent the inductances of the center and
the outer leg gaps, respectively.

The 1leakage inductances £; and £, <can be estimated by
"mathematically" shorting the secondary and calculating the amount of
energy stored in each one of the windings. The field intensity with
the secondary shorted is similar to that in Fig. 9.17b, with the
mutual flux ¢, reduced to apéroximately zero. The leakage inductance

2, is calculated by evaluation of

2 - ?ZZ JJJ H(p)2dv (9.36)

throughout the volume of N, .

Similarly, £, is obtained by evaluation of

2, = ?zz JJJ H(p)?dv (9.37)

throughout the volume of N, .
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Fig. 9.18 Reluctance circuit model for two-winding top-bottom
arrangement .

Fig. 9.19 Electric circuit model for two-winding top-bottom
arrangement.



Evaluation of Eqs. (9.36) and (9.37) gives

Ho 2 bl
2, = — N — MLT 9.38
L = TN (9.38)
Eo 2 bZ
£, = — N;¢ —= MLT 9.39
2 =S MP (9.39)

where MLT = 2nx(r, + h/2) is the mean length per turn of the bobbin.
The electric circuit model (physical model) of the top-bottom

arrangement (Fig. 9.19), is the same as the mathematical model, i.e.,

the m-model for a two-winding structure. This is only an exception,

not a general result.

9.4.2 Special cases of Top-Bottom arrangement

If the core of the transformer in Fig. 9.16 is ungapped, the
mutual inductance in Fig. 9.19 1is given by Eq. (9.25). Also, since
L, >>> {,, 4, can be pushed through the node of the mutual inductance
1,, and the circuit model reduces to that in Fig. 9.12. The value of
the leakage inductance £ is the sum of £, and £, which are given by

Egs. (9.38) and (9.39). That is,

1 (b, +b
L =2y + By = pN;? - [——1-—5——‘1] MLT (9.40)
or
z—-l- szMLT (9.41
3#01 h .)

where b=(b;+b,).
The other special case considered is the one in which only the

center leg is gapped. 1In this case the electric circuit model remains
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basically the same as that in Fig. 9.19, with 1L, = «, which results

?

in Ly L, = L.

9.4.3 Examples
A small pot core (P-2213) with a center leg gap was used for
this example. The windings are wound on a split bobbin as shown in

Fig. 9.16. The dimensions of the windings and the core are

N, = N, = 65

r, = 0.5 cm

b, = b, = 0.36 cm (9.42)
h = 0.36

S, = 0.542

£, = 0.45 mm

Substitution of these values in Egs. (9.16), (9.38), and (9.39),
results in the predicted circuit model shown in Fig. 9.20a.

The model is experimentally verified, performing a similar set
of impedance and voltage ratios measurements on the circuit. The
electric circuit model values calculated from these measurements are
illustrated in Fig. 9.20b. The measurements compare favorably with
the predictions.

Other examples were also experimentally verified, but since all
the circuit models for this arrangement are similar, very 1little
additional information is derived from these examples. In all the

cases, the measurements always followed the predictions closely.
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Fig. 9.20

(b)

(a) Predicted electric circuit model values for two-

winding top-bottom arrangement on a P-2213 pot core with
a 0.45 mm center leg gap. (b) Measured electric circuit

model .
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9.5 Conclusions

In this chapter the method for obtaining the physical model of a
magnetic structure is used to determine the electric circuit model
(physical model) of two commonly used arrangements.

It is also shown how the physical model of a magnetic circuit
differs from the mathematical model (m-model for a two-winding
structure). In general, the parameters in the mathematical model are
a mathematical function of the parameters in the physical models.

The physical models of the two arrangements discussed illustrate
how it 1is possible with this modelling technique to predict the
correct distribution of leakage energy in a magnetic circuit. This is
particularly important in the design of coupled inductors, where gaps
are always used, and means of controlling the distribution of the
leakage energy in the circuit model can assure an optimal performance
of the converter.

In the mnext chapter the new modelling technique is used to

obtain the physical model of some three- and four-winding structures.
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CHAPTER 10

PHYSICAL MODEL FOR THREE AND FOUR-WINDING MAGNETIC STRUCTURES

In this chapter the same procedure used to obtain the physical
models for two-winding structures is used to derive the physical
models of some three- and four-winding configurations.

The configurations treated in this chapter are three and four-

winding extensions of the two-winding arrangements discussed in

Chapters 8 and 9.
10.1 Three-Winding Magnetic Structures
10.1.1 Three-Winding Toroid with Uniformly Distributed
Turns

Figure 10.1 illustrates the first three-winding arrangement. It
is simply a three-winding extension of the two-winding toroid
discussed in Chapter 8. The third winding N; is wound on top of and
around N, .

Since the relative positions of N, and N; have not changed, the
electric circuit model (physical model) between N, and N; remains the
same as it was in the two-winding case, i.e., Fig. 8.12.

The toroid in Fig. 10.1 can be cut and stretched the same way as

the two-winding toroid. The cut and stretched three-winding toroid is

illustrated in Fig. 10.2a.



N |[N2| Ny HNREE
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_Naly
I N
(b) ™ A

(a) "Cut" and stretched three-winding toroid. (b) Field
intensity and flux pattern inside the windings and
Also illustrated are the mmf sources N,I,, N,I,,

Fig. 10.2

toroid.

and N313 .
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The field intensity throughout the toroid and the three windings
is obtained in the same way as it is in the two-winding case. The
result is illustrated in Fig. 10.2b.

The direction (sign) of the field intensity is used to establish
the flux pattern inside the toroid and the windings. This flux
pattern is also illustrated in Fig. 10.2a.

The flux equations are defined by the flux pattern and the usual
definitions for the infinitely small sources of mmf N;I,, N;I,, and
N;I;, which are positioned at the extremes of the windings as
indicated in Fig. 10.2a. The flux equations according to these

definitions are given by

¢y, = Total flux enclosed by N I, = ¢, (10.1)
¢nz = Total flux enclosed by NI, = ¢, - (41 + ¢3) (10.2)
¢ys = Total flux enclosed by N3I; = ¢, - (é; + ¢, + ¢3) (10.3)

Substitution of Eq. (10.1) into Egs. (10.2) and (10.3) gives

$n2 = dx1 - (41 + &) (10.4)
n3 = P2 - 93 (10.5)

Equations (10.1) through (10.5) are wused to construct the
reluctance circuit model illustrated in Fig. 10.3a. Each node in the
reluctance circuit satisfies one of these equations, and the
reluctances represent the ability of the structure to store magnetic
energy along each path. The reluctance circuit in Fig. 10.3a can be
rearranged in a more conventional way as shown in Fig. 10.3b.

The electric circuit model derived from the reluctance model

using the principle of duality (Appendix A) is illustrated in
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Fig. 10.3 The reluctance circuit for three-winding toroid (a) can
be rearranged as shown in (b).
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Fig. 10.4a. It can also be rearranged as shown in Fig. 10.4b where
the leakage inductance element £;; has been reflected to N;, and

therefore,

’ N3 2
£25' = [ ﬁ: ] 223

Note that the electric circuit model between N, and N; (with Nj
open) is the same one in Fig. 8.12. 1In other words, if N; is left
open, it is the same as not being there at all, and the structure is
basically the same as the two-winding toroid in Chapter 8. Therefore,
the electric circuit model (physical model) between N; and N, with Nj

open is also the same.

The mutual inductance 1, corresponds to the inductance of the

toroid which is given by

L, = = (10.6)

where R;=2,/uS is the reluctance of the toroid.
Since the model between N, and N; is the same as that of the
two-winding toroid in Chapter 8, the expression for the leakage

inductance element £,, is given by Eq. 8.16; i.e

A ]

r, + hy + § h
+h2[° - 1+—2] (10.7)
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(a)

(b)

Fig. 10.4 (a) Electric circuit model for three-winding toroid. It

can be rearranged as shown in (b) by reflecting £, to
Njy.
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where the space §, between N; and N, is now accounted for.

Finally, the leakage inductance element £,;' can be estimated by
opening the primary N,;, shorting the secondary N,, and exciting N,
with a current source. This is illustrated in Fig. 10.5. Since N, is
shorted, all the energy from the current source I; is approximately
stored in the leakage element £,3'.

The field intensity throughout the windings under this condition
(N, open, N, shorted) is illustrated in Fig. 10.6. Since all the

energy 1s approximately stored in 4£,3', A£,3' can be estimated by

evaluation of

25" = ?:2 JJJ H2 (p)dv (10.8)

where H(p) is given in Fig. 10.6. Evaluation of this integral gives

1 r, + h;y + 6 h
fy3'= 2mp Ny2 = hz[ ° 31 L+ Zi ] +
m

5
+62[r°4-h1+ 8, +rh-+§£} +

(10.9)

+ hy r, + hy +6; + hy + 6, 4 hy
3 12

If h,=h,=h;=h/3, and é,, 6, << h, Egs. (10.7) and (10.9) reduce to

4 , h
i = 5w ® o= (5o + h/3) (10.10)

4 , h
f23" = 5 mHoNa? = (r, + 2h/3) (10.11)

m



139

Fig. 10.5 With the primary open and the secondary N, shorted, all
the energy from the current source I; is stored in f£,5'.

h, hy hy
¢3 gz ¢l‘l'!-O
.
_

H mgo

_Nelp Moy

m m

Fig. 10.6 Field intensity in three-winding toroid with the primary
open and the secondary shorted.
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Finally, it may be noted from the electric circuit model in Fig.
10.4b that there is no leakage inductance element in series with N,,
which is because, physically, N, is "sandwiched" between N; and N;, as
illustrated in Fig. 10.1. Therefore, any flux enclosed by N, is also
approximately enclosed by either N; or Nj.

However, the energy storage capability of N, is represented in
the electric circuit model by £,,, and £,3'. For example, if N; is
left open, £,, simply becomes the leakage inductance between N, and
N,. If N; is open, l,3’' is the leakage inductance between N, and Nj.

This is also reflected in the expressions for £,, and £,;'.
10.1.2 Three-Winding Bobbin Core Arrangements

Side-by Side-Arrangement

Figure 10.7 illustrates a three-winding extension of the side-
by-side arrangement discussed in Chapter 9. Again, the general case
occurs when a spacer gap is used as illustrated in the figure. The
field intensity and the flux pattern inside the structure are
determined in the same way as the previous examples. The result is
illustrated in Fig. 10.8.

The flux equations based on the flux pattern in Fig. 10.8 are

given by
$n1 = & (10.12)
$nz = ¢ - ($1 + ¢3) (10.13)
nsz = b - (¢1 + ¢ + ¢3) (10.14)

P = ¢ + $1 + ¢, + &3 (10.15)
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R

Fig. 10.7 Three-winding side-by-side arrangement.
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Fig. 10.8 Field intensity and flux pattern inside three-winding
side-by-side structure. Also illustrated are the
infinitely small sources of mmf NyI,, NI, and N3I,.
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Substitution of Eq. (10.15) into Egs. (10.12) through (10.14) gives

the additional equations

Pn1 = b, + 61 + ¢ + &3 (10.16)
Sz = b - ¢3 (10.17)
x3z = ¢ (10.18)

Equations (10.12) through (10.18) are used to construct the
reluctance model illustrated in Fig. 10.9. The corresponding electric
circuit model is shown in Fig. 10.10a and can be rearranged as in Fig.
10.10b.

The inductance L, in the electric circuit model corresponds to
the center leg gap and is given by Eq. (9.16). Similarly, L,
represents the inductance of the outer legs and is given by Eq.
(9.17).

The leakage inductance elements £;, and £,;' can be estimated in
a similar way as the leakage elements in the three-winding toroid
previously discussed. For example, £;, is the leakage inductance
between the primary N; and the secondary N,, which is basically the
same as the leakage inductance of the two-winding side-by-side

arrangement given in Eq. (9.19); that is,

(10.19)
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Fig. 10.9 Reluctance model for three-winding side-by-side
arrangement .
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Fig. 10.10 (a) Electric circuit model for three-winding side-by-side
arrangement. By reflecting the inductances L, and 2,5 to
N3, the electric circuit model can be rearranged as shown

in (b).
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The leakage inductance £;3;' in Fig. 10.10b represents the energy
storage capabilities of N, and N;. It can be computed by opening the
primary N;, shorting the secondary N,, and exciting N; with a current
source as shown in Fig. 10.11. Evaluation of the total energy stored

in £,5' gives

1 + h + 6 h
'2231 - 2”“QN32 _b_ hz( ¥, 1 1 + __2_) +

(10.20)

If hy;=hz;=h;=h/3, and §,, 6§, <<< h, Egs. (10.19) and (10.20) reduce to

4

h
212 - '9' ﬂuole E (ro + h/3) (1021)

£,5' = g- mp, Ny 2 % (r, + 2h/3) (10.22)

The similarities between these two equations and the equations
for the leakage parameters of the three-winding toroid, Eqs. (10.10)
and (10.11), are due to the similarities of the windings arrangement
in both cases, the stretched three-winding toroid (Fig. 10.2), and the
three-winding side-by-side arrangement (Fig. 10.7). Note that in this
case also, there is no leakage inductance element in series with the
"sandwiched" winding N,, but as before, the energy storage capability

of N, is represented in the circuit model by £;,, and £,5'.



+ ——

Vv, Lc N, >
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Fig. 10.11 With the primary open and the secondary N, shorted, all
the energy from the current source I, is approximately

stored in R;3’. This condition can be used to estimate
the value of the leakage inductance £, '

®

/

(Lc + 212)‘

Fig. 10.12 Reduced electric circuit model between N, and N; with N,
open.
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Fig. 10.13 Approximate electric circuit model for ungapped three-
winding side-by-side arrangement.

+
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Fig. 10.14 Electric circuit model for three-winding side-by-side
arrangement with a center leg gap.
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Also, if either winding is left open, the electric circuit model
between the other two windings is reduced to a circuit similar to the
one in Fig. 9.8, i.e., the electric circuit model for a two-winding
side-by-side arrangement.

For example, if N; is left open, the electric circuit model

between N, and N3 is reduced to the one in Fig. 10.12, where

N 2
(Le + £,)" = [ Ea ] (Lo + 242) (10.23)
1
N, )2
23" = -= 25 (10.24)
N;
and
N, }?
L"=1 =1L (10.25)
N;

Some special cases of this arrangement are the ungapped and the
center leg gapped cores. The corresponding electric circuit model for

each of these cases is illustrated in Fig. 10.13 and 10.14.

Three-Winding Top-Bottom Arrangement

One ©possible three-winding extension of the two-winding
arrangement in Fig. 9.16 is illustrated in Fig. 10.15. The method for
obtaining the physical model for this arrangement is straightforward
and follows the same path of all the previous cases. The electric
circuit model (physical model) is illustrated in Fig. 10.16a and can
be rearranged as shown Fig. 10.16b.

The expressions for the leakage inductance parameters in the

circuit model are given by
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N, b
N2 b2
N, bs

Fig. 10.15 Three-winding top-bottom arrangement.
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Fig. 10.16 The electric circuit model for the three-winding top-

bottom arrangement in (a) can be easily rearranged as
shown in (b) by reflecting k,; to N3.
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M elto £, )

Fig. 10.17 Reduced electric circuit model between N, and N, with the
primary open.
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b
2, = 5‘31 N,? b MLT (10.26)
b
L, = 53‘— N,2 o2 MLT (10.27)
b, + b
2,5 = 53‘-2 Ny? 22 ML (10.28)

The inductances L, and L, are, once more, the inductances of the
center and outer leg gaps, respectively.

Owing to the asymmetry of the winding positions with respect to
that of the gaps, the circuit models between any pair of windings are
not mnecessarily similar. For example, the reduced electric circuit
model between N; and N,, with N; open, is similar to the circuit model
of the two-winding arrangement in Fig. 9.16, which is given in Fig.
9.19. However, the reduced electric circuit model between N, and Nj
with N; open (Fig. 10.17) is not similar to the one in Fig. 9.19.
This is because the relative positions of the windings with respect to
the gaps are not similar for these cases.

Note that the gaps are between N, and N, but not between N, and
N;. In the same way, one can also say that the gaps are positioned
between N; and Nj; therefore, the electric circuit model between N;
and N; with N, open should be similar to the model of the two-winding
top-bottom arrangement in Fig. 9.19. This is easily verified by

inspection of the electric circuit model in Fig. 10.16b.

10.2 Four-Winding Magnetic Structures

The four-winding extensions of the side-by-side and the top-

bottom arrangements are illustrated in Figs. 10.18a and 10.19a. The
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Fig. 10.18 Four-winding extension of the side-by-side arrangement
(a) and the corresponding electric circuit model (b).
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ﬂ
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(b)

Fig. 10.19 Four-winding extension of the top-bottom arrangement (a)
and the corresponding electric ecircuit model (b). Note
the symmetry of the electric circuit model around the
inductance L ||L,. This is due to the physical symmetry of
the arrangement in (a) with respect to the position of

the gaps, which are represented in the circuit b

y L. and
Ly
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electric circuit models (physical models) for each of these
arrangements are shown in Figs. 10.18b and 10.19b. The process for
determination of these models is the same one used in all the previous
cases.

The expressions for the leakage parameters of the four-winding

side-by-side arrangement in Fig. 10.18 are given by

1 by h r.+h h
2., = 2mu N2 = | hy| =+ 2] +h,| =2+ 2 10.29
12 ThoN1 % & 1[ 3 4 2 3 12 ( )
\
1 ro+h; hy r,+h;+h;  hj
23 = 27l'y.°N12 g L hz[ 03 — ] + h3[ —2—?———" +1E'— (10.30)

+h, +h h +h, +h, +h h
b = o L oy [ Eetutte B ), (rathorhath, b

3 15 ] (10.31)

where the spaces between the windings were neglected but, in general,
can be accounted for in the usual way.
Similarly, the expressions for the leakage parameters of the

four-winding top-bottom arrangement in Fig. 10.19 are given by

b, + b
2, =2 N2 2722 it (10.32)
3 h

Bo 2 b2
2, =22 N2 22 MLT 10.33
2 ;3 W o ( )
g, = Ho y2 Doy (10.34)

3 h
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Further extensions of these arrangements are possible and are,
in general, treated the same way as in all the previous cases. The
general results are similar, and further investigations of these give

no additional qualitative information.

10.3 Examples
The first example is a three-winding side-by-side arrangement on
a large P-4229 ferrite pot core with a 1.4 mm spacer gap. The three
windings are of the same width, and the separations between them are
negligible.
The dimensions of the windings and the core are
N, = 56, N, = 55, N;j = 53

h= .26 cm

b=1.8cm (10.36)
r, = 1 cm

S, = 2.23 cm?

So = 3.85 cm?

The predicted electric circuit model values obtained by
substitution of these values into Egs. (10.20), (10.21), (9.16) and
(9.17) are shown in Fig. 10.20a.

The measurements for three- and four-winding structures are more
complicated because of the additional windings, and if the process of
open and short circuit measurement 1is followed, the number of
equations involved can make the calculations almost hopeless.

To simplify the measurement process, a few agssumptions are made.

For instance, if a voltage source is connected across the primary N, ,
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Fig. 10.20 (a) Predicted electric circuit model values for three-
winding side-by-side arrangement on a P-4229 pot core
with a 1.4 mm spacer gap. (b) Measured electric circuit

model .
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Fig 10.21 (a) Predicted electric circuit model values for four-
winding top-bottom arrangement on a P-4229 pot core with

a 0.8 mm spacer gap. (b) Measured electric circuit
model.
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the open circuit voltage ratio between the other two windings N, and

N; is, from the circuit in Fig. 10.10b,

v N L

8.3 e (10.37)

v, Ny Ly + 233

which from the predicted circuit model in Fig. 10.21a gives
V3
— = 0.94 (10.37)
V2
The actual measured voltage ratio is approximately 0.95. The

error between the measured and the predicted value is very small.
Since this is the case in all the other similar wvoltage ratio
measurements made on multiple-winding structures, it is assumed that
the turns (N;, N,, N3, etc.) of the ideal transformers in the measured
electric circuit models are equal to those in the predicted ones.
This simplifies the measurement process and does not introduce
significant errors.

In any case, the extra number of measurements that can be
performed on the circuit and are not needed for determination of the
inductance parameters, are used to verify that the ideal turns
assumptions do not introduce significant errors on the measurements.

The electric circuit model parameter values for the three-
winding pot core derived from a number of open and shorted circuit
impedance measurements are illustrated in Fig. 10.20b.

A second example is a four-winding top-bottom arrangement such

as that in Fig. 10.19a. A P-4229 ferrite pot core with a 0.8 mm
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spacer gap was also used in this example. The predicted and measured
electric circuit models are illustrated in Fig. 10.21.

In both examples, the three-winding side-by-side and the four-
winding top-bottom arrangements, the measurements compare favorably
with the predictions. The ideal turns assumptions for the the
measured circuit models did not introduce significant errors in either

case.

10.4 Conclusions

The physical models of the three- and four-winding extensions of
the two-winding toroid, the side by side and top-bottom bobbin core
arrangements, were obtained using the same modelling method previously
used in the two-winding cases.

The physical model of these multiple-winding structures
illustrates how these models can approximately predict the correct
distribution of the leakage energy in the windings, and how the
different pgaps and their relative positions in the core are
represented in the electric circuit model.

It is also illustrated how, if some of the windings of a
multiple-winding configuration are left open, the electric circuit
model between the other windings is the same that would be obtained on

a similar arrangement where the open windings are not present.
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CHAPTER 11

SPECIAL WINDING TECHNIQUES

11.1 Introduction

In the previous chapters some conventional winding arrangements
that are commonly used in transformers as well as in coupled inductor
applications are discussed. Sometimes, however, it is necessary to use
a special winding technique to achieve a better performance.

For example, it is possible that in a low leakage transformer
design, neither of the configurations discussed in Chapters 8 or 9
meets the requirements of the design. In this case, a special winding
technique that minimizes the leakage inductance of the transformer
must be used.

Similarly, a coupled inductor application might require more
leakage 1inductance than that already "built into" some of the
configurations previously discussed. In this case, a winding
technique that maximizes the amount of leakage inductance should be
used.

This chapter reviews some special winding techniques for
minimizing the leakage inductance in transformers, investigating why
and how they work, and how they can be modelled.

Also, one of the arrangements discussed in the previous chapters

is demonstrated to be a very good candidate for high-leakage coupled

inductor designs,
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11.2 Minimization of Leakage Inductance in Two-Winding

Transformers

Chapter 4 1illustrates how the leakage inductance of the
isolation transformer in a switching power supply can have severe
adverse effects on the converter’s operation.

This is the main reason why in a switching converter, where an
isolation transformer is wused, the leakage inductance of the
transformer is kept at the minimum possible.

Several winding techniques that minimize the leakage inductance
in transformers have been developed in the past. They are all based
on the fact that the amount of leakage energy in a winding is directly
associated with the magnitude of the magnetic field inside the
winding.

That is,

E - ‘2‘—° ”J H2 dv (11.1)

where E 1is the energy stored in the winding, and H is the field
intensity inside the volume of the winding.

Consequently, any winding technique that minimizes the field
intensity in the windings will also minimize the leakage energy, i.e.,

the leakage inductance of the transformer.

Some of the special winding techniques that minimize magnetic

leakage in transformers are investigated in this section.
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11.2.1 Sectionalized Windings

A simple way to reduce the field intensity throughout the
windings of a magnetic structure is to break the windings into smaller
sections. The sections of one winding are then interleaved with
sections of the other winding.

The proximity of conductors carrying current in opposite
directions reduces effectively the magnetic field intensity inside the
windings.

For example, the windings of the two-winding transformer in Fig.
11.1la can be sectionalized as shown in Fig. 11.2a. The primary and
the secondary windings have been broken into two sections each. The
field intensity throughout the windings of the sectionalized
transformer in Fig. 11.2a is illustrated in Fig. 11.2b, which should
be compared to the field intensity plot for the non-sectiomnalized case
illustrated in Fig. 11.1b. Because of the sectionalization of the
windings the field intensity is considerably reduced.

The electric circuit model for the non-sectionalized arrangement
in Fig. 11.1la is given in Chapter 9 and is illustrated in Fig. 9.12.
The expression for the leakage inductance £, is given by

h
(r, + h/2)

2 2
'en = 5 1r/.LoN1 }I_)

1 , b
= 3 HoNy? T MLT (11.2)

where MLT=2n(r, + h/2).
The electric circuit model for the sectionalized transformer in

Fig. 11.2a can be obtained simply by assuming that this transformer is
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Fig 11.1 Two-winding side-by-side arrangement (a) and approximate
field intensity through the windings (b).
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Fig. 11.2

The primary and the secondary of the transformer in Fig.
11.1 can be sectionalized as shown 1in (a). The two
sections of the primary are interleaved with the two
sections of the secondary, effectively reducing the field
intensity (b) throughout the windings.
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a four-winding structure with a side-by-side arrangement. This case
is similar to that discussed in Chapter 10. The electric circuit
model is obtained in the same way and is shown in Fig. 11.3a.

The different windings in the electric circuit model in Fig.
11.3a represent the four sections of the transformer in Fig. 11.2a,
which are physically connected inside the structure. Therefore, the
end points of each section of each winding in the electric circuit
model in Fig. 11.3a should be similarly connected at the appropriate
ends. This is illustrated in Fig. 11.3b.

Careful examination of the electric circuit model in Fig 11.3b
shows that under the assumption L., L, >>> £12, 2335, 23,, the current
through the leakage inductance element £,3, 1s almost zero.
Therefore, the circuit model in Fig. 11.3b can be reduced to the more

familiar circuit in Fig. 11.3c, where
£y = By, + L5, (11.3)

The leakage inductances £,, and £,, are estimated in the same way as

before, and are given by

N2 1 r h r,+h h
212=21%—Z—g h1[3—°+4—1]+h2[—°—1+—2] (11.4)

N,%2 1 [ r,+h; +h, . hy ] . [ r,+h; +h, +h, N h,
-1 ZoT1T 2 Y R R D B
3 12

] (11.5)

Substitution of Egqs. (11.4) and (11.5) into (11.3), and assuming

h; =h,=hy=h,=h/4, result in
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Fig. 11.3

The "windings" 1in the electric circuit model in (a)
represent the different sections of the sectionalized
transformer in Fig. 11.2a. Since the end points of the
two sections of each winding are connected, similar
connections are made on the electric circuit model (b).
Examination of the circuit model in (b) shows that the
current through £,, is approximately zero. Therefore,

the circuit model in (b) can be reduced to the simple
model in (c).
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1
£, == "/Jole = (r, + h/2)
6 b
1 h
- — p,N;%2 — MLT (11.6)
12 b

where MLT=2x(r, + h/2).

This 1is the same result that is obtained if the leakage

inductance £, is evaluated using

2, = Eo JIJ HZ dv (11.7)
I,

where H is the field intensity throughout the windings given in Fig.

11.2b with H, = 0.

Comparison of the expressions for the leakage inductance of the
non-sectionalized arrangement £, (Eq. (11.2)) against that of the

sectionalized case £, (Eq. (11.6) gives

'en

2y = 22 (11.8)

Therefore, by sectionalization of the windings as shown in Fig. 11.2a,
the leakage inductance of the transformer is reduced by a factor of 4
with respect to the conventional non-sectionalized case.

This can easily be traced back to the reduction of the field
intensity throughout the windings where, as shown in Fig. 11.2b, the
peak value of the field intensity H inside the sectionalized windings
is half the peak value of the intensity in the non-sectionalized

windings (Fig. 11.1b). Since the leakage inductance is a function of



170

the square of the field intensity, the leakage inductance is reduced
by a factor of 4.

This does not constitute a mathematical proof because of the
integration steps involved in the determination of the leakage
inductance, but the general mathematical proof is simple and need not
be demonstrated here.

Further sectionalization of the windings results in further
reduction of the leakage inductance of the transformer. The general
result for the side-by-side arfangement can be stated as follows.

Assuming that the spaces between the different sections of the
windings are negligible (as 1is usually the case in low leakage

transformer designs), and if the windings are sectionalized such that:

1. The absolute value of the peaks of the field intensity
are the same throughout all the sections of the windings
and,
2. The peaks are reduced by a factor K with respect to the
peak value of the field intensity in the non-sectionalized

winding arrangement,

the leakage inductance is reduced by a factor of approximately K2.

For example, if the windings are sectionalized as shown in Fig.
11.4a, where the corresponding field intensity plot is as shown in
Fig. 11.4b, the conditions stated above are satisfied, and the
reduction of the field intensity peak value with respect to the non-

sectionalized arrangement is K = 4. Therefore, the leakage inductance

£ is reduced by a factor of 16,
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Fig. 11.4 If the primary of the transformer in Fig. 11.1 is split
in three sections and the secondary in two as shown in
(a), the absolute value of the peaks in field intensity
(b) through the windings are reduced by a factor of 4
with respect to the non-sectionalized case in Fig. 11.1.
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It can also be proven that the largest reduction is obtained
when the windings are sectionalized such that the field intensity
throughout the windings swings in both directions (positive and
negative), with the absolute value of the peaks equal on all sections.

This is why in the example in Fig. 11l.4, with five "smartly"
selected sections (three for the primary, and two for the secondary),
a reduction factor of 16 is achieved, while on the example with four
sections in Fig. 11.2, only a reduction factor of four is obtained.

It may be noted that on the example in Fig. 11.2 the field
intensity plot (Fig. 11.2b) swings in only one direction, while on the

one in Fig. 11.4b (five sections), the field intensity swings in both

directions.

11.2.2 Bifilar Foils

The limit of the sectionalization method previously discussed
occurs when each section of the winding becomes just one turn. This
is what is usually known as bifilar foils arrangement. The reason for
the name is that the windings of this arrangement are layers of foils
wound bifilarly.

V If the separation between the foils is negligible, the peak of
the field intensity is 1/b compared to N/b for the non-sectionalized
arrangement; therefore, the leakage inductance of the bifilar foils
arrangement is reduced by a factor of N? with respect to the non-
sectionalized arrangement. Therefore, dividing Eq. (11.2) by N, 2

gives
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1

h
2 == — MLT 11.9
3 Mo & ( )

where £ is the leakage inductance of the bifilar foils arrangement.

11.2.3 Bifilar Wires

Perhaps the most commonly used low leakage transformer design is
the bifilar arrangement where the primary and the secondary are a
twisted pair of wires.

The principle is still the same; namely, a reduction of the
magnetic field inside the windings yields a reduction of the leakage
inductance of the transformer.

In the sectionalized arrangements previously discussed, this
reduction is achieved by bringing sections of the primary next to
sections of the secondary. This reduces effectively the overall field
intensity throughout the windings and therefore, the leakage
inductance.

If instead of foils, regular wires are used, the field intensity
inside the windings can also be reduced significantly. For instance,
the wires can be twisted together all through the 1length of the
windings. The field intensity immediately outside the wires is
cancelled by the opposing currents.

Since the field is cancelled by the opposing currents in the
wires, and not by the geometric properties of the arrangement, the
leakage inductance of the transformer is almost independent of the

type of core used. Tt depends only on the length of the wires and the
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separation between them, which on twisted pairs is usually controlled
by the thickness of the dielectric that covers the wires.

For example, two meters of twisted wires looped around a toroid
have approximately the same leakage inductance as the same two meters
of twisted wires around a bobbin core structure.

There 1is wusually a tendency to believe that this technique
yields better results than the bifilar foils method. However, because
of the better utilization factor of the window area using foils, lower
leakage inductances can be obtained with the foils rather than with
the usual twisted pair of wires. The price to be paid is the higher
cost of thin foils.

11.3 Maximization of Leakage Inductance in Two-Winding Coupled

Inductors

Chapter 3 it is illustrates how the leakage inductance of a
coupled inductor in a switching application can dramatically improve
the performance of the converter by reducing or even eliminating the
a.c. ripple currents from the input or the outputs of a switching
converter.

For example, if the coupled inductors of the Cuk converter in
Fig. 2.2b are wound on a bobbin core as in Fig. 9.16, the electric
circuit model for the coupled inductors is then given by Fig. 9.19,

where

N, 2 N, 2

L, = = (9.16)
Re £g /1o S
N, 2 N, 2

L, = =% L (9.17)
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£, = =% N,2 —= MLT (9.38)
and

—= N,2 =% MLT (9.39)

where [f,’ is the 1leakage inductance element £, reflected to the

secondary N, .

It is also shown in Chapter 3 that the zero output ripple

condition for this converter is given by

2,

N=1+—
Ly,

(3.7)

where N=N,/N;, and Lm=Lc“L°.

From Eq. (3.7) it is clear that the leakage inductance £; plays
a primary role in the =zero output ripple condition. A relative
increase in the value of £; can make the design of the zero output
ripple condition into the coupled inductors a lot easier because of
added freedom in the selection of the turns ratio.

If the coupled inductors is a low leakage structure (tightly

coupled), Eq. (3.7) can be written as

N
— =14+ a0 (11.10)

where a << 1; therefore, the selection of the turns ratio is made more

difficult since N, = N;. For example, N, might even have to be less

than one turn apart from N, .
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The sensitivity of the zero ripple condition is also worsened if
tight coupling is used, since small variations in N;, N, or £, can
produce large changes in the amount of ripple currents.

In the next section it is demonstrated how, given the window
aspect ratio of a bobbin, an arrangement can be selected to give the

maximum amount of leakage inductance.

11.3.1 Leakage Inductance and The Window Aspect Ratio
If the leakage inductances for the ungapped cases of the two-
winding side-by-side (Eq. 9.21) and the top-bottom (Eq. 9.41)

arrangements are compared, the result is

b 2
j"b - [E] = g2 (11.11)

where 2., and £,, are the leakage inductances of the side by side and
the top-bottom arrangements, respectively, and B=b/h is the aspect
ratio of the windings window area as shown in Fig. 11.5a.

If the bobbin has a square window area, A=1, FU} L£ss = 2ip-
However, most of the commercially available bobbin cores have a
rectangular window area with B > 1; therefore, 2, > 4,4 by a factor
of B2.

The actual ratios of some common bobbin cores are given in
Fig. 11.5b. The LP-3213 ferrite core has the largest ratio we found
(B = 6, or AR,y = 364,.). On an actual sample, the measured ratio was
approximately 27.

Although LP-3213 cores offer a very large amount of leakage

inductance using a top-bottom arrangement, other ferrite cores such as
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Fig. 11.5 (a) Illustration of the window aspect ratio of a bobbin.

The approximate aspect ratio of some actual bobbins are
given in (b).
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PQ, EE, pot cores etc, have a 8 = 2, which also gives a reasonably
large leakage inductance when wound in a similar way.

The usual problem associated with the top-bottom arrangement is
the difficulty of setting up the windings on the bobbin. However,
most manufacturers of ferrite cores offer bobbins that are already

split for such an arrangement.

11.4 Conclusions

Some conventional techniques for minimizing leakage inductance
in two-winding transformers have been reviewed in this chapter. It is
illustrated, with the wuse of physical models, how and why these
techniques work.

Also, the two-winding top-bottom bobbin core arrangement is
demonstrated to be a very good candidate for high leakage coupled
inductor designs, as might be required in switching applications with
minimum ac ripple currents.

In many switching converters, however, more than two windings
are required. For example, in the forward converter with three
isolated outputs shown in Fig. 11.6, a five-winding isolation
transformer and a three-winding coupled inductor are required. The
effects of the leakage parameters on structures such as these are not
so well understood. The main reason for this is the lack of proper
electric circuit models for multiple-winding magnetic circuits.

The newly developed physical models can be used to model
adequately multiple-winding structures such as those in Fig. 11.6, and

to further understand the effects of the different leakage parameters

in the electric circuit model on the operation of the converter.
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Fig. 11.6 Multiple-output isolated forward converter with output
inductors coupled.
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Further research in this area is necessary, but the initial step
of developing a proper tool for analysis has already been undertaken,

namely, the development of physical models for magnetic circuits.
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CHAPTER 12

LAYER-TO-LAYER PHYSICAL MODELS AND THE
WINDINGS AND INTERWINDING CAPACITANCE PROBLEM

12.1 Introduction

In all the previous cases where the physical model of a magnetic
structure is determined, the windings are represented by infinitely
small sources of mmf. Although the physical models obtained this way
yield reliable results, sometimes more accurate solutions are
required.

If the windings of the magnetic structure are laid out in an
organized manner it is possible to represent the characteristics of
the structure more accurately. For example, the primary and the
secondary of the two-winding side by side arrangement in Fig. 12.1 are
wound with three layers each.

This is not the only example in which the windings of a
magnetic structure are organized in layers, but most of the commonly
used configurations such as the side-by-side and the top-bottom
arrangements discussed in the previous chapters are usually organized

in a similar manner.

12.2 Layer-to-Layer Physical Models
If each layer of every winding is treated as a separate winding,

and the physical model of this "multiple-winding" (multiple-layer)
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Fig. 12.1 1Iwo-winding side-by-side arrangement. Both the primary
and the secondary are wound with three layers each, with
the layers connected as shown in the figure.
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arrangement 1s determined, the result 1is a more accurate
representation of the characteristics of the structure.

The separate "windings" in the electric circuit model represent
the different layers and should be connected in the same way as the
layers are on the actual windings.

This is very similar to the modelling method discussed in the
previous chapter when the windings are sectionalized, and each section
of the windings is treated as a separate winding.

12.2.1 Layer-to-Layer Physical Model of Two-Winding Side-

by-Side Arrangement

The layer-to-layer physical model of the two-winding arrangement
in Fig. 12.1, where each winding consists of three layers, is obtained
by assuming that this is a six-winding side-by-side arrangement with
the "windings" connected as shown in Fig. 12.1.

The flux pattern inside the structure illustrated in Fig. 12.2a
is obtained in the usual way with the help of the field intensity plot
throughout the windings illustrated in Fig. 12.2b.

The flux equations are defined by the flux pattern and the
infinitely small sources of mmf illustrated in Fig. 12.2a, where each

one of the sources represents a single layer. The flux equations

determined this way are given by
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Fig. 12.2 Flux pattern (a) inside the six-layer (two-winding)
structure side-by-side arrangement. The field intensity
inside the layers and the core is shown in (b).
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Pn11 = b (12.1)
fn1z = P - 11 (12.2)
$n1s = ¢ - (f11 + ¢12) (12.3)
fx21 = b - (b11 + 12 + d13 + $21) (12.4)
b2z = b - ($11 + 12 + d13 + 21 + é22) (12.5)
$nzz = b - (P11 + 12 + d13 + $21 + S22 + ¢23) (12.6)
and $s = b - (11 + 12 + b13 + b21 + d22 + é23) (12.6)

The reluctance circuit model is built around these equations and

is illustrated in Fig. 12.3.

Finally, the electric circuit model derived from the reluctance
circuit is illustrated in Fig. 12.4.

Since the three layers of each winding are connected as
indicated in Fig. 12.1, the corresponding points in the electric
circuit model should also be connected. The result after the
connections are made is illustrated in Fig. 12.5. The electric
circuit model in Fig. 12.5 can be rearranged as shown in Fig. 12.6.

The parameter wvalues in the electric circuit model are
determined in the same way as in all the previous cases. For example,
the leakage inductance {£;,3 + £,; represents the energy storage
capabilities of the two adjacent layers N;; and N;; in Fig. 12.1.

12.2.2 Layer-to-Layer Physical model of Two-Winding Top-

Bottom Arrangement

Another common arrangement wound in layers is the two-winding
top-bottom arrangement in Fig. 12.7. The flux pattern is illustrated
in Fig. 12.8 to indicate how the mmf sources representing each layer

are selected in this case. The reluctance model is illustrated in
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Fig. 12.9. The electric circuit model derived from the reluctance
model is shown in Fig. 12.10.

It may be noted that because of the series connection of the
leakage reluctances in the reluctance model, the corresponding leakage
inductances appear in parallel in the electric circuit model.

The inductances associated with the center and outer leg gaps L,

and L, are given by
N, )21
L. =[ 3 ] 'S (12.7)
N, 121
L, =[ 3 ] N (12.8)

where R, and R, are the reluctances of the center and outer legs
respectively.

The leakage inductance parameters in the electric circuit model
are computed as usual, but because of the similarities between this
and the electric circuit model for the two-winding top-bottom
arrangement in Fig. 9.19, the leakage inductances £; and £, in Fig.
9.19 have to be scaled only by the proper turns ratio, (N;/3)?,
instead of by N,2. This 1is exactly the same procedure used to
calculate the inductances L, and L, in Eqs. (12.7) and (12.8).

There are other possible configurations where the windings are
wound in layers. The electric circuit models for these are obtained

in the same way as in the previous two examples.
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Fig. 12.10 Electric circuit model for six-layer top-bottom
' arrangement with the layers connected.
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12.3 Modelling and Estimation of Windings and Interwinding

Capacitance in Magnetic Circuits

The layer-to-layer models Previously discussed give an accurate
description of the leakage energy distribution inside the windings of
a4 magnetic structure. Another advantage that these models offer is
the ability to properly model other parasitic phenomena such as the
distribution of the windings and interwinding capacitance in a
magnetic circuit.

In the past, the windings and interwinding capacitances in two-
winding transformers have always been modelled by a single parasitic
capacitance element usually connected across the primary of the
transformer model [11].

Although this method might provide reasonable answers in some
cases of two-winding transformers, in general it falls short of
predicting the correct distribution of the parasitic capacitances in
cases of multiple-winding structures, and even in simple two-winding
configurations where gaps are present, such as in coupled inductors.

The layer-to-layer physical models discussed in the previous
section already contain adequate information about the correct
distribution of leakage energy in the windings even in the presence of
gaps. It is now illustrated how these models can be easily
manipulated to incorporate additional information about the correct
distribution of parasitic capacitances.

12.3.1 Windings and Interwinding Capacitances in Magnetic

Circuits
There are several parts of a magnetic structure where energy can

be stored in electric fields usually associated with capacitance
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effects. One example is the separation space between the windings of
a magnetic structure. Other parts of the windings can also store
significant amounts of electrical energy as well, for instance, the
space between two adjacent layers of a winding, the space between
successive turns, and also, the spaces between the windings and the
core.

For the analysis that follows, the capacitance between
successive turns will be ignored. This does mnot introduce a
significant error since these capacitances are very small owing to the
small voltage difference between successive turns. Only in cases of
windings with very few turns should this be considered.

What follows is a description of the method by which layer-to-
layer physical models can be extended to incorporate additional
information about the correct distribution of all the capacitance

elements considered.

12.3.2 Modelling Procedure

To illustrate the method, the two-winding side-by-side
arrangement in Fig. 12.1 is used as an example. All the relevant
parasitic capacitance elements are represented in Fig. 12.11. The

total capacitance between two adjacent layers is represented by a
capacitance at the terminals of the layers.

The modelling method is simply an extension of the layer-to-
layer modelling technique previously discussed. Basically, the
capacitance elements in Fig. 12.11 are represented by similar
capacitance elements at the proper terminals in the electric circuit

model.
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Fig. 12.11 Illustration of the parasitic capacitances in the six-
layer two-winding side-by-side arrangement.
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Layer-to-Layer Capacitances

Since the layer-to-layer models already provide the end points
of each layer, it is easy to place the corresponding layer-to-layer
capacitances in the electric circuit model. This is illustrated in

Fig. 12.12.

Interwinding Capacitances

The capacitance between the two windings is just a special case
of layer-to-layer capacitance and can be represented in the electric
circuit model by the capacitance element C,, in Fig. 12.12,

Sometimes screens are used to provide decoupling between the
windings. In that case, the capacitance C,, is split in two and the

common point is the point to which the screen is connected (usually

ground) .

Vindings to Core Capacitances

The capacitances between the windings and the core are usually
ignored because of the thickness and the good isolation properties of

the bobbin. In general, these can also be considered in a similar way

as in the two previous cases.

12.3.3 Estimation of Parasitic Capacitances

There is extensive information in the literature [7], [11],
[12]), [13], that covers the subject of estimating the effective
capacitance of the kind previously discussed. The analysis 1is

straightforward, and only two examples will be discussed for

illustration purposes.
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Parallel Plate Capacitance

The effective or equivalent capacitance between two parallel
plates shown in Fig. 12.13 can be estimated by computing the amount of

electrical energy stored in the volume between the plates. That is,

W= % m E2dv (12.8)

where ¢ is the permittivity of the medium between the plates, and E,
the electric field intensity.
This energy can also be written in terms of the energy storage

capability (capacitance) of the volume between the plates. That is,
1 2
W= 2 cv (12.9)

Equations (12.8) and (12.9) are now combined to give

€
C = - J.” E2dv (12.10)

where V is the uniform potential difference between the plates.

The electric field intensity E in Eq. (12.10) can be evaluated

as
E=V/d (12.11)

where d is the separation between the plates.

Substitution of Eq. (12.11) 1into (12.10) and evaluation of the

integral throughout the volume between the plates gives
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A
C=c¢2 12.12
€3 ( )

where A is the area of the plates.

Capacitance between two adjacent layers

The second example is illustrated in Fig. 12.14a. These are
basically two adjacent layers as they are typically connected inside
the windings of a magnetic structure.

This is a special case of the parallel plates, since the two
layers run parallel to each other all around the core. The fact that
they are cylinders and not flat plates makes no difference.

The potential difference across the layers, however, is not
uniform. Assuming that the turns are very small compared to the
height of the layers, the potential difference between the layers is a
linear function of position as shown in Fig. 12.14b.

The total energy stored in a small differential piece of the

layers as shown in Fig. 12.14 is approximately given by

1 gy 2
a - 2 [ G = ] V(y) (12.13)

where C, is the capacitance between the two layers considered as a

parallel plate capacitor with uniform distribution of potential; i.e

L]

A
Cp = € 3 (12.14)

The quantity (dey/b) in Eq. (12.13) 1is the differential

capacitance of the element dy.
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Fig. 12.14 Illustration of cross section of two adjacent layers as
they are typically connected (a). The potential
difference (b) is approximately a linear function of the

position y.
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In Eq. (12.14), it 1is necessary to know approximately the
separation between the layers d. If enameled round copper wires are
used, the determination of d is not straightforward. Several empirical
methods have been used successfully in the past to determine this
parameter [1l4].

Integration of Eq. (12.13) throughout the height of the layers

gives

y=b
Wl ¢ v.a -2y *4 (12.15)
T op P ° b Y '
y=0
which gives
c
W= gﬂ v, ? (12.16)

Since the capacitance between the two layers is represented at

the terminals where V(y) = V_,, the total energy stored in it can also

be expressed as

1
W= > Cy1V,2 (12.17)

where C;; is the effective layer-to-layer capacitance.

Finally, comparison of Egs.(12.16) and (12.17) results in
C
Ciy = EE (12.18)

This method can be easily extended to compute all the other
capacitances in the circuit. It can also be used if screens are used

to decouple the windings or the layers.
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12.4 Distributed Windings Resistance

Already layer-to-layer physical models can incorporate adequate
information about the correct distribution of leakage energy and
parasitic capacitances.

The winding resistances which have almost been ignored so far
can also be more accurately modelled using layer-to-layer models.
Usually they are represented in the electric circuit model by a single
resistance element for each winding.

Since an electric circuit model (layer-to-layer model) is now
available in which the 1layers are independently represented, the
separate layer resistances can be incorporated as well.

The procedure 1is straightforward, and it only amounts to
introduction of the layer resistances at the proper position in the
layer-to-layer electric circuit model.

For example, the resistances of every layer in each winding of
the side-by-side arrangement in Fig. 12.1 can be introduced in the

electric circuit model in Fig. 12.12 as shown in Fig. 12.15.

12.5 Conclusions

By breaking the windings into their separate layers, a more
elaborate and accurate description of the characteristics of the
magnetic structure can be obtained.

These extended layer-to-layer physical models can also be used
to incorporate additional information about the correct distribution

of the windings and interwinding parasitic capacitances and

resistances.
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Because of the complicated nature and the number of parameters

in these elaborate models, they are more suitable for computer

analysis.
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CHAPTER 13

APPLICATIONS FOR PHYSICAL MODELS IN SWITCHING CONVERTERS

Several applications can be enhanced by the use of the newly
developed physical models for magnetic circuits. Some of these
applications are described in this chapter.

13.1 Minimization and Maximization of Leakage Phenomena in

Switching Converters

Several examples throughout this thesis have illustrated how the
newly developed physical models can be used to enhance the design and
performance of a switching converter.

In converters where isolation transformers are wused, leakage
inductance can have severe adverse effects on the operation of the
converter. Physical models can be used to investigate how these
adverse effects can be minimized.

This is particularly important in multiple-winding transformers
where the effects of the different leakage parameters are not so well
understood owing to a lack of proper electric circuit models.

In converters where coupled inductors or integrated magnetic
structures are used, physical models can be used to investigate and
enhance the design of the magnetic structure so that the a.c. ripple
currents in the different windings can be minimized.

Minimization of the ripple currents usually involve maximization

of leakage parameters. Design guidelines for structures that maximize

leakage parameters can be investigated through physical models.
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13.2 Leakage Ratio and The Optimal Switching Frequency

The constant drive towards reducing the size and weight of power
supplies leads inevitably to an increase in the frequency at which the
main semiconductor devices are switched. Some designs operating in
the megahertz range are already starting to appear.

As the switching frequency 1is increased, a point is reached at
which the bottleneck of such designs lies not in the semiconductor
devices but, on the contrary, in the magnetics design.

For example, even after careful 1layout of the 1isolation
transformer in a switching power supply, a small residual leakage
inductance can have severe adverse effects on the power supplies
operation and design, from requiring sizable power dissipative
networks to making the design completively inoperable if the switching
frequency is sufficiently increased.

A design problem often encountered by power electronics
engineers is the selection of the switching frequency at which a power
converter is to be operated.

If the switching frequency is too 1low, the design can be
unacceptably heavy and large. If, on the contrary, the switching
frequency is too high, the parasitics in the magnetics can bring about
a design just as heavy and large.

There must then be some optimal switching frequency between
these two ranges at which no further decrease of the size or weight of
the power supply is obtained.

Some of the factors that should be considered in an optimization

process of this kind are illustrated in this section.
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13.2.1 Leakage Ratio and Surface-to-Volume Ratio

Figure 13.1 illustrates a forward converter. The isolation
transformer can be designed on a toroid with uniformly distributed
turns as shown in Fig. 13.2. The reset winding has been omitted for
simplicity.

If the power handled by the transformer remains constant, it can
be easily demonstrated that the size of the toroid is inversely

proportional to the switching frequency. That is,

(13.1)

%)
K
"le?:‘

n

where S=nr,?

is the cross-sectional area of the toroid, k is a
proportionality constant, and Fg, the switching frequency.

Clearly, an increase in the switching frequency F, yields a
decrease in the size of the toroid. However, at the same time, two
other important parameters also experience an increase, namely, the
leakage ratio and the surface-to-volume ratio of the transformer. The
increase of leakage ratio is proven to be a consequence of the
increase in the surface-to-volume ratio.

The relations between these two quantities and the switching
frequency are now discussed using the transformer of the forward

converter in Fig. 13.1 as an example.

Leakage Ratio of toroid

The leakage ratio of any two-winding transformer can be defined

as
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Fig. 13.1 Isolated forward converter.
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Fig. 13.2 A two-winding toroid with uniformly distributed turns can
be used for the transformer in the forward converter.
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(13.2)

0l

where 2 1is the leakage inductance of the transformer, and L, the
mutual inductance. For the wungapped toroid in Fig. 13.2, the

expressions for £ and L, were previously obtained in Chapter 8 and are

given by
N,2uS
=_._1___li_. (8.14)
Ly
and
2 2 h
2= E Ny “mp, z— (r, + h/2) (8.17)
If ro >> h, Eq. (8.17) reduces to
2 2 h
L = 3 N, “mpu, I; Y, (13.3)
Substitution of Eqs. (8.14) and (13.3) into Eq. (13.2) gives
2 uo 1
as[—“—h]— (13.4)
3 u T,
where the quantity in parenthesis can be regarded as a constant.
Surface-to-Volume Ratio of Toroid
The surface-to-volume ratio of the toroid is defined as
SG
g == (13.5)
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where S, is the external surface area of the toroid and V the internal
volume. This ratio can be easily obtained in terms of the internal

radius of the toroid r,, and is given by

2
B - — (13.6)
ro
Also from Eq. (13.1),
- b1
r, = ky (Fg) (13.7)

where k;=(k/n)¥.

Substitution of Eq. (13.7) into (13.6) gives

Ky 13.8
SR, o

s

where k,=2/k, .

Finally, substitution of Eq. (13.6) into (13.4) gives

a = k38 (13.9)
where k; is a constant given by
1
k, = - 2 n (13.10)
3p

Equations (13.8) and (13.9) can be plotted against each other as
shown in Fig. 13.3, where the square root of the switching frequency
is the tracing parameter of the curve.

The plot can be qualitatively interpreted in the following way:

An increase in the switching frequency F, produces an increase of the
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!

P

(surface-to-volume ratio)

Fig. 13.3 As the switching frequency F, is increased, the surface-
to-volume ratio B of the transformer increases,
consequently increasing the leakage ratio a.
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surface-to-volume ratio B of the transformer and consequently, an
increase in the leakage ratio a.

The qualitative nature of this statement, although proven true
only for the toroid with uniformly distributed turns, is true in
general for any magnetic structure [15].

Another interpretation of this result is that, since the leakage
phenomenon is to a large extent a surface effect, an increase in the
surface-to-volume ratio of the magnetic structure will increase the
leakage ratio as well.

If the leakage ratio of the transformer is increased, additional
protection for the switching elements is necessary. This inevitably
increases the size of the power supply.

There 1is clearly an orthogonality of events related to an
increase in switching frequency. On one hand, increasing it reduces
the size and weight of the magnetic component, but on the other, it
worsens the leakage ratio, which ultimately results in an increase in
the size of the converter owing to the additional protection circuits.

The plots in Figs. 13.4a, 13.4b and 13.4c give a graphical
description of the effects that are triggered by an increase in
switching frequency, and how they affect the overall weight of the
power converter.

In Fig. 13.4a, the size and weight of the magnetic components in
the converter are decreased as the switching frequency is increased.
At the same time, as indicated in Fig. 13.4b, the size and weight of

the protection circuits are increased owing to an increase in the
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eddy current losses
at high frequency//
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-
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} Weight of Protection Circuits
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4 Total Weight of Converter
!
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As the switching frequency is increased, the weight of
the magnetic components in the switching converter is
decreased (a), but at the same time, owing to an increase
in leakage ratio, the size of the protection circuits is

increased (b). The total weight of the power converter
(c) reaches a minimum at the optimal switching frequency
F". Further increase of the switching frequency

effectively increases the size of the power supply.
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leakage ratio. The sum of these two curves given in Fig. 13.4c
represents the total weight of the converter.

It is clear from Fig. 13.4c that for any switching frequency
F, » F, the overall weight of the converter 1is larger than the
minimum weight at F,=F,". The frequency F,* at which no further
reduction of the size of the converter is possible is the optimal
switching frequency.

Another factor illustrated in the graph that has not been
mentioned so far is the core losses usually associated with very high
switching frequencies.

Basically, as the switching frequency is increased, the eddy
current losses in the ferromagnetic material also increase. At very
high frequencies these losses can be significant, and the associated
heat must be dissipated somewhere. Typically, the size of the
structure is increased to dissipate the heat before a breakdown of the
material can occur.

The net increase in the size of the magnetics due to eddy
current losses at very high frequencies is indicated in Fig. 13.4a
with the dashed lines.

In some new designs that are starting to appear operating in the
megahertz range, this 1is probably the determining factor, not
additional protection circuits for the switches. But the end result
is still the same, an overall increase in the size of the converter.

The optimal switching frequency is in general a function of the
converter’s topology, the protection schemes used, the ferromagnetic

material, and various other factors. The problem of determination of
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the optimal switching frequency for a given converter is therefore
very complex.

However, definition of the problem and some of the factors that
should be considered in the optimization process served to illustrate

an important principle that should not be overlooked by power

electronics engineers.

13.3 Extended Characterization of Magnetic Components

The process of defining a set of consistent specifications for a
magnetic component can sometimes be as demanding as building the part
itself. This is especially the case in multiple-winding applications.

If, for example, a multiple-winding design has to meet not only
the usual first-order design parameters such as power, voltage and
current levels, but also some second-order quantities such as leakage
parameters, the design of the magnetic component usually ends up in a
lengthy and tedious trial-and-error process. The main reason for this
is the lack of proper electric circuit models for multiple-winding
magnetic structures.

The typical design process for multiple-winding structures is
illustrated in Fig. 13.5. The major loop in the figure corresponds to
the trial-and-error process usually associated with a failure to meet
the second-order specifications.

The design process can be significantly simplified if physical
models are used to design the first-order as well as the second-order
specifications of the magnetic component.

Since the newly developed physical models incorporate adequate

information about the correct distribution of second-order quantities
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Typical design process for multiple-winding magnetic
structures. The major loop in the figure corresponds to
the trial-and-error process usually associated with a
failure to meet the second-order specifications.
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such as leakage phenomena, a design of the magnetic component aimed at
meeting not only first-order but also second-order specifications can
be significantly simplified.

A possible simplified design procedure using physical models is
illustrated in Fig, 13.6.

The more elaborate layer-to-layer physical models can also be
used to investigate the effects of other parasitics such as the
windings and iInterwinding capacitances. However, The complicated
nature of these models, and the large number of parameters usually

involved, make these models more suitable for computer analysis of

switching converters.
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The design process for multiple-winding structures can be
significantly simplified with the use of physical models,

since second-order parameters are adequately incorporated
in these models.
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CHAPTER 14

CONCLUSIONS

A new modelling method for magnetic circuits is presented in
this thesis. The electric circuit models (physical models) obtained
with this method incorporate adequate information about the correct
distribution of leakage energy in the windings of a magnetic
structure, the presence of gaps throughout the magnetic path of the
core, and the type of cores used.

The electric circuit models obtained with this method are
physically natural; i.e., there is a one-to-one correspondence between
the elements in the model and corresponding physical parameters in the
original magnetic structure.

Several commonly wused arrangements such as toroids with
uniformly distributed turns, and the conventional side-by-side and
top-bottom bobbin core arrangements with multiple windings, have been
modelled with the new technique. The measured electric circuit model
values always compare favorably with the predicted physical wvalues
derived with the new method.

By breaking the windings of a magnetic structure into their
separate layers, a more elaborate and accurate set of wmodels can be
obtained. These layer-to-layer physical models can be used to
properly model the windings and interwinding capacitances as well as
the windings’ distributed resistances. These two "second-order"

parameters, which have conventionally been modelled with single
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elements, can now be more accurately represented in the electric
circuit model.

Physical models for magnetic circuits can be used in a number of
switching applications to enhance and facilitate what is usually a
very lengthy and inefficient design process. This is especially the
case when second-order specifications such as magnetic leakage are
involved in the design process. Some of these applications are
minimization of magnetic leakage effects in isolation transformers,
minimization of current ripple in coupled inductors, and extended
characterization of magnetic components.

The complicated nature and the large number of parameters in the
more elaborate layer-to-layer physical models make them more suitable

for computer analysis of magnetic circuits.
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APPENDIX A

REVIEW OF THE PRINCIPLE OF DUALITY

This appendix shows how to derive the electric circuit model of
a magnetic circuit from the reluctance model. The technique 1is a

simplified version of that found in {5] and [16].

A.1 Duality and Magnetic Circuits

Given the reluctance circuit model of a magnetic structure, the
electric circuit model can be obtained by use of the principle of
duality.

The dual of the reluctance circuit model of a magnetic structure
is an electric circuit in which the nodes are replaced by loops, the
loops by nodes, the reluctances by inductances, and finally, the

sources that represent the windings are replaced by ideal

transformers.

A.2 Construction of Electric Circuit Model by Duality

What follows is a description of the general steps used to
construct the electric circuit model, given the reluctance circuit.
The reluctance circuit model for the two-winding side-by-side bobbin
core arrangement discussed in Chapter 9 and illustrated in Fig. A.1l

will be used as an example.
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Fig. A.1  Reluctance model for two-winding side-by-side
arrangement.

Fig. A.2 The loops in the reluctance model are assigned reference

dots, which are connected by lines passing through one
and only one element.
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A.2.1 The Reference Winding

Before the dual of the reluctance model is obtained, a reference
winding must be selected. This is the winding to which all the
inductance elements will be reflected automatically.

The selection of the reference winding can in general be
arbitrary, but a careful selection can facilitate  further
simplification and the interpretation of the resultant electric
circuit model. For example, in the case of isolation transformers the
primary N; 1is usually selected as the reference winding. In other
applications such as coupled inductors and integrated magnetics, a
different winding can be selected if this makes it easier to simplify
or interpret the electric circuit model. Nevertheless, the input-
output characteristics of the circuit are always the same no matter
which winding is selected as the reference.

For the reluctance model in Fig. A.l, the primary N; will be
used as the reference.

A.2.2 Reference Dots and Topological Transformation of

Reluctance Model

A reference dot ((a), (b) in Fig. A.2) 1is assigned to each of
the internal loops inside the reluctance model, and a reference dot
(k) is assigned outside the circuit as shown in Fig. A.2. These dots
will become the nodes in the electric circuit model.

A line is drawn between any two nodes passing through one and

only one circuit element. These lines are also shown in Fig. A.2.
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The dual of any reluctance R, between two of the reference dots
is an inductance connected between the two associated nodes in the

electric circuit model, and of value

N 2
Ly =R: (A.1)

where N, is the preselected reference winding.

The dual of any source NyI, is an ideal transformer as shown in
Fig. A.3, where N, is again the preselected reference winding, and the
polarity of the transformer is determined by use of the usual voltage
polarity convention, which is based on how the corresponding windings
(N, and N; in this generic case) are originally wound on the
structure.

The process is repeated for all the reluctances and mmf sources
in the reluctance model. The complete electric circuit model derived
from the reluctance model in Fig. A.2 is shown in Fig. A.4. Notice the
correspondence between the reluctances in Fig. A.2 and the inductances
in the electric circuit model in Fig. A.4. Finally, the 1ideal
transformer on the left (N;:N;) corresponds to the primary source N;,
and can be eliminated as shown in Fig. A.5. This will always be the
case with the reference winding.

If the secondary winding N, had been selected as the reference
winding, the resultant electric circuit model would be that in Fig.
A.6. This is the same electric circuit model obtained by reflection of

all the inductances in Fig. A.5 to the secondary N,.
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Fig. A.3 The dual of any pair of terminals or source of mmf in the
reluctance model is an ideal transformer, where N,
corresponds to the reference winding, and N, to the
corresponding winding of the mmf source.
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Fig. A.4 Electric circuit model derived from the reluctance model
in Fig. A.2.

Fig. A.5 The ideal transformer (N,:N,) on the left in Fig. A.4 can
be eliminated as shown in the figure.



232

Fig. A.6

If the secondary winding N, in Fig. A.2 is used as the
reference winding, the resultant electric circuit model
is as shown in the figure. This is the same result that
is obtained if all the inductances in Fig.

A.5 are
reflected to the secondary N,.
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Another example is the reluctance model for the three-winding
side-by-side arrangement (Chapter 10) illustrated in Fig. A.7,
Selection of the primary N; as the reference winding, and the dots and
connecting lines as shown in Fig. A.7, the dual electric circuit
model, is as shown in Fig. A.8.

If the inductances 1, and £,; are reflected to N;, the electric
circuit model reduces to that in Fig. A.9, which reflects the
"transformer quality" of the magnetic component more than does the

circuit model in Fig. A.8.
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Fig. A.7 Reluctance model for three-winding side-by-side bobbin
core arrangement with the reference dots and lines
illustrated.

@ Lz ©® ALz ©

Fig. A.8 Electric circuit model for three-winding side-by-side
arrangement .
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Fig. A.9

If the inductances L, and 4,,
to N3,
that

in Fig. A.8 are reflected
the electric circuit model in Fig. A.8 reduces to
shown in this figure, which reflects the

"transformer quality" of the magnetic component more than
does the circuit model in Fig. A.8.



