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ABSTRACT

Calculations are presented for the dynamic stability of vapor
end air bubbles in superheated water, These calculations indicate
that the values 6f the bubble radil for which the equilibrium is
unstable are restricted to a finite range of radii whose values are
governed by the temperature of the water and the initisl air content
in the bubble,

Two theoreticel solutions for the rate of growth of these unsteble
bubbles are considered. The first, is a solution of the equation of
motion of the bubble radius with the assumption that there is no
heat diffusion across the bubble wall. The second, is a solution
which includes the effect of heat aiffusion. The two solutions differ
appreciably.

These two solutions are then compared with the experimental data
on the growth of the vapor bubbles in superheated water. This
comparison shows szreement with the solution with the effect of heat

diffusion included.
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I, INTRODUCTION

One of the important problems in the field of hydrodynamiecs
today, is the occurrence of cavitation in liquids. Cavitation is
defined as the coexistence of a vapor or gas phase with the liquid
phase. This vapor or gas phase first becomes evident in the form of
bubbles distributed throughout the body of the liquid. Of practical
significaence is the increase in drag experienced by submerged bodies
moving through a liquid when cavitation appears; similarly, pumps and
turbines operate less efficiently in cavitating flow. The particular
phase of the general field of cavitation presented in this paper is
the fundamentally importent problem of the dynamic stability and rate -
of growth of these vapor or gas bubbles.

Since the results in the present study are confined to the macro-
scopic behavior of the bubbles, it suffices to point out some of the
present concepts concerning the initial formation of the bubble. The
general view(l) is that bubble formation in cavitating flow, or in
boiling, begins from a nucleus within the liguid containing air, or
vapor, or both. These gas-phase nuclei are ordinarily submicroscopic
in size, and become evident upon the growth of the nuclei through a
temperature rise in the ligquid or a reduction in the external pressure
acting on the ligquid.

In dealing with multiple-phase systems the important role of
surface phenomena must be considered in the processes involved. Thus

in the case of these submicroscopic nuclei the very large forces of
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surface tension must be overcome to initiate cavitation or boiling.

It is well known that degassed pure ligquids can withstend very

large tensions, or may be superheated considerably, without the
formation of bubbles. This effect has been demonstrated by Harvey(z)
and subsequently by Pease and Blinks(a) + Harvey subjected samples of
water saturatéd with air to pressures (of the order of 10,000 psi)

for several minutes. In this manner, the a2ir nuclei are squeezed into
solution so that when the solution is brought back to atmospheric
pressure it does not cavitate under the tensions which freely produced
cavitation before the pressurization. These same pressure-treated
air-yater solutions also can be superheated by as much as BOOC without
boiling.

For the case of ordinary untreated water the gas-phase nuclei
may be stabilized on small solid particles. The presence of a
solid, or third phase, is indicated since the surface energy of a
bubble bounded by a solid surface and a liquid surface may be very low.
Evidence for this condition can be found in the fact that the
theoretical boiling point for pure water(é) is much higher than the
values obtained by any experiment on superheating of water.

Since the macroscopic behavior of the bubbles formed in a boiling
liquid may be considered as entirely analogous $o cavitation bubbles,
the experiments and calculations in this paper describe the rate of
growth of vapor bubbles in superheated water. In the case of boiling

liquids by an increase in temperature, the effects upon heat transfer
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rates due to the vapor phase are of great interest. The experimental
part of this paper is an analysis of high-speed photographs of the
growth of vapor bubbles at various degrees of superheat. For the
theoretical phaese, calculations are presented on the dynamic
stability of vapor end air bubbles in order to determine equilibrium
bubble radii for growth. In order to emphasize the important effect
of cooling of the bubble wall during the growth, solutions of the
equation of motion for the bubble radius are considered both with and

without heat conduction across the bubble wall.
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II. THEORETICAL FORMULATION OF THE PROBLEM

I. HEouation of Motion for the Growth of a Cavitation Bubble

Frequent feference is made in the literature on cavitation %o
Rayleigh's solution for the problem of the collapse of a spherical
cavity in a 1iquid.(5). Rayleigh's theory can be extended to the
case for the growth of 2 bubble., Rayleigh considered the situation
in which the pressure at a great distance from the bubble was
constant. With this assumption, plus the assumption of an
incompressible fluid, the variation of the bubble radius with time is
obtained from the energy integral of the motion. For the present
problem of the growth of a bubble the extension of the Rayleigh theory
(1)

es carried out by Plesset can be used to obtain the equation of
motion. The equation is obtained by considering a spherical bubble
in a perfect incompressible fluid of infinite extent. Neglecting
the effects of gravity, the origin is chosen at the bubble center
which is at rest. The radius of the bubble for any time ¢ is R, and
T is the radius to any point in the liguid. Thus the velocity
potential for the liquid is expressed by

2 -

o A (1)
F= r

and the Bernoulli integral of the motion is

o, L ?
~ T = R (2)

with e constant and being the density of the fluid and
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where A = :}-,_t@ , P(r) is the static pressure at r, and P(%) is

the static pressure at a distance from the bubdle. From Eg. (1)
4 52 '

2_RTRS
2y - L 52 < p

and applying Bg. (2) at r = R, the equation of motion for the bubble

radius is obtained. Thus with

(‘E_;_LP) ::L?/éa‘f‘/fé 5
ol)r=r
2 .
(V) _ = R

Eq. (2) becomes

5 3 52 PR) — Pt
RE + £ = )(o ) (5)

Equation (5) is the general equation of motion for a spherical bubble
in a liquid with given external pressure P(t), and with the pressure
at the bubble boundary p(R). Rayleigh's equation is obtained as a

gpecial case if
P(t)- P(R)=F, (a constant).

Bquation (5) is adepted to  the present problem with the assumption

that

2 o

P(R) = P, +p, — =

where p, is the vapor pressure of the water at the appropriate
temperature, p A is the pressure of any air which may be in the bubble

of radius R, and o~ is the surface tension constant for water, Letting
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P(t)= p., (a constent)

where p,, 1is the atmospheric pressure, the equation of motion

for the bubble radius becomes >
o
< 352 KR-RtA T F

2.  Solution of Equation (6) Assuming p. = Constant.

If the assumption is made that the vapor pressure p,
remains constant throughout the growth of the bubble, then the bubble

growth is isothermal or

3
Py= A . (7)

= e g
where p Ao is the initial pressure of the air in a bubble of radius
R. ZEquation (7) implies the assumption that no air diffuses across

(6) have shown

the bubble boundary as it grows. Plesset and Epstein
that the diffusion process for gas bubbles is so slow compared to the
rate of growth of the bubble that it does not effect the air content
of the bubble. Thus Bq. (7) is a reasonable expression for the air
pressure p, as a function of the bubble radius.
From Bq. (6) it can be seen that the bubble is in dynamic

equilibrium with the liquid if

FR)= PP thdls =57 =0, (&)

r =0

One obvious root of Eq. (8) is R= R, , where

2 o

n.!/ov 71—)%0 ——pao



The remeining roots of Bq. (8) are then found to be

6P(£F+P,4,) '0/40

where Sp= p,—Fp . If 5/0'>0 s then the two positive

roots of Eq. (8) which correspond to actual bubble redii are

2 o

Sp s,

R= f’—’o«?——-ﬁ{/ +]//+4§f’
Sp(sp+h) Z

o

and

The case O pP>o0 , corresponds to the condition that the vapor
pressure P, is greater than the atmospheric pressure p_, s SO
that the liquid can boil. 1If ) ps 0 , then there is only one

positive root of Eq. (8), namely
_eo
5/07L/OAD
provided that £, X | Spl.

The effect of varying the value of the initial air pressure p A
o
on the equilibrium radii will be considered next.

For the case O o > 0 , it should be noted that

E / padl vad 3
o= (57 7)

has the value zero for p s = 0, and increases to a maximum value of
o
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3
5 p
?(35/0) » Fa = 2

and then approaches zero as p a2 Thus the entire range of
3

values for £, /2, is covered in considering 0 < p, < _82/? .

For the cass of a vapor bubble, /OAo = 0, and there is only one

positive root for Eq. (8), its value being

R = eo
5 p
When ,OAO = 6—’? , the two positive roots coincide with a value of
_ 4o
r 36p

If any values of /34 > §f’ are considered, the two rooits merely
° 2
interchange roles. Thus for the case éf_’ > 0, it is sufficient to
2

consider the two roots

R = /Eazg/_:_‘fw
: : +p,
for 00X P, < —Sa—/—j » and Ao
g o
R=R, = L4 _ )4+ / & p
Sp(op+p ){ /+4,§;
8,0+/34,
2 5p (5P + pa,)
A

—_ SP
/i,?o{/+ /+4§-—’5’}
/vo

for /9 > 5/0 . Thus the entire range of possible values for

the initial air pressure in the bubble is covered. For the case



5/0 < 0, the only root is
R=R,=

2 o
| Sp + £,
with p, > [épl .
To determine whether the eguilibrium of a bubble is dynanmically
stable or unstable, one may consider
df(R) 2o 3p E_
= "Lz Ao fp3 (9)
d R r
for the given radius. Thus for dynamic stability, ‘JH’LZ) £ 0 an
for dynamic instability, 9/;/7%(2.@) > 0. Tor the case 5/0 > 0 and

radius

_ c o
§p +5.

Bq. (9) becomes

or
o i R=R

if 0 < ,UA < SE . This means that the equilibrium of a bubble
°© Z
2o
5o+

i£ 0= p <5p “"or the case p = %f ' %ﬂg)=o,

of redius /7, = , with » 5/0 > 0, is dynamically unstable
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the bubble is dynamically unstable if the radius is increased
beyond /A, but is dynamically stable if the radius is decreased
below /2, . In terms of the growth of the bubble the range of

equilibrium radii are

with

For the radius

Eq. (9) becomes

(R) _ Ro 2
O/oifz =" T e
E'—‘/?, / /

Since ,?’ < R, and i’l_@ = 0 for /% = S/b s
d R R=RB,

one obtains
df(R) < 0
dRJp-p,

for all /Z'/ > %f . This means that all bubbles of radius

f, < 3%1/-0 with 5P > 0, are dynamically stable. However,
6
these bubbles soon dissolve through diffusion of air out of the bubble( ).
For the case &P < 0, with PAo > /S/D/ » the equilibrium

radius is



R, = ;
5/9+/3‘0
ahd Bq. (9) becomes
d £(R) _ SPtPR, (§,-2
c/f-a] oo (8r72A)

R=R,

Since £ > | 6p| » one obtains

d f2 ]R=/i’o

This means that if the vapor pressure Pv s, 18 less than the

atmospheric pressure /., , then any air bubble existing in the
1iquid of radius /7, , with /2, = O, is dynemically stable.
However, these bubbles also slowly dissolve through diffusion of air
out of the bubble. HEvidence for the existence of these bubbles can
be found in observing water as it is slowly heated. Near the
temperature of 8000, where the vapor pressure PV is still less than
the atmospheric pressure L corresponding to the condition 5/0< 0,
these bubbles can be seen floating within the body of the liquid or
clinging to the container walls. Their duration slthough limited by
diffusion is still long enouzh for visual observation.

A convenient way to plot £ (R) as a function of R for various
initial values of /) is to express p,,  @s some multiple of
5 P such as &0 = oc & p and then change £ (R) to dimension=-

less form by dividing through by Op+ [ . Thus
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_ﬁ@_ —— __is_ﬁ_ + ___/DA_.;_ /?03 — _Z_?_'_____
Pth, PR, PPTRRT (SprA )k

eand with (= £, and

o
£(R)
(1 +o¢) —— = {(u
) )
one gets
/ + o< o<
Hlu)= 1= —— + 5 - (20)

Figure 1 shows f(u) as a function of u for various values of oC .,
The case o = 0 corresponds to the growth of a vapor bubble.
The preceding analysis has shown that for the growth of a bubble

as governed by the equation of motion

R’ 2o~
.. . s + Lo - =
Ri + 2 5o 2P T ks T R (1)

3
¢ ¢

with initial conditions R, and R, , the range of equilibrium bubble
radii which are dynamically unstable is

17 < R, < £Z
38p T8 p

where

§f2PA020 .
2

The solution of Bq. (1) is completed as follows: multiplying

2 .
vy Z £  Eq. (1) beconmes
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or integrating from R, to R, one obtaing

2 2 Sp 2o B, A,
F=5d erT e %"
(12)
E 2o— . 2 2 s 3 F, 3
+}ZG/ZO+(;—Eo—g——é9gb~a_§,ofo/oye/€o
53

Thus

This means that the bubble radius spproaches a linear increase with
respect t0 time ag R —>= oo or
2 §p
K~ _| &£ °L
3 € 4

5 /?*——%—000

From Bq. (12) it is evident that the terms in M%%E and 7/3—3
become small quite rapidly. Physicelly, this means that the effect
of air in a bubble can be important to initiate the growth of the
bubble, but its effect upon the subsequent behavior of the bubble radius
is negligible; furthermore, all of the initial conditions such as R,
and Iio are involved in the —é—_a term which also vanishes quite
rapidly as R—- o0,

The solution of interest in this paper is the case where /vo =0
which means that the equation of motion together with the initial
conditions defines the rate of growth of a vapor bubble. Thus Eq. (11)

becomes
2o

s .3 pe_ 9P~ ®
RiE + 2 & - . )

Setting the right hand side equal to zero, ome obtains the equilibrium

radius
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which together with the condition £/, , = 0 defines the initial
equilibrium size of the vapor bubble. PFigure 2 shows a plot of

S§ P as a function of the temperature / ,  taking the value of
P = 1 normsl atmosphere. Figure 3 is a plot of /A, as a
function of the temperature T, with the values for O~ corresponding
to appropriate values of T, I# is convenient to express Eq. (13) in
dimensionless form., This can be done by letting

_ & _ % Jop _ du
“=rkoPrrie 4TS

Equation (13) then becomes

r 2

. 3 . —/
uu + 5 u =/ u (14)

2 .
Multiplying Eq. (14) by U U and integrating from (/,; %o 4 ,

where UL- is the dimensionless radius at some initial time of 2: one

gets
3 .2 e 3 2
(o e Lo, TSt T
T3 u U3 (15)

where L/, 1is the velocity of the bubble wall for C=7; . Let

. 3
C = L[fu[a— 35 U, + /,(L-2 ,» Where C is a constant taking on various
values depending upon the values chosen for LZL- and [’{4' . Figure 4

shows a plot of

; = 1T /2 L
= I./2 -~ +

&[q
w

(16)
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for various values of C. The significance of the graph is as
follows: by choosing & point ( 5 U ) on the graph as an initial
value determines the vvalne of C and hence prescribes the subsequent
behavior of the bubble radius as governed by BEq. (16). Thus picking
a velue of ;< 1 and LZ[ = 0 means that the bubble will

collapse, or picking a value of ;> 1 and [{; = O means that the
bubble will grow. The point ([ =1, L},_' = 0 is a singular point
since a bubble in this state remains in equilibrium, or loosely
speaking, it takes an infinite time for the bubble to increase or
decrease in size. However, this equilibrium is dynamically unstable.
In the actual physicel case such an equilibrium would soon be upset
by a slight change in temperature. Taking the positive root of

Bq. (16) and integrating one gets

7
d x
-1 = =
1/_2__4 + £,
yI73 x X

or with the change in variable Y = L » the integrel becomes
/

. X
u; y
/Z/"' ’L/L = 2 (J i “
N Y1/§—~~y+cy3 (17)
l/( B

/

The integral in Eq. (17) is an elliptic integral except when C = - and 0.

3
For the case C = 3/’“ Eq. (17) can be expressed as
/

i
J a/y
-0 =93 = :
YD S L NETFY (18)

«




=16m

This corresponde to the case (; =1, é(z = 0 in the expression
for C. The limit here, must be —é— < _L/(— and ;> 7; since a

/ J 4
limit of - = 1 means that the integral becomes infinite or

U -

Lt
the bubble does not grow., By choosing a value U K > | automatically

starts the bubble along the trajectory for C = —é— at some value (U (;
and dj 5 0. The closer one picks C{J' to / , the longer it
will take the bubble to grow. The integration of Eq. (18) is readily
carried out by a separation of the integrand into partial fractions

resulting in the following relation between L and U«

T-C;= 5 1/U+6 aW/%7L6

(19)
u /3 3 Na
s /3 2V a e HyYE (u+z)
4 /3 3 A
5 /Tv’-]/z (u; + 5
U_ /3 5 A
— 2V T4 (¢ +3)
©Je ANE .
57w 7 (4 +3)
EN AT
Figure 5 is a plot of as a function of U as expressed by

Eq. (19) for (; =1.01 and {; = 1.000001 end shows the effect
of taking LZJ- close o (; = 1, TFigures 6a and 6b are plots of the
actual radius R, as a function of the time 7, for various liguid
temperatures using Bq. (19).

The sssumption has been made that the vapor pressure has a
constant value throughout the growth of the bubble. However,

evaporation is a process which proceeds at a finite rate and if this
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rate is not sufficiently high to keep up with the rate of volume
change in the bubble, the vapor in the bubble will behave more like
a permenent gas. Plesset tested this assumption for the case of a
cavitation 'bu'b‘ole(l) with an estimate of evaporation rates based on
kinetic theory. A similer analysis can be applied here. Thus the
rate of evaporation is estimated from kinetic theory which says that
the mass of gas evaporated per unit area per unit time at an absolute

temperature T, for water is

: M
I=T"Ryswe7 > (20)

where /,, denotes the vapor pressure for a vapor with molar mass M,
and B is the gas constant. If one assumes that the vapor obeys the

perfect gas law

Pv:"/g”ﬁTﬁ
(7)

vhich is ressonably accurate in the temperature range of interest »

Eq. (20) may be written

k BT ,
J= .04 1/377—/‘7 = @'V

where V= ,04 5%7 ‘is the desired velocity to be associated

with the rate of the evaporation process. For the present problem,

at 105°%¢, V is spproximately 670 cm. per sec. This compared to

fZ] = 356 cm. per sec. for the bubble growth at 105°C is seen to be
HRE»> e

quite large. Thus the assumption of f,, constant, as far as

evaporation rates are concerned, is reasonable.

P
s
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3. Plesset-Zwick Theory for Bubble Growth

The problem up to this point has been td assume that the bubble
expands isothermally, that is, the vapor pressure has been assumed
to remain constant throughout the expsnsion process, having a value
corresponding to the bulk temperature of the water, Now this
assumption is nearly correct if one thinks of this in terms of the
actual variation in the vapor pressure as compared to the absolute
injitial velue of the vapor pressure. However, in terms of the
nechanism of bubble growth the varistion in vapor pressure has a marked
effect on the rate of growth., Heat must be applied to the bubble to
evaporate water and maintain the vapor pressure during growth. The
total mass of vapor which is evaporated into the bubble for a radius
R, is _;Z TR 3(0 " where (@' 4is the vapor density. The total heat
required is Q= %7/?3@/[_ where L is the latent heat of evaporation,
This heat is taken out of a water layer surrounding the bubble, If
the thermél diffusivity of water is D and the time required to grow
to & redius R is [ , then the order of magnitude of the layer is
cj?ﬁ 1/Z;ET1. Thus the problém as formulzted by Plesset and Zwick(s)
is to first consider the problem of non-steady heat diffusion which
is encountered in dealing with the dynamiecs of a‘vapor bubdle in a
heated liquid. From this problem one obtains the variation of the
temperature at the bubble wall as a function of time.

The heat conduction problem is formulated as follows: the liquid

is assumed to be non-viscous and incompressible, and the thermal
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conductivity /4 , density © , and specific heat C , of the liguid
are assumed to have insignificant variation with temperature. The
temperature T in the liquid then satisfies the equation

T Ly
AT=Ddr " x! @)

Here D = 25/% is the thermel diffusivity of the liquid, 7 = 7 (%)
is the heat source per unit volume in the liquid which is taken to be

a function of time only, and 9/—T denotes the particle derivative so

dt

i._za. VT
gz ar 7 ’

that

-—

where \/ is the liquid velocity which in general varies with
position and time. It is assumed that the motion possesses spherical
symmetry; i,e, the vapor bubble is spherical, and its radisl motion is
sufficiently rapid that any translational motion may be neglected.

The Eulerien coordinates are chosen as (/, £ ) with/ = O at the
center of the bubble. 72 =K (t) is the bubble radius at time t. The
temperature at /= o9 is /[, for time t = O, or the temperature
for a later time t, at infinity is Jw = /o + f % (&), vhere

? (0) =0, 2nd the temperature at t = 0 i8 /, everywhere. This
diffusion problem is then solved as‘suming that the thermal boundary
layer is very thin compared to the bubble radius. For the case of

the vapor bubble in a liquid, this assumption is made plausible by

the fact that not only is the heat capacity much greater in the liquid

state than in the vapor state but the thermal diffusivity is about
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1000 times smaller. Thus the zeroth order approximation for the
difference between the temperature at the spherical boundery, T (0,f)

and the initial temperature of the liquid 7, is given by

-
T(o,8)-T5 = 4~ L yit) ~ ( D) /{7362,;)0&?0 dIX - (z2)

Now the mass of vapor in the bubble is given by

m:3i77/23(zf)€'

or with I = latent heat of evaporation, the heat content is Q =/wm;

therefore

d8 _ ;dm . £ d [ p% e
99122 37/1#{&&)(03

but this is also equal to

47/‘/2@:)/({% Rt

so that
(5%), iy 55070 47 (€]
For small temperature variations, (0 " is nearly constant, giving

Le'R(t) _ L €
= =Lt O ().
(ar r= E(z‘) K pc e /



-2l

Thus Eq. (22) can be written as Z‘
L e E/x) /Z(x)
T(O,t)—72:~[-)— (t) — c/X

For the present problem the vapor pressure can be expressed as

=l
R =R lT0) + AFTCO-T) + B {T0,0-T:) .

Thus the equation of motion becomes

cC o
mz+- P(t) — Fo — &
67

g .
This problem( ) is then solved to find the rate of growth of the

vapor bubble. The mechenism for growth from the equilibrium size

Ry= —
owl?,[o)_pm

starting a2t t = 0. This increase becomes insignificant as the growth

is provided by giving ? () a very small increase

progresses and is a mathematical means for getting the bubble started
just as in the case of the solution with A, constant, a slightly
larger initial rsdius then 7, = 27 was chosen to get the

Py~ Peo
bubble started.

It has been assumed here that the temperature of &ll the vapor
in the bubble has the same value ag the bubble wall temperature
throughout the entire volume of vopor. This is made plausible by the
fact that the thermal diffusivity D, for the water vapor is 1000 times
as great as that for water. W

A plot of the radius R, as a function of the time t, is shown

in Figure 14 for a temperature of 103.05°C for the Flesset-Zwick
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Theory and is compared to the solution obtained with the extended
Rayleigh Theory for the same temperature. The merked effect that

the cooling of the bubble well has on reducing the rate of growth

is apparent. Thus the Rayleigh Theory predicts that the bubble
approaches a linear rate of growth-a.s the radius increases, the rate
bging R =]/ 35 _%D » whereas the Plesset~Zwick Theory predicts that

as the bubble grows the cooling of the bubble wall due to evaporation
of the vapor results in the wvapor pressure Py » approaching the
value of the atmospheric pressure 4, , or Sp—>0 as R —>o ;
hence R —> 0. Consequently a cooling of, say, 2% may be small
compared to 10200, but in terms of the 2°C of superheat corresponding
to the value of Sp, this cooling results in S p—> 0. Since the
driving force for the bubble growth is produced by 5,0 s its

variation has a pronounced effect upon the rate of growth.
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III. APPARATUS AND PROCEDUEE

1. Heating the Wster

The requirements for obtaining vapor bubdble formation within
the body of the liquid.at various degrees of superheat are apparent
in theory, but the actual realization of such a condition reguires
a variation in the usual means for boiling water. The requirements
are that the liquid must be heated slowly and uniformly, and the walls
of the container of the liguid must not be subjected to temperatures
80 great that a very large thermal gradient exists within a very
narrow boundary adjacent to the walls. In addition, these surfaces
must be clean and free of pits or scratches. In the case of such
gradients all of the bubbles form either within this layer or actually
form on the solid surfaces of the container. Thus in the case of
heating a beaker of water with a bunsen burner most of the bubbles
form at the bottom of the beaker and quickly rise out of the thermal
layer and intermix with the main body of the liquid. 1In this way one
has a2 condition closely approximating the dynamic equilibrium of meny
large bubbles in the body of the liquid. This condition is realized
by the fact that as the bubi)les grow they rise into the cooler regions
of the liguid above the thermzl boundary layer, and their rates of
growth are decreased to a point whe‘re the bubble can be assumed to be
in dynamic equilibrium with the liquid. Since these bubbles are very

large, the effects of surface tension are negligible; hence the



-24-

vapor pressure inside the bubble is very nearly equal to the
external pressure on the liquid, which for water heated in a
beaker in the laboratory is essentially the atmospheric pressure,
Thus the temperature of the boiling water will be very close %o
that corresponding to the vapor pressure being equal to the
atmospheric pressure. For the case of one normal atmosphere of
pressure, this temperature will be 100°G.

In order %o heat the water uniformly the following procedure
was used: a beaker was constructed from pyrex tube stock 2% in.
diameter. The tube was cut into a 6 in. length and a beaker was
formed from the tube with a flat face 1} in, wide and 6 in. high.
This was done for photogrephic purposes. The beaker was annealed
very carefully to make the inner surface very smooth and free from
pits. The beaker was cleaned before each experiment with a detergzent
to remove any oil films present on the surface of the beaker. The
water useé. in the tests wes doubly distilled, and for some of the
tests was contaminated with solid impurities such as powdered chalk
or sand to produce various degrees of superheat., The water was first
boiled in a large conteiner for about one hour to remove most of the
air in the water. Water boiled in this way contains about 20% of
the initial air content, This was not done in the beasker since
too much water would evaporate from the test sample. The container

with water thus treated was heated by two 250 Watt reflector-type
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infra-red lamps with the beaker located between the lamps.

Figure 7 shows the setup of lamps and beaker. In this way 300 cec.
of water can be brought to the boiling point in about 10 minutes.
Attempts at obtaining vapor bubbles in the body of the liguid with
this technigue were completely successful and yielded superheat
temperatures up to 107%.

The reasons for the success of this method can best be obtained
by considering the nature of the radiation of the infra-red lamps
and the absorption of this radiation by the beaker and the water,
The infra-red lamp is rated at 250 watts for 2 line voltage of 115
volts, Under these conditions the tungsten filament temperature is
2500°K. Since the lamp radiates nearly as a black body, according
to factory specifications, Wien's displacement law can be used to
obtain the wave length corresponding to the maximum energy outpust.
Thus for 3500°K, A, = 1.16,4 (4= /0 Cm). The distribution
corresponding to this temperature shows that approximately 3% of
the radiant energy lies between, .4 A/ %o .7 4/ (visible light
region), Since the tungsten filament is enclosed by a pyrex bulbd,
a certain amount of the radiation is absorbed by the buld itself,
Now pyrex is essentially transparent to radiation from B/u toBv/u ’
but beyond 3/(4 a sheet of pyrex 2 mm. thick absorbs nearly all
the radiation. This accounts for about 17% of the total radiated

energy originating from the tungsten filament. Thus approximately
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80% of the total radiated power is available for heating over

a wave band from 7/14 to 3/14 . Since the beaker itself is

pyrex about 2 mm. thick, it will transmit most of the radiation
transmitted by the bulb itself. Thus one attains the desired
effect of not having the beaker at higher temperatures than the
main body of water. The water itself is an excellent absorber of
infra-red radiation especially from .9% up to 3/01 which is
68% of the total radiated energy‘\.{ For example, & layer of water

1 cm. thick absorbs 38% of the radiation of J = //(// and 95%

of that at ;\ =1.4/,( snd essentially all the radiation is absorbed
in this lsyer for values of A > 1.4 LU . The remaining 12% of the
total radiation from 7/<4 to .9}44 is also absorbed but to a
lesser extent. The fact that the water is heated very slowly means
that the slight thermal gradients existing in the liguid are removed
by heat cenduction. Thus the temperature of the liquid is raised
essentially in a uniform fashion. This is born out by temperature

measurements throughout the bulk of the liquid.

Se Tempersture Measurements

The selection of the tempera,ture measuring device was controlled
primarily by the necessity for having an instrument which could be
placed in the water without having imb‘bles form from the device, since
this would eliminate the possibility of having the bubbles form in

the body of the liguid. With this restriction, a mercuryé-in-gless
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thermometer was chosen since the bulbs of most thermometers have a

very smooth surface as a result of annealing, and hence provide,

in most cases, a surface even more favorable to the prevention of

bubble formation than the beaker itself. The thermal lag of the
thermometer was not an important factor for these exps riments since

the only runs considered were those for which the temperature

renained nearly constant within .100 during a given test the

duration of which exceeded the time of any thermal lag by a wide

margin. The actual thermometer used in the experiments was a Braun
Nitrogen-filled mercury-in-glass thermometer with a rangs of 100°¢ —200°G
graduated in .1°C, The thermometer was immersed up to & point just short
of the graduations to avoid bubbling from the etche& portions of the
stem. This meant that the mercury column extended out of the water for
2ll temperatures ahove 1oo°c, and thus 2 correction to the temperature
reading would be necessary. Using the correction formula from the

(11) the maximum correction found necessary was

Bureau of/Standards
approximately..oosoc. Since this is negligible in terms of .1°G
accuracy, this correction was neglected. Another factor affecting
the true temperature reading was the fact that the thermometer was
not shielded from the effects of radiation. In the discussion on
heating water it was shown that the band of infra-red radiation from
T M t0 .3ZAfiS the least absorbed by the water, and hence this
portion of the radiant energy (12% of the total) is incident upon

the thermometer. It should be pointed out that the thermometer was
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at all times about 2 cm. from the walls of the beaker. Thus a layer
of 2 em. of water was available for the actual absorption of the
radiant energy. The bulb of the thermometer is essentially trans-
parent to the range of radiation from . 7/14 to . 97/4 and the
mercury in the buld is a good reflector of radiation and absorbs
very little radiation., Thus it could be said that the water acts as
e radiation shield for the thermometer, and the radlation effect on
the true temperature reading is negligible in terms of the accuracies
in the present measurements. To test this, a shield was made of
aluminum tubing for the thermometer. The temperature reading for a
thermometer without the shield was compared with the reading of the
shielded thermometer and the result was that the two simultaneous
readings never varied more than .100. The temperature variation
throughout the bulk of the liquid was checked after the water had
reached a state of boiling, and the variations were found to be much
smaller than .100. The sccuracy of this type of thermometer is within
= .1°c. Thus considering the two largest errors, namely, the
aceuracy of the thermometer and the variation in the temperature
during a test, the temperature readings obtained are assumed accurate

within .2°¢.

3. _Photographic Procedure
The photographic equipment used in this study was of the multi-

flash type. It consisted of a simple camera in which the recording

f£ilm moves constently past the focal plane at a high speed.



29—

The camera has no shutter, hence the illumination which was
provided by a flash lamp also acted as the shutter. This required
that the flash duration be so short that neither the imeage of the
object on the film nor the film itself move an appreciable distance
While the light was on. For the present experiments pictures were
taken at a rate of 1000 exposures per second. This rate was found
fast enough to record the growth 'of a vapor bubble and still give a
normal sized 35 mm, picture. The camera itself was the standard
General Radio type of instrument as shown in Figure 7 fitted with an
f 1.5 Kodak Ektar 2% lens., The film used was Eastman 35 mm. Backe
ground X and was run through the camers at an average rate of 100 feet
per second. The flash lamps used were of the type originally
developed by Professor Harold E. Edgerton and his associates at
M.I.7. A detailed account is given in Reference 12.

Since there is no practical way of kmowing just where or when
a bubble will form, the chances of catching a bubble on a strip of
film 50 ft. long which runs through the camera in about % sec. is
very small and depends on the area of view and the depth of focus.
Thus the choice of magnification depends upon the following factorss
it is desirable to have great magnifications since the detall in
the pictures of small bubbles will be clearer. However a factor of
two in the picture size of the radius of the bubble diminishes the
area of view by a factor of four and reduces the depth of focus. It

was found that megnificetions from .5X to 4X were practical in the
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sense of the amount of film used and the time involved %to obtain
2 bubble history. This difficulty was coupled with the fact, that,
if during = run the temperature variation was too great, even a
successful bubble history from the photographic view point was
useless in terms of useable data for the rate of growth. The
overall efficiency of this method was to obtain a useable bubble
history per 150 feet of film,

With a magnification of 1X the depth of focus was about E§' in.
The magnification was determined by placing a scale in the water and
focusing on a piece of film in the cemera. Thus any bubble in focus
could be assumed 40 have the appropriate magnification corresponding
to the setting of the camera since the depth of focus was so small,
All of the bubble diameters were measured directly from the negative
with a microscopic comparitor. Rach bubble was measured three times
and the average value was taken. The actual measurements of the
bubble dismeters are estimated to be correct within 3% using this

technique.



IV. AWNALYSIS OF DATA AND THEORY

1. Analysis of the Data

Since the bubbles rise through the liquid as they grow, they
cannot be called spherical bubbles in the striet sense of the word.
As the bubbles ri.ée they tend to assume 2 shape similar to an
oblate spheroid. This effect is very slight duringz the first part
of the growbth because the translational motion is very slow compared
to the rate of growth of the bubble. During the latter part of the
growth the translational effect is very great compared to the rate of
growth, and essentially determines the shape of the bubble. As an
approximation, the translational motion of the bubble can be
compared to the translational motion of a rigid sphere in a fluid.
The pressure distribution along the boundary of the sphere(la) is

given by

P=teU(1- 425/’7)29) + Poy (25)
where [/ 4is the velocity of the sphere, /2 is the static pressure
at infinity, and 6 is measured from the axis in the direction of
motion. From Bq. (23) it can be seen that the pressure at the nose
and aft end of the sphere are at a maximum, and the pressure gradually
 diminishes to a minimum at the sides. Thus for the case of a bubble

the net result is that the dimension of the bubble is reduced in the

direction of motion and increased at right angles to the motion.



However the bubble dimensions measured from the negatives were
restricted to bubbles occurring during the first part of the
growth. Thus the diameter measured in the horizontal plane does
not exceed the diameter in the vertical plane by more than 3%
(the horizontal measurement was used for the data). The effect of
translation on the conduction of heat is caused by the fact that as
the bubble rises, it enters a hotter region than it would normally
experience if it grew without any translational motion and extracted
heat from the same region. Hence the rate of growth should be
somewhat higher in the actual case than in the Plesset-Zwick theory
where the assumption is made that there is no translational motion
of the bubble. However, the amount of translation in the bubble
histories is less than twice the diameter of the first bubble
measured. This can be seen from Figure 8 which shows an actual
bubdble history. Thus this effect, although present, is very small.
The effects of the walls of the container and the proximity of
other bubbles were neglected since these distances were large
compared to the bubble sizes considered and thus their effects on the
bubble growth are probably less than the uncertainty of the data,
Since the time between each picture is .00l second, there is an
uncertainty in the exact time when the bubble starts to grow from
the dynamic equilibrium radius. Thus this time lies between the first

visible bubble picture and the freme showing no budbble. Hence one
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is free to shift the time axis for any bubble history up to the
amount of .00l second. This allows one, when comparing bubble
histories at a given temperature, %o shift the point on the graph
* +001 sec., in time to obtain the best fit. In a sense this
uncertainty helps in making the compariséns of several bubble
histories seem better than they may actually be. However this does
not alter the actual slopes of the radius-time curves,

Since the temperature measurements are estimated to be accurate
within .200. the corresponding accuracy of ths vapor pressure
is required. As an exasmple, the thermal rate of variation of the

vapor pressure for the temperature range of 100°¢ to 105°¢C is

4 dynes
approximately 4X10 C—%—l’é—% or for .a°c this gives an error of
8XJ.03 a/,cv :'ﬂe: . HNow this error is very small when compared to vapor

6 dynes
Cm.2

interest. However in terms of ) P =p,~f,» which is really the

for the temperature range of

pressures of the order of 10

important factor for bubble growth, the order of magnitude is II.O5
Therefore, the error in 5/9 caused by an error of .2°C in the
thermometer reading is approximately 8%. Since the bubble velocities
are roughly proportional to 1/%? , the errors in the general slopes
of the radius-time curves obtained from the data should be in error
by about 4% from temperature errors alone. This error together with
the errors in the negative measurements yields an estimated overall

error in the bubble radii, of 10%.
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Several bubble histories were obtained for five different
temperatureg. In some cases all the bubbles for a given temperature
were obtained during one run, and for others the histories were
obtained from independent runs. Thus Bubbles #1 and #3 are from one
reel and Bubble #2 from another reel, Figure 9, Bubbles #5 and #6
are from one reel and Bubble #4 is from another reel, Figure 10,
Bubbles #7, #6, and #3 are from separate reels, Figure 11, Bubbles
#1) end #12 are from one reel and Bubble #10 is from another reel,
Figure 12. Bubbles #13 and #14 are from the same reel, Figure 1l3.
For Bubble #13 two points are missing because the film was blacked

out for these two points,.

2.  Comparison of Date and Theory
The only calculation to date from the Plesset-Zwick theory is

for the case T = 103.0500. Figure 14 shows a comparison between

the extended Rayleigh Theory and the Plesset-Zwick Theory with
Bubble #ﬁ. From the figure it can be seen that the effect of cooling
of the bubble wall has a great effect on the rate of growth. The
data follows the Plesset-Zwick Theory very closely as compared to

the Rayleigh Theory. Thus the cooling of the bubble wall affects the
dynamics of the bubble growth to a very marked extent. Hence the
converse effect of condensation of vé.por during the collapse of a
vapor bubble may produce & lower rate of collapse than anticipated,
This ié so since the bubble wall will experience a temperature rise

ceusing an increase in the vé,por pressure.
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Fig. 8 - Photographic history of the rate of growth of bubble No. 9
(T = 103.1° C). The time interval between successive
pictures is . 001 second. The top margin of each print
is a reference point from which the translational motion
of the bubble can be measured.
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