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Abstract 

A design technique for kW-level switching-mode power amplifiers is presented. Several 

push-pull pairs, independently tuned to Class-E/Fodd, are combined by a distributed active 

transformer. The zero voltage switching (ZVS) condition is investigated and modified for the 

Class-E/Fodd amplifier with a non-ideal output transformer. All lumped elements including 

the DAT, the transistor package, and the input-power distribution network are modeled and 

optimized to achieve the ZVS condition and the high drain efficiency. Two power amplifiers 

are implemented at 29 MHz, following the technique. The amplifier with two push-pull pairs 

combined exhibits 1.5 kW output power with 85 % drain efficiency and 18 dB gain. When 

four push-pull pairs are combined, an output power of 2.7 kW is achieved with 79 % drain 

efficiency and 18 dB gain. 

Nonlinear stability analysis techniques, based on an auxiliary generator and pole-zero 

identification, are introduced to predict and eliminate the instabilities of power amplifiers. 

The techniques are applied to two switching-mode power amplifiers that exhibited different 

instabilities during the measurements. Self-oscillation, chaos, and hysteresis of a Class-E/Fodd 

amplifier with a distributed active transformer are investigated by the stability and bifurcation 

analysis tools. An in-depth analysis of the oscillation mechanism is also carried out, which 

enables an efficient determination of the topology and location of the required global 

stabilization network. As the other application, the anomalous behavior observed in a Class-E 

power amplifier is analyzed in detail. It involves hysteresis in the power-transfer curve, 

self-oscillation, harmonic synchronization, and noisy precursors. To correct the amplifier 

performance, a new technique for elimination of the hysteresis is proposed, based on 

bifurcation detection through a single simulation on harmonic-balance software. Also 

investigated are the circuit characteristics that make the noisy precursors observable in 
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practical circuits and a technique is derived for their elimination from the amplifier output 

spectrum. All of the stabilization and correction of the amplifiers are experimentally validated. 

A simple nonlinear technique for the design of high-efficiency and high-power 

switching-mode oscillators is presented. It combines existing quasi-nonlinear methods and 

the use of an auxiliary generator in harmonic balance. The auxiliary generator enables the 

oscillator optimization to achieve high output power and DC-to-rf conversion efficiency 

without affecting the oscillation frequency. It also imposes a sufficient drive on the transistor 

to enable the switching-mode operation with high efficiency. The oscillation start-up 

condition and the steady-state stability are analyzed with the pole-zero identification 

technique. The influence of the gate bias on the output power, efficiency, and stability is also 

investigated. A Class-E oscillator is demonstrated using the proposed technique. The 

oscillator exhibits 75 W with 67 % efficiency at 410 MHz. 
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Chapter 1  

Introduction 
 

The tremendous expansion of wireless communications in the 21st century pushes the 

performance of each component of communication systems to more and more stringent 

specifications. In power amplifiers, the performance issues include efficiency, linearity, 

output power, and spectral purity.  In particular, the efficiency has been of great significance 

to power amplifier designers because it affects the lifetime, reliability, and cost of the entire 

system. This is also the situation for power amplifiers in industrial, scientific, and 

medical (ISM) applications such as induction heating, plasma generation, RF-driven lighting, 

or RF imaging. 

Switching-mode amplifiers such as Class-D, E, F, and E/F have been proposed in the 

context of the demand for high-efficiency power amplifiers. They achieve the high efficiency 

at the expense of linearity, through the switching operation of the transistor and the 

appropriate harmonic tuning of output impedance. Recent advances in transistor technology 

enable the switching-mode concepts to be extended to the applications of higher output 

power as well as higher frequency. However, it is still challenging to build solid-state power 

amplifiers with several kW output power for ISM applications, although in comparison with 

vacuum-tube power amplifiers, they would have light weight, compact size, and high 

reliability. Judicious selection of the solid-state device and the operating mode of 

amplification should be made in order to generate and handle enormous voltage and current 

at the output. Also, a very efficient technique for power combining is required to achieve 

several kW from solid-state devices, since it is difficult to obtain such a high power level 

from a single transistor. 
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Stability is an important design issue in all types of RF and microwave circuits. 

Instabilities, such as spurious oscillations, noisy precursors, chaos, hysteresis, solution jumps, 

etc., degrade or disrupt the original performance of each circuit. They also may destroy the 

active device itself due to the excessive terminal voltage or current induced from its abnormal 

operation. The stability analysis of switching-mode power amplifiers is especially essential 

because of their strongly nonlinear operating behavior, which gives many more possibilities 

for instability. Unfortunately, most of these instabilities come from parametric oscillations 

and are difficult to predict by conventional linear stability analysis techniques. Instead, 

nonlinear techniques, taking into account the steady-state solution driven by large input 

signal, are required in order to detect and remedy such parametric instabilities. To be 

practical, the techniques should be general enough to be applied to any kind of amplifiers and 

should be implemented on commercial harmonic balance simulators.  

This dissertation presents design and implementation techniques for solid-state power 

amplifiers that generate the output power up to 2.7 kW. Several vertically double-diffused 

MOS (VDMOS) are tuned to Class-E/Fodd mode [1] to achieve high efficiency. The output 

power from each VDMOS is then combined using a distributed active transformer (DAT) [2]. 

The amplifier with four VDMOS combined exhibits 1.5 kW output power with 85 % drain 

efficiency and 18 dB gain at 29 MHz. The output power of 2.7 kW is achieved with 79 % 

drain efficiency and 18 dB gain, when eight VDMOS are combined by the DAT. 

Motivated by common observation of various instabilities during the measurements of 

switching-mode amplifiers, this dissertation presents nonlinear approaches for stability 

analysis of power amplifiers. Based on bifurcation detection tools including pole-zero 

identification and an auxiliary generator, the region for stable operation is delimited with 

respect to circuit parameters of interest. These tools are implemented in a commercial 

harmonic balance simulator with an optimization engine. Different instabilities are also 

analyzed in a large-signal operating regime by combining the bifurcation detection tools with 

other simulation techniques such as conversion-matrix approach and envelope-transient 
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simulation. All of these stability analysis techniques are applied to stabilize two 

switching-mode amplifiers that have shown various instabilities: spurious oscillation, 

hysteresis of the oscillating solution, and chaotic spectrum in a Class-E/Fodd amplifier, and 

noisy precursors and hysteresis of the power-transfer curve in a Class-E amplifier. These 

instabilities are predicted, analyzed, and finally eliminated in a global manner of operation, 

using the stability analysis techniques. 

Interestingly, the nonlinear stability analysis is beneficial not only to suppressing critical 

instabilities in power amplifiers, but also to promoting desirable oscillations in other 

nonlinear circuits such as oscillators or synchronized circuits. This dissertation also presents a 

nonlinear design technique for high-power switching-mode oscillators, based on the stability 

analysis tools. By combining existing quasi-nonlinear design techniques with an auxiliary 

generator, a switching-mode oscillator can be designed, such that the output power and 

efficiency are optimized at a fixed oscillation frequency. Intensive stability analyses are 

carried out for oscillation start-up and steady-state solutions using pole-zero identification. 

The technique is experimentally verified by the design of a Class-E oscillator at 410 MHz. 

This dissertation is based on the following published work: 

S. Jeon, A. Suárez, and D. B. Rutledge, “Nonlinear design technique for high-power 

switching-mode oscillators,” IEEE Trans. Microwave Theory & Tech., accepted for 

publication. 

S. Jeon, A. Suárez, and D. B. Rutledge, “Analysis and elimination of hysteresis and noisy 

precursors in power amplifiers,” IEEE Trans. Microwave Theory & Tech., vol. 54, no. 3, pp. 

1096−1106, Mar. 2006. 

S. Jeon, A. Suárez, and D. B. Rutledge, “Global stability analysis and stabilization of a 

Class-E/F amplifier with a distributed active transformer,” IEEE Trans. Microwave Theory & 

Tech., vol. 53, no. 12, pp. 3712−3722, Dec. 2005. 
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S. Jeon and D. B. Rutledge, “A 2.7-kW, 29-MHz class-E/Fodd amplifier with a distributed 

active transformer,” 2005 IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, Jun. 

2005, pp. 1927−1930. 
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Chapter 2  

Design Considerations of 

Switching-Mode Power Amplifiers  
 

Power amplifiers are widely used in the applications of wireless communication, radar, 

and industrial, scientific, and medical (ISM) fields. In wireless communication and active 

radar applications, power amplifiers amplify different RF input signals, depending on the 

modulation scheme, to feed sufficient transmitting power to antennas. ISM applications such 

as induction heating, plasma generation, RF-driven lighting, or imaging require RF power 

sources that generate a significant amount of RF power.  

Since each application has a different operating condition and requirement of the power 

amplifier, no single or unified technique exists for the optimum design that is suitable for all 

applications. Designers have to consider the important performance issues of the power 

amplifier for a particular application. Then, they select or invent appropriate components and 

techniques at every design step, from the choice of transistors to the entire architecture. This 

custom-fit property makes a power amplifier one of the most expensive blocks in a whole 

system of applications.  

Switching-mode power amplifiers have been proposed and developed for the 

applications that require high efficiency. By operating the transistor as a switch rather than a 

current source and employing appropriate output harmonic terminations, the amplifiers can 

achieve 100 % efficiency in principle. The linearity of switching-mode amplifiers, however, 

is very poor since the amplifiers are driven into a deep saturation region. Therefore, typical 
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applications of switching-mode amplifiers are RF power generation systems in ISM fields 

and communication systems modulated with a constant-envelope signal. 

There are many design considerations to be addressed for the switching-mode power 

amplifiers. Proper choice of operating class, transistors, power-combining technique, and 

thermal management must be done, based on the performance criteria required for each 

particular application. The criteria include operating frequency, output power level, 

bandwidth, gain, and stability as well as efficiency and linearity.  

A difficult situation frequently encountered in the switching-mode power amplifier 

design is that the strongly nonlinear operating nature of the amplifiers usually puts more 

challenges to meeting all of the required specifications. For instance, the nonlinear behavior 

of the transistor not only degrades the linearity demanded for communication systems with 

non-constant envelope modulation scheme [3], but also gives much possibility to induce 

instabilities [4] that are detrimental to both the amplifier and the whole system. These 

instabilities are generated in the large-signal operating regime of the amplifiers, so that they 

are extremely difficult to predict and (or) eliminate by using conventional small-signal 

stability analysis such as k-factor or stability circles. 

Moreover, there exist some inherent trade-offs between performance criteria of power 

amplifiers: efficiency and linearity, operating frequency and gain, operating frequency and 

output power, bandwidth and gain, etc. These trade-offs are also applied to switching-mode 

power amplifiers in the same way. Designers usually optimize one criterion of performance 

while sacrificing the other but keeping it within an acceptable level, depending on the 

applications. Thus, the design of power amplifiers demands a wide view of all criteria 

involved in the requirements as well as a careful application of detailed design techniques. 

This chapter discusses the main design issues and considerations for switching-mode 

power amplifiers in a broad perspective. The important criteria for amplifier performance will 
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be dealt with first, and then followed by the technologies and considerations involved with 

the switching-mode amplifier design. 

2.1 Performance Criteria of Switching-Mode 
Power Amplifiers 

There are numerous criteria to evaluate the performance of switching-mode power 

amplifiers. The most significant criterion is obviously the efficiency, which is why the 

switching-mode techniques have been proposed. At the expense of linearity, the amplifiers 

can achieve high efficiency, ideally up to 100 % from their deeply saturated operation. 

Operating frequency, output power, gain, and bandwidth should also be considered at the 

design stage in order to choose proper active devices or design technologies. In this section, 

major performance criteria in switching-mode power amplifiers are reviewed. 

2.1.1 Efficiency 

2.1.1.1 Definitions 

An amplifier is not a magical circuit that amplifies an RF input signal to a larger level 

without any additional power input. In fact, every amplifier requires DC power supplies that 

provide the ability of RF amplification. Figure 2.1 shows a diagram of typical power flow in 

a generalized amplifier, where an input-drive source is assumed to generate an RF signal at 

frequency f0. By the law of energy conservation, the total amount of power entering into an 

amplifier has to be same to the total amount coming out from it.  

Due to the nonlinear operation of an amplifier, many harmonics are generated in RF output 

power Pout(kf0) and dissipated power Pdiss(kf0). The input DC power is calculated by 

{ }∑ +=+
k

kfPkfPPfP )()()( 0diss0outDC0in  (2.1) 
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Figure 2.1: Typical power flow in a generalized amplifier. 

∫ ⋅=
0/1 dcdc0DC )()(

f
dttitvfP  , (2.2) 

where vdc(t) and idc(t) represent DC voltage and current supplied from DC power supplies, 

respectively.  

Efficiency is defined by a ratio of the amount of power “produced” to the amount 

“expended” in the amplification: 

expended

produced

P
P

=η  . (2.3) 

According to different definitions of the power “produced” and “expended”, respectively, 

there exist several definitions of efficiency, also.  

First, if we consider the fundamental component of RF output, i.e., Pout(f0) as produced 

power and the total input power delivered to the amplifier, i.e., Pin(f0) + PDC as expended 

power, then the efficiency is defined as 
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where 

)(
)(

0in

0out

fP
fP

G =  (2.5) 

is the power gain. This total efficiency is the most physical definition of efficiency, because it 

takes into account all meaningful energy flow into and out of the amplifier. However, 

particularly in power amplifiers, the drain efficiency (for FET amplifiers) or collector 

efficiency (for BJT amplifiers) is more commonly used to measure the efficiency as follows: 

DC

0out
D

)(
P

fP
=η  . (2.6) 

This definition is based on the view that a power amplifier is basically a power converting 

circuit from DC input to RF output. Thus, the drain efficiency measures a quality factor of the 

power conversion. Almost all DC power is supplied from drains (or collectors), and this is 

why it is called drain (or collector) efficiency. The drain efficiency is useful when input 

power level is of no primary significance, which falls into the cases that either gain is very 

high or the input-drive source is assumed to generate sufficient power without extra 

constraints. It should be noted that the total efficiency approaches the drain efficiency if the 

gain is high. Another advantage of the drain efficiency is the isolation of the efficiency 

calculation from power loss in the input circuitry. This enables the drain efficiency to serve as 

a comparison criterion for performance of different amplifier operating classes that are 

entirely determined by bias condition and output termination. Also, this is why the drain 

efficiency is commonly used to evaluate the performance of switching-mode amplifiers, 

where the input drive is assumed to be sufficiently large to saturate the transistors. 



 
 
 

                     10 
 
 
 
 

The most widely used definition of efficiency in all types of amplifiers, however, is the 

power-added efficiency, in which the produced power from an amplifier is defined as the RF 

power “added” by an amplifier, i.e., the difference between the RF input and output at f0: 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

−
=

GGP
fP

P
fPfP

PAE 1111
)()()(

D
DC

0out

DC

0in0out η  . (2.7) 

In fact, this definition is not correct in a physical point of view, because the RF input power is 

included in the “produced” power of the amplifier. If the gain is below unity, it even could be 

negative. However, the advantage of the power-added efficiency is that it combines the gain 

with the drain efficiency. When a power amplifier is used within a system, the input signal is 

provided from the previous stage that has a common limitation on the output power level. 

Thus, the gain of the power amplifier, in this case, is a critical factor to determine the 

efficiency of the overall system as well as of the amplifier itself. From equation (2.7), the 

power-added efficiency will approach to its maximum value, which is the drain efficiency, as 

the gain increases. 

2.1.1.2 Why High Efficiency? 

The high efficiency of power amplifiers leads to low power consumption, low 

temperature rise, high operation reliability, and low cost. In limited energy-budget operating 

conditions such as battery-operated systems or space applications, the low power 

consumption is very important, because it dominates the operation time. Let us suppose that 

the total available energy Eavail and the required amount of produced power Pproduced are fixed 

for an instance. Then, the total operation time is calculated by 

produced

avail

expended

avail
op P

E
P
E

t η==  , (2.8) 

where η is defined from equation (2.3). Thus, the operation time increases in proportion to 

efficiency. The low temperature rise is important particularly in high power applications in 
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which the design of a proper heatsink is a critical issue. The dissipated power during the 

operation is calculated by 

producedproducedexpendeddiss  11 PPPP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

η
 . (2.9) 

From equation (2.9), low efficiency gives rise to large dissipated power that generates high 

temperature rise, since most of the dissipated power is converted to heat. The high 

temperature during the operation makes the amplifier stray from its nominal performance and 

the amplifier itself may even fail. Thus, a heatsink has to be carefully designed to extract the 

large amount of heat out of the amplifier and to maintain a safe operating temperature, which 

requires additional cost. This is why high efficiency is needed for high operation reliability 

and low cost. 

Numerous ways have been proposed to improve the efficiency of power amplifiers. The 

most popular way is to design switching-mode amplifiers including Class-D [6], E [7], F [8], 

and E/F [1] that are able to achieve 100 % drain efficiency in principle. These 

switching-mode operations will be discussed more in detail in Section 2.2.2. Other classical 

techniques for efficiency enhancement are the Doherty [9] and bias-adapted amplifiers [10], 

which are usually employed to boost the efficiency in backed-off transconductance amplifiers.  

2.1.2 Linearity 

The linearity of amplifiers implies the ability to correctly reproduce the amplitude and 

phase of the input signal at the output. The amplitude of the output should be linearly 

proportional to that of the input, while the phase difference between the two should remain 

the same. The high linearity of amplifiers is necessary when the input signal contains both 

amplitude and phase modulation.  

Unfortunately, switching-mode amplifiers have notorious performance of linearity when 

operated in normal conditions. Figure 2.2 shows qualitative power-transfer curves of an 
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ideally linear amplifier and a typical switching-mode amplifier, respectively. Since typical 

gate bias of switching-mode amplifiers is below threshold (or pinch-off) voltage, the 

transistor still remains turned off when the input power is very small, as shown in Figure 

2.2 (b). Thus no output power comes out except a small amount of leakage power passing 

through feedforward capacitance of the transistor. When the input signal is increased enough 

to make the transistor turn on, the output power grows rapidly, which is marked by the 

transition region. After a short interval of input power at transition, the amplifier enters into 

the saturation region, where the output power keeps an almost constant level while the input 

power increases further. It is the saturation region where switching-mode amplifiers are 

supposed to operate typically.   

 

     (a)       (b) 

Figure 2.2: Comparison of qualitative power-transfer curves between an ideally linear 
amplifier (a) and a typical switching-mode amplifier (b). 

The strongly nonlinear behavior of switching-mode amplifiers limits their applications to 

communication systems with constant-envelope modulation schemes such as CW, FM, FSK, 

and GMSK (used in GSM). Another typical application is RF power generation for ISM 

fields that requires high efficiency and does not need high linearity. Sometimes, 



 
 
 

                     13 
 
 
 
 
switching-mode amplifiers are biased above threshold voltage [11], [12], [13], which 

improves the linearity, particularly at high frequency. In the power transfer curve of those 

amplifiers, the turn-off region as in Figure 2.2 (b) does not exist anymore and the transition 

region shows linear behavior. However, in a strict point of view, they are not typical 

switching-mode amplifiers, but are closer to overdriven transconductance amplifiers. The 

classification of amplifiers will be discussed in Section 2.2, although it is not so clear that 

there have been many debates on the classification. 

Classical techniques to improve the linearity of switching-mode amplifiers are 

EER (Envelope Elimination and Restoration) and LINC (LInear amplification using 

Nonlinear Components). The EER technique was originally proposed by Kahn [14] and 

successfully applied to transmitters with a time-varying envelope at HF/VHF-band [15],   

L-band [5], and X-band [16]. In the EER system illustrated in Figure 2.3, the RF input signal 

is decomposed into two components that contain phase and amplitude (envelope) information, 

respectively. A power amplifier is driven by the phase component signal where the envelope 

component has been eliminated. If the amplifier operates in ideal switching-mode, the RF 

output amplitude will be determined only by its DC bias voltage, not by the input drive signal. 

This bias voltage is modulated with the amplitude (envelope) signal component of the RF 

input. Hence, the envelope of the RF output is restored in proportion to that of the RF input. 

The LINC technique shown in Figure 2.4 dates back to the 1930s [17] and has been 

applied from HF [18] to microwave frequencies [19]. The signal component separator 

performs AM-to-PM modulation to the RF input signal and generates two constant-envelope 

signals with outphase relationships to each other. Two switching-mode amplifiers are used to 

amplify each of the outphasing signals with high efficiency. By combining two 

phase-modulated output signals from the amplifiers, the amplitude component of RF input is 

recovered.  
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Figure 2.3: Simplified envelope elimination and restoration (EER) system. 

 

 

Figure 2.4: Simplified linear amplification using nonlinear components (LINC) system. 
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2.1.3 Output Power 

The required output power of amplifiers is determined entirely by the aimed 

applications. It ranges from several dBm for wireless handsets to hundreds of kilowatts for 

ISM applications. For example, GSM handsets for 900 MHz require up to 2 W peak output 

power, while RF power generators for induction heating need from 100 W to 100 kW at ISM 

bands such as 13.56, 27.12, 900−930, 2450 MHz, etc.  

In the case of communication systems with complex modulation schemes such as 

CDMA, the output power varies dynamically following the modulated input signal. Then, 

peak envelope power (PEP) is defined by instantaneous output power when the RF output 

signal reaches its maximum swing. On the other hand, average power is calculated as the 

time average of the instantaneous output power. The ratio between them, called 

peak-to-average power ratio, is an important parameter in envelope analysis of linear power 

amplifiers. However, in switching-mode amplifiers, output power commonly refers to the 

peak envelope power because the input drive, in most applications, is fixed to make the 

amplifiers operate in PEP condition. Sometimes, the output power is specified and measured 

under two different conditions: continuous wave (CW) and pulsed operating conditions, 

depending on applications. For example, most radar applications or some ISM applications 

including plasma generation need pulsed operation rather than CW. Output power level along 

with efficiency determines the amount of power that has to be extracted out of the operating 

amplifiers by heatsink. Pulsed operation obviously puts less stringent requirements on the 

heatsink. If duty cycle and efficiency in pulsed operation are D and η, respectively, then the 

dissipated power that should be extracted by heatsink is 

pulsedout,pulseddiss,  11 PDP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

η
, (2.10) 

where Pout,pulsed is the output power in pulsed operation. When D approaches unity, it 

becomes equation (2.9), which is the dissipated power in CW operation. 
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Output power has a trade-off with operating frequency mainly due to the limitation of 

solid-state device technology. This is why vacuum-tube devices including klystron, 

magnetron, and traveling wave tubes are still used to generate very high output power (up to 

tens of MW) at high frequency (up to 100 GHz or higher). However, due to the innovative 

advance of power transistor technology, solid-state power amplifiers are recently replacing 

vacuum-tube devices up to around the 5 kW output power level. Efficient power-combining 

techniques are essential to achieve such high output power with high efficiency, because the 

maximum power that a single solid-state device can generate is still limited to hundreds of 

watts even at HF/VHF frequencies [20].  

2.1.4 Operating Frequency 

Historically, switching-mode amplifiers have been proposed and demonstrated at low 

frequencies (HF and lower) [7], [8], [21]. This is not only because of the frequency limitation 

of active devices, but also because of the inherent operating mechanism of each 

switching-mode that confines its application to low frequency. In particular, classic design 

equations for Class-D [22] and Class-E [23] have been derived on the assumption of lumped 

circuit elements. Those equations are fully valid at HF/VHF frequencies to obtain decent 

switching-mode operations. However, as operating frequency goes up, it is hard to achieve 

normal switching-mode operations and resulting high efficiency only with the equations, due 

to distributed characteristics of circuit elements, limited switching speed of transistors, and 

increased susceptance of drain-shunt capacitance. 

Recently, several switching-mode amplifiers have been demonstrated at UHF and 

microwave frequencies as a result of modification of design equations and transistor 

technology improvements. Transmission-line Class-E amplifiers were demonstrated at 

frequency as high as X-band [16], [24]. Class-D operation, which has been traditionally used 

at very low frequency such as audio frequency, was adapted to build a UHF high-efficiency 

amplifier [25]. Although all of the high-frequency amplifiers operate in sub-optimal 



 
 
 

                     17 
 
 
 
 
switching-modes rather than in the ideal modes, the drain efficiency is still much higher than 

any other transconductance amplifiers, reaching even 80 % at X-band [24]. Nonetheless, it 

should be noted that efficiency and gain are generally degraded as operating frequency 

increases. 

2.1.5 Gain and Bandwidth 

Gain of power amplifiers, defined in equation (2.5), have not been of primary concern 

for most switching-mode amplifiers. The amplifiers have been designed at low frequency and 

the inherent gain of transistors is very high at that frequency. In this case, power-added 

efficiency becomes almost the same as drain efficiency, which, therefore, has been 

exclusively used to measure the efficiency performance of the amplifiers. Also, in RF 

generator applications, the most concerns are output power level and DC power consumption, 

not the gain, because the input RF source is assumed to provide whatever amount of drive 

power required for switching-mode operation. However, as operating frequency increases, 

the gain drops rapidly and becomes one of the important criteria to be considered in 

switching-mode amplifier design. The power-added efficiency also drops and shows a fair 

difference from the drain efficiency. When the amplifier is used in a system, particularly in a 

communication system, this power-added efficiency may be more important performance 

than the drain efficiency. To compensate for the degraded gain and power-added efficiency, 

preamplifiers can be employed before the power amplifier and generate sufficient input drive. 

Bandwidth of amplifiers can be defined in different ways. For small-signal linear 

amplifiers, it is usually defined as the width between two frequencies where the gain drops by 

3 dB from its peak value. Although this definition can also be used for switching-mode power 

amplifiers, the more widely used bandwidth is the one defined by output power, as shown in 

Figure 2.5. Bandwidth that fulfills a certain level of efficiency is usually used for 

switching-mode amplifiers, too. 
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Figure 2.5: Definition of bandwidth in terms of output power. 

Intrinsically, switching-mode amplifiers have more or less narrow bandwidth. Resonant 

tanks at the fundamental frequency and (or) harmonics are required in the output circuitry in 

order to shape output voltage and current waveforms in switching-modes, which limits the 

frequency response of the amplifiers. It is difficult to implement those resonant tanks that 

present the appropriate impedance at each harmonic for wide range of drive frequency. To 

overcome the constraint of narrow bandwidth, several techniques have been demonstrated, 

including multi-band [26] and broadband [27], [28] switching-mode amplifiers.  

2.2 Operating Classes of Power Amplifiers 
Switching-mode power amplifiers are implemented in several different ways. Including 

transconductance amplifiers altogether, there exist numerous types of power amplifiers that 

have been proposed up to now. The most classical way to classify power amplifiers is to 

designate each type as Class-A, AB, B, C, D, E, F [22], and so on. This classification is based 

on DC bias condition, conduction angle, output terminations at fundamental and harmonics, 

etc. However, it should be noted that the classification is somewhat ambiguous, so that an 

amplifier could fall into two or more classes. Sometimes, one class may converge to another 

as operating conditions change.  
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The operating classes can be categorized into two broad categories for convenience. 

Classes-A, AB, B, and C are categorized as transconductance amplifiers. Switching-mode 

amplifiers refer to Class-D, E, and F. This section discusses basic operation theory of each 

class. 

2.2.1 Transconductance Amplifiers 

In transconductance amplifiers, the transistor operates as a voltage-controlled current 

source, as in a traditional way. Each different class is determined based on the conduction 

angle, which is defined as a portion out of one whole period (2π) when the transistor conducts 

non-zero drain current. Designers can choose different conduction angles from 0 to 2π and 

the corresponding classes, by changing bias voltages and input-drive power. 

2.2.1.1 Class-A 

The bias point for Class-A amplifiers is located in the middle of I-V characteristics of the 

transistor, shown in Figure 2.6. For the peak power operating condition, the DC voltage is 

biased at the middle point between the knee voltage Vknee (in case of FET) and maximum 

allowable voltage Vmax of the transistor. Also, the DC current is biased at the middle between 

zero and maximum allowable current Imax. In this way, the load line of the amplifier becomes 

straight centered at the bias point. The typical drain voltage and current waveforms are shown 

in Figure 2.7. Note that the transistor conducts drain current all the time, which means the 

conduction angle is 2π.  

Since the Class-A amplifiers are always operated in the transconductance region (neither 

the triode nor the cut-off region) as shown in Figure 2.6, the output current (or output 

voltage) should follow the same waveform as the input voltage with minimum distortion. 

This indicates the strong aspect of the Class-A amplifiers, which is high linearity. However, 

the most serious drawback of the Class-A operation is low efficiency. Due to the DC bias 

point in the middle of I-V characteristics, high quiescent current flows when high voltage is 
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presented simultaneously. It generates huge power dissipation in the transistor, not in the 

output load. Actually, the maximum allowable drain efficiency of Class-A amplifiers is 

calculated only as 50 % [4]. This low efficiency limits the application of the Class-A 

operation to low-power driver amplifiers or the amplifiers that require extremely high 

linearity. 

 

Figure 2.6: Bias points and load lines of transconductance amplifiers. 

 

Figure 2.7: Drain voltage and current waveforms of ideal Class-A amplifiers. 
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2.2.1.2 Class-B, AB 

The gate bias in Class-B amplifiers is located at the threshold voltage of the transistor, 

while the drain bias is similar to that of Class-A amplifiers, as shown in Figure 2.6. Thus, 

when the transistor is driven by sinusoidal input, it is turned on for half of the drive time. For 

the other half of the time, the transistor is turned off and the load line follows the zero-current 

section. Consequently, the conduction angle of Class-B amplifiers is π, and the drain current 

waveform becomes a half-sinusoid, as shown in Figure 2.8. The maximum drain efficiency 

achieved at the peak envelope power condition reaches 78.5 %. Class-B amplifiers are 

usually configured as a push-pull pair, which combines half-sinusoids from each amplifier, 

operated 180° out-of-phase, and produces a full sine waveform in the output.  

Class-AB is another common operating class used for linear amplification. The bias 

point for Class-AB is located between Class-A and B. Thus the conduction angle is between 

π and 2π, and the maximum drain efficiency is between 50 % and 78.5 %. Due to the 

compromised characteristics of fairly high efficiency and linearity, this operating class is 

widely employed for amplifiers in communication applications. 

 

Figure 2.8: Drain voltage and current waveforms of ideal Class-B amplifiers. 
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2.2.1.3 Class-C 

The gate bias for Class-C is located below the threshold voltage, so that the conduction 

angle becomes less than π. Figure 2.9 shows the drain voltage and current waveforms of 

typical Class-C amplifiers. The current waveform is distorted from the sinusoidal or 

half-sinusoidal one in Class-A or B, which degrades the linearity severely. At the expense of 

low linearity, however, the Class-C amplifiers can achieve high efficiency, typically 75–80 %. 

The drain efficiency increases as the conduction angle decreases, and it can achieve 100 % 

drain efficiency in principle when the conduction angle becomes zero. Unfortunately, this 

operating condition is not practical because the output power also becomes zero with a zero 

conduction angle. Due to the high efficiency, the Class-C is widely used in high-power 

amplifiers for CW and FM transmitter applications. 

 

Figure 2.9: Drain voltage and current waveforms of ideal Class-C amplifiers. 

2.2.2 Switching-Mode Amplifiers 

In switching-mode amplifiers, the transistor is driven by a very large input signal, so that 

the transistor operates as a switch rather than a current source unlike transconductance 

amplifiers. The greatest advantage of switching mode is the ability to achieve the high 
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efficiency and high output power simultaneously. By minimizing the overlapping of non-zero 

drain voltage and non-zero drain current waveforms, power loss in transistors is significantly 

reduced, which means the increase of efficiency. In principle, the drain efficiency of 

switching-mode amplifiers can be up to 100 % without output power degradation. Although 

many loss mechanisms, such as ohmic loss and discharge loss, degrade the efficiency from 

100 % in the real world, they still achieve above 90 % at HF [7], 80 % at VHF [29], and 70 % 

at UHF and microwave frequencies [24], [25], [30], [31]. On the other hand, the linearity of 

switching-mode amplifiers is very poor, because the output power is not a function of the 

input power during the ideal switching operations. The input drive controls only the on-off 

operation of the transistor, not the level of the output power. Therefore, switching-mode 

amplifiers are commonly employed for CW operation or constant-envelope modulation 

schemes that require less linearity. In order to improve the linearity of switching-mode 

amplifiers, several system approaches have been proposed like EER and LINC, which are 

described in Section 2.1.2. 

2.2.2.1 Class-D 

Class-D uses two transistors that are usually driven in push-pull, so that they are 

alternatively switched on and off. By this two-pole switching operation of transistors, the 

drain voltage (in voltage-mode Class-D) or drain current (in current-mode Class-D) is shaped 

to a rectangular waveform [4]. The output circuitry contains a bandpass filter that generates 

sinusoidal output from the rectangular waveform of the drain terminal. Ideal drain voltage 

and current waveforms are shown in Figure 2.10. Since there is no overlapping between drain 

voltage and current waveforms, it can achieve 100 % drain efficiency. However, practical 

Class-D amplifiers suffer from discharge loss generated in transistor output capacitance. 

When the switch (that is, the transistor) is turned on, the charge stored in the transistor output 

capacitance is discharged instantaneously through the on-switch. The amount of power loss 

involved with this discharge [4] is calculated as 
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fVCP 2
dcoutloss 2=  , (2.11) 

where Cout, Vdc, and f are transistor output capacitance, DC supply voltage, and operating 

frequency, respectively. As can be seen in equation (2.11), the power loss increases with high 

supply voltage and high frequency. This is why the Class-D is rarely used for the power 

amplifiers at high frequencies above VHF. 

 

Figure 2.10:  Drain voltage and current waveforms of ideal Class-D amplifiers. 

2.2.2.2 Class-E 

Class-E is one of the most popular switching-mode operations due to its high efficiency 

characteristic and very simple circuitry as well. Usually, a single transistor is employed as a 

switch and single-ended output is taken, although push-pull operation is also possible [23]. 

The basic schematic of the Class-E amplifier is shown in Figure 2.11. The transistor operates 

as an ideal switch, but practically it includes small on-resistance and output capacitance 

(represented by Cout). The externally connected shunt capacitance Cp is charged and 

discharged along with the transistor output capacitance following the RF cycle and shapes the 

drain voltage and current waveforms to fulfill the optimum Class-E operation. When the 

switch is off, the capacitors are charged and the drain voltage Vd rises and falls without drain 
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current Id. When the switch is on, the current rises smoothly with no voltage across the 

capacitors. The drain voltage and current waveforms for ideal Class-E operation are shown 

in Figure 2.12. By avoiding the overlapping of voltage and current, it can achieve 100 % 

drain efficiency ideally. The series resonant tank operates close to the input-drive frequency 

f0, so that the harmonics are filtered out and the output voltage Vo becomes sinusoidal. The 

important point regarding this resonant tank is that it should be designed in such a way that 

the resonant frequency is a little off from the exact input-drive frequency. Actually, a small 

amount of additional inductance (called detuning inductance Ldetuning) is required, which 

makes the resonant frequency a little lower than f0. That is, 

detuningres0 LLL +=  , (2.12) 

where Lres is the inductance to make a resonance exactly at f0 with C0: 

0res
0 2

1
CL

f
π

=  . (2.13) 

The detuning inductance makes the drain voltage fall to zero value with zero slope with 

respect to time, at the time when the switch is turned on. These conditions are called ZVS 

(zero voltage switching) and ZdVS (zero-voltage slope switching), which play significant 

roles in eliminating discharge loss from the shunt capacitors Cout and Cp.  

Assuming the optimum operating conditions that the voltage waveform satisfies the ZVS 

and ZdVS and the duty cycle of input drive is 0.5, the following design equations are 

derived [4]: 

L0
outp 2

1836.0
Rf

CC
π

=+  , (2.14) 

0

L
detuning 2

1525.1
f

RL
π

=  , (2.15) 



 
 
 

                     26 
 
 
 
 
where RL is load resistance and f0 is operating frequency. In equation (2.14), the required 

shunt capacitance decreases with the operating frequency. Thus, at high-frequency operation, 

the transistor output capacitance Cout can be, by itself, large enough to satisfy equation (2.14), 

and the external shunt capacitance Cp is not usually connected [32]. 

Cp

VoVd

Id
Cout

L0

RL

VDD

C0

RF in
at f0

Resonant tank at f0-

 

Figure 2.11:  Basic schematic of a Class-E amplifier. 

 

 

Figure 2.12:  Drain voltage and current waveforms of ideal Class-E amplifiers. 
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2.2.2.3 Class-F 

Class-F is basically derived from Class-B with multiple harmonic resonant filters. The 

sinusoidal voltage waveform of Class-B is shaped to a rectangular one for Class-F by 

appropriate harmonic tuning: open circuit at all odd harmonics and short circuit at all even 

harmonics. Figure 2.13 shows the ideal drain voltage and current waveforms of Class-F 

amplifiers, where no overlapping between the two suggests an ideal 100 % drain efficiency. 

The ideal Class-F amplifier is implemented conceptually with bandstop filters, as in Figure 

2.14. Obviously, the output circuitry of Class-F amplifiers is very complicated in order to 

obtain the ideal voltage and current waveforms. However, in practical Class-F amplifiers, 

harmonic filters are usually employed only up to third harmonic although the efficiency is a 

little degraded. Class-F-1 (inverse Class-F) is the dual mode of Class-F operation. By 

terminating open circuit at even harmonics and short circuit at odd harmonics, the voltage 

and current waveforms are swapped from those of Class-F, so that half-sinusoidal voltage and 

rectangular current waveforms are produced. 

 

Figure 2.13:  Drain voltage and current waveforms of ideal Class-F amplifiers. 
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Figure 2.14:  Conceptual schematic of a Class-F amplifier. 

2.2.2.4 Class-E/F 

Class-E/F is a mixed operating mode between Class-E and Class-F-1, proposed by Kee, 

et al. [1]. The basic idea is that by combining the two operating modes for output harmonic 

terminations, the Class-E/F takes advantages from both modes to achieve high output power 

and efficiency. According to how the Class-E and Class-F-1 tunings are employed at each 

harmonic frequency, several family members of Class-E/F are developed: For example, 

Class-E/F2, Class-E/F2,3,4, Class-E/Fodd, Class-E/Fodd,2, etc. Class-E/Fx represents the mixed 

operating mode, such that Class-F-1 termination is employed at x harmonics while Class-E 

termination is used at the other harmonics [33].  

Nonetheless, the most commonly used member in practical amplifiers is the Class-E/Fodd 

due to its simplicity of implementation. Figure 2.15 shows the basic schematic of a 

Class-E/Fodd-tuned amplifier. It consists of a pair of transistors, an output parallel resonator at 

operating frequency, detuning inductance Ldetuning, and load resistance RL. The two transistors 

are driven by strong 180° out-of-phase input signals, and operate as switches with output 

capacitance in parallel. Due to the push-pull operation, the center line of the pair becomes 

virtual ground at the fundamental and odd harmonics, and virtual open at the even harmonics. 

Thus, each drain terminal will be shorted to ground at odd harmonics as in Class-F-1, and be 
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terminated by shunt capacitance Cs at even harmonics as in Class-E. The detuning inductance 

is required for the ZVS condition, and can be calculated as a function of Cs as follows [33]:  

( ) s
2detuning 2

1
Cf

L
π

=  . (2.16) 

The ideal waveforms of Class-E/Fodd are shown in Figure 2.16. The voltage is sinusoidal 

while the current is superposition of rectangular and sinusoidal components. The advantage 

of Class-E/Fodd over Class-F-1 is the fairly simple circuitry of Figure 2.15, while it can 

achieve the waveforms like the ideal Class-F-1. The lower peak voltage, lower rms current, 

and higher shunt capacitance tolerance are other benefits, compared to the Class-E operating 

mode. In some cases, additional even harmonic tuning is presented to Class-E/Fodd to achieve 

higher efficiency. One of the examples is Class-E/Fodd,2 shown in [34]. 

 

Figure 2.15:  Basic schematic of a Class-E/Fodd amplifier. 
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Figure 2.16:  Drain voltage and current waveforms of ideal Class-E/Fodd amplifiers. 

2.3 Stability  
Although instabilities are encountered in all RF and microwave circuits, power 

amplifiers, especially switching-mode power amplifiers, have great potential to exhibit one or 

several types of instabilities simultaneously. In addition to the linear feedback mechanism 

that makes an oscillation, the strong nonlinearity of power amplifiers pushes them into an 

unstable region. The large RF signal periodically stimulates nonlinear circuit elements at the 

operating frequency, in such a way that the time-varying nonlinear elements exhibit negative 

resistance and induce those instabilities. These parametric instabilities tend to occur more 

commonly in switching-mode amplifiers, due to the extremely large input-drive level 

required for saturated operation of transistors. Actually, several instabilities have been 

observed experimentally during measurements of many switching-mode amplifiers 

developed at Caltech, some of which have been reported in [35]. Interestingly, the 

instabilities are observed only under a certain set of operating conditions, which include 

input-drive power, frequency, bias voltages, and temperature. For example, the 

switching-mode amplifier in [35] showed oscillations when driven by input power below a 
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certain level, while they showed decent amplifier performance without any instability for 

sufficiently high input-drive power. 

2.3.1 Types of Instabilities 

The types of instability commonly encountered in power amplifiers or switching-mode 

amplifiers are illustrated in Figure 2.17. 

Figure 2.17 (a) shows sub-harmonic oscillation (particularly, frequency division by two), 

in which the oscillation frequency is related with the input-drive frequency fin due to 

frequency division. The power amplifiers that have a binary power combining structure give 

much possibility to show sub-harmonic oscillation at half of the input-drive frequency, 

coming from their odd-mode oscillation characteristic [36]. However, sub-harmonic 

oscillation at the frequency divided by N larger than two is also observed at several 

switching-mode amplifiers.  

The spurious oscillation at frequency fosc not related with the input-drive frequency, as 

shown in Figure 2.17 (b), is the most commonly observed instability. Usually, the oscillation 

frequency is lower than the input-drive frequency and intermodulation products between the 

two are presented in the spectrum, which drives the amplifiers into a quasi-periodic regime. 

This type of oscillation originates from a Hopf bifurcation in which a pair of 

complex-conjugate poles crosses the imaginary axis into the right-hand side of the complex 

plane [37].  

The chaos shown in Figure 2.17 (c) gives a continuous spectrum in the frequency 

domain, so that it looks like the noise floor of the measurement is arbitrarily boosted for a 

continuous frequency interval. However, chaos is not a random noise process but a 

deterministic phenomenon extremely sensitive to its initial condition. There are many routes 

that lead to chaos [38], including a quasi-periodic route with more than three 

non-commensurate frequency bases, a period-doubling route with continuous flip 
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bifurcations, and a torus-doubling route with frequency division of two non-commensurate 

frequency components. Although chaos has applications in communication systems [39], it is 

usually considered an undesirable instability in power amplifiers. Due to its continuous 

characteristic of spectrum, time-domain techniques are employed to predict the chaos in 

simulation rather than frequency-domain ones. However, harmonic balance can be efficiently 

employed to analyze the routes to chaos, i.e., the preceding stages just before evolving into 

chaos. 

Noisy precursors are also observed often in many power amplifiers. They are different 

from oscillations, in that the circuit still operates in a stable periodic regime and no distinct 

spectral line is shown in the spectrum other than the input frequency and its harmonics. 

Actually, the noisy precursors present spectral bumps with some frequency interval as shown 

in Figure 2.17 (d), which are caused by noise amplification with reduced stability margin. 

When complex-conjugate poles in the left-hand side of the complex plane are located very 

closely to the imaginary axis, these noisy bumps are shown centered at the frequency of the 

poles and the intermodulated frequencies with the input signal. As the poles approach the 

imaginary axis by varying one or more circuit parameters, the bumps become narrower in 

bandwidth and higher in power [40]. In most cases, these bumps are eventually changed to 

oscillation spectral lines at a single frequency when the poles cross the imaginary axis into 

the right-hand side.  

Other types of instabilities observed commonly in power amplifiers are hysteresis and 

jumps of solutions. Those two are related to each other because one is a usual cause for the 

other. Figure 2.17 (e) shows hysteresis and jumps presented in power-transfer characteristics 

of amplifiers. Two turning points, T1 and T2, induced by the D-type bifurcation make an 

unstable section in the amplifier periodic solution curve between the two points. Then, two 

jumps, J1 and J2, are observed when the input power is increased and decreased, respectively. 

The hysteresis and jumps are also observed in the oscillatory solutions as well as the 

amplifier solutions. 
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Figure 2.17: Types of instability commonly observed in power amplifiers. (a) Sub-
harmonic oscillation. (b) Spurious oscillation at frequency unrelated with the 
input drive. (c) Chaos. (d) Noisy precursors. (e) Hysteresis and jump of 
solutions. 
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2.3.2 Stability Analysis Techniques 

Instabilities in power amplifiers degrade amplifier performance such as output power, 

gain, and efficiency. They also give rise to unwanted interference with adjacent channels for 

communications. Moreover, active devices may be destroyed during the operation, due to 

excessive high voltage and current raised by suddenly provoked instabilities. Hence, these 

instabilities should be analyzed and eventually eliminated in simulation at the design stage or 

at the modification stage of the circuit after the first testing. The ways to analyze instabilities 

of RF and microwave circuits are categorized into linear and nonlinear techniques.  

The linear techniques include the calculation of k- and Δ-factors of two-port represented 

networks. The analysis using the stability circles is also in the same category. These 

techniques are very powerful and simple to apply to any linear circuits. However, due to the 

fact that they are based on linear S-parameters, it is difficult to extensively apply to nonlinear 

circuits such as power amplifiers.  

The nonlinear techniques are based on bifurcation detection of large-signal steady-state 

solution of the nonlinear circuits. The large-signal periodic solution can be efficiently 

obtained by harmonic balance simulation. In order to find the bifurcation of the large-signal 

solution and also to determine its stability, pole-zero identification and auxiliary generator are 

employed along with harmonic balance simulation. In Chapter 4, these stability analysis 

techniques will be described more in detail. 
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Chapter 3  

Switching-Mode Power Amplifiers for 

ISM Applications 
 

The high-efficiency power amplifier is a key component for various applications in the 

HF and VHF bands. The applications include plasma generation, RF heating, semiconductor 

processing, and medical imaging at industrial, scientific, and medical (ISM) frequencies such 

as 13.56, 27.12, and 40.68 MHz [41], [42]. FM transmitters for broadcasting also need 

high-efficiency power amplifiers. The output power level required for these applications is 

typically 1−50 kW. Solid-state power amplifiers are now replacing vacuum-tube power 

amplifiers up to the 5-kW level as the transistor technology progresses. However, it is hard to 

achieve such an output power from a single transistor, and thus the power amplifier needs an 

efficient power-combining structure. 

The distributed active transformer (DAT) has been proposed as an efficient way to 

combine the output power from several push-pull amplifiers by connecting the secondary 

circuit of magnetically coupled 1:1 transformers in series [2]. It also provides each transistor 

with the output impedance transformation in order to boost the available power from the 

given device. The DAT was originally demonstrated for a CMOS integrated power amplifier. 

The power amplifier fabricated by a 0.35-μm CMOS process combined eight transistors using 

the DAT, and achieved 1.9 W output power with 41 % power-added efficiency at 

2.4 GHz [43].  
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For ISM applications, the DAT is applied to a discrete amplifier with kilowatt-level 

output power, and is implemented by lumped elements. Several push-pull pairs of vertically 

double-diffused MOS (VDMOS), independently operated in Class-E/Fodd mode, are 

combined by the DAT. The DAT is built of two stacked copper slabs, which are thick enough 

to handle high current. The Class-E/F family has been proposed to take full advantage of both 

Class-E and Class-F-1 characteristics [1]. A 1.1-kW Class-E/F2,odd power amplifier was 

demonstrated at 7 MHz with a drain efficiency of 85 % [44]. 

 In this chapter, two Class-E/Fodd power amplifiers using the DAT structure are presented 

at 29 MHz. One exhibits an output power of 1.5 kW with a drain efficiency of 85 % from two 

push-pull pairs. The other combines four push-pull pairs and achieves 2.7 kW output power 

with 79 % drain efficiency. In order to simulate the amplifiers in harmonic balance simulator, 

the transistor is modeled based on an ideal switch with on-resistance and output capacitance. 

The DAT of the stacked copper slabs is also modeled by a magnetically coupled equivalent 

circuit. The parameters of the equivalent circuit are extracted as functions of the slab length 

after a series of measurements and curve fitting, and are optimized for satisfying the zero 

voltage switching (ZVS) condition. 

3.1 Class-E/Fodd Operation with Distributed Active 
Transformer  

Due to the distributed nature of the DAT and the symmetry formed between two 

adjacent pairs, the complete amplifier can be divided into several independent push-pull 

amplifiers for analysis convenience. The equivalent circuit of a single push-pull amplifier is 

shown in Figure 3.1 with a transistor modeled as an ideal switch in parallel with a capacitance 

Cs. Lm and Ll1 represent a magnetizing and a leakage inductance of the output transformer 

with a finite coupling coefficient k, respectively. The leakage inductance of the secondary 

winding is absorbed in the detuning reactance XL. 
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We can extend the analysis of Kee, et al. [1] to Figure 3.1 in order to find the condition 

of the fundamental load admittance required for satisfying the ZVS condition: 
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Several important observations can be made about the load condition. Both GL and BL are 

functions of different circuit parameters: the leakage inductance, the capacitance in the 

resonant tank, as well as the transistor output capacitance. In a Class-E/Fodd amplifier with an 

ideal output transformer, however, BL is a function of a single parameter, that is, the transistor 

output capacitance [1]. The load susceptance in equation (3.1) compensates not only for the 

transistor output capacitance, but also for a deviated reactance in the resonant tank. The 

deviation from the ideal parallel resonance at the operating frequency ω0 is caused by the 

leakage inductance. The required load susceptance may even be capacitive depending on the 

coupling coefficient of the transformer, while it is always inductive in an amplifier with an 

ideal transformer. 

The fact that the load resistance should be positive in any case imposes a condition on 

the operating frequency as follows:  

   
1rs

0 )(
1

lLCC +
<ω  . (3.2) 

From equation (3.2), it is clear that the coupling coefficient of the output transformer should 

be maximized in order to increase the operating frequency for a given active device and a 

given Q-factor of the resonant tank. Note that equation (3.1) will be equal to the load 

condition for the ZVS in [1] and no frequency limitation will be presented by equation (3.2), 

if the transformer is ideal (k = 1). 
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Figure 3.1: A Class-E/Fodd push-pull amplifier with a non-ideal output transformer. 

3.2 Discrete Implementation of DAT  
The DAT is implemented by two copper slabs with a cross section of 4.8 mm × 1.3 mm, 

stacked up together 10 mm above the ground plane as shown in Figure 3.2. The copper slabs 

are isolated from each other by an enamel coating on the surface. The lower slab behaves as 

the primary circuit of a 1:1 transformer. The two ends of the slab are connected to each drain 

of the transistors in a push-pull pair. The upper slabs of four push-pull pairs, serving as the 

secondary circuits, are connected in series. They present a 1:2N step-down impedance 

transformation of load impedance to each transistor, where N is the number of push-pull pairs 

combined. The DAT also combines the output power of 2N transistors by adding up AC 

voltages, magnetically coupled to the secondary circuits. 

Since the output transformer gives the required inductances for resonance and detuning 

as well, it is imperative to model the transformer accurately for simulation. Figure 3.3 shows 

the equivalent circuit model of a unit section of the DAT, which corresponds to the output 

slab transformer of one push-pull pair in Figure 3.1. 4-port S-parameter measurements were 
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performed for slab transformers of different lengths with a network analyzer. The circuit 

parameters are then extracted as functions of the slab length by fitting the measured 

S-parameters to the simulated ones, shown in Figure 3.4. Note that only six S-parameters 

need to be fitted due to the reciprocity and the symmetry of the slab transformer. As 

expected, all circuit parameters are linearly proportional to the length except the coupling 

coefficient, which showed a constant value of 0.84. The extracted parameters are listed in 

Table 3.1. The parasitic capacitances between the slab and the ground are negligibly small. It 

also should be noted that the Q-factor of the copper slab is 600, so that the ohmic loss and the 

resulting heat problem can be drastically reduced, especially under the condition of the high 

current flow in this power amplifier. 

 

 

Figure 3.2: Structure of the slab transformer: a section of the DAT. 

 

Figure 3.3: 4-port equivalent circuit model of the slab transformer. 
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Figure 3.4: Measured (symbol) and simulated (line) S-parameters of the slab transformer: 
slab length of 7.5 cm, 50−200 MHz. 

Table 3.1: Extracted result of slab transformer parameters 

Parameters Extracted result 

Lu 4.7 nH / cm 

Ll 4.3 nH / cm 

Clu 1.7 pF / cm 

Ru, Rl ~ 1.3 mΩ / cm 

 

3.3 1.5-kW, 29-MHz Class-E/Fodd Amplifier with a 
DAT  

A high-efficiency power amplifier is developed, based on the two important operating 

concepts, i.e., Class-E/Fodd and DAT. The complete schematic of the amplifier is shown 

in Figure 3.5. Two push-pull pairs are combined by the DAT to achieve 1.5 kW at 29 MHz. 

Each pair is tuned to Class-E/Fodd mode by output resonant capacitance Cres and 

magnetization inductance of primary circuit of the DAT. Due to the double-differential 
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driving characteristics [43], any two adjacent transistors including M1 and M4 are driven 180° 

out-of-phase. The input network consists of input matching circuitry and input-power 

distribution network. A 3:1 transformer and LC matching components are employed for the 

input matching. It should be noted that the transformer also serves as an input balun by 

grounding the center tap of the secondary circuit, so that a balanced signal is produced to 

drive push-pull pairs. The input-power distribution network is physical traces that distribute 

and deliver the balanced signal to each of four gate terminals. In order to correctly simulate 

and build the amplifier, the proper choice of active device and input-power distribution 

network along with their accurate modeling is essential. 

Ω

 

Figure 3.5: Complete schematic of a 1.5-kW, 29-MHz power amplifier. Desired voltage 
waveforms at gates and drains are represented. 



 
 
 

                     42 
 
 
 
 
3.3.1 Active Device 

The amplifier employs the ARF473 VDMOS from Advanced Power Technology. It is a 

pair of matched power transistors in a common source configuration with 500 V of maximum 

drain-to-source voltage and 10 A of continuous drain current for each transistor [45]. To 

simulate the amplifier performance in harmonic balance, a nonlinear model of the transistor is 

indispensable. Due to lack of accuracy of vendor-provided model, the transistor has to be 

measured and modeled in-house. Fortunately, the input characteristic of the transistor is not 

required to model for predicting output power and drain efficiency. Thus the transistor is 

simply modeled by a switch with on-resistance Ron in series and nonlinear output capacitance 

Cout in parallel, as shown in Figure 3.6. Rd and Ld represent the transistor package parasitics 

that play important roles in simulation of high-frequency transient ringing [46].  

The output capacitance and parasitics are extracted from measurements of the transistor 

by a HP 4194A impedance analyzer. The output impedance is measured for 1−100 MHz 

while gate bias is applied below the threshold voltage. Then, the transistor parameters are 

optimized such that the simulated impedance curve is fitted to the measured one. The 

extracted output capacitance is shown in Figure 3.7 as a function of drain bias. The nonlinear 

capacitance is implemented by a reverse-biased diode in the simulator. The parasitics are bias 

independent and show 0.4 Ω of Rd and 3 nH of Ld.  

The on-resistance is extracted from DC I-V characteristics of the transistor. The inverse 

of the slope of I-V curves in the triode region is considered as sum of its on-resistance and 

parasitic resistance, since the operating point is located in the triode region when the 

transistor is on. Figure 3.8 shows the extracted on-resistance as a function of gate bias. When 

gate bias is very high, that is, when the transistor is completely turned on, the on-resistance is 

around 0.45 Ω. 
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Figure 3.6: Simple switch model of the transistor used for amplifier simulation. 

 

 

Figure 3.7: Extracted output capacitance of ARF 473 VDMOS. 
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Figure 3.8: Extracted on-resistance of ARF 473 VDMOS. 

3.3.2 Input-power Distribution Network 

In order to fulfill Class-E/Fodd tuning at the output, not only two transistors in each 

push-pull pair, but also the two push-pull pairs each other should be driven by 180° 

out-of-phase signals. Hence it is imperative to generate a well-balanced out-of-phase signal 

from single-ended RF input and to distribute the signal to each gate terminal without 

perturbing the balance, that is, the 180° out-of-phase property. In particular, design of good 

input-power distribution network is very critical to achieve high drain efficiency. 

Unfortunately, the design is challenging because several physically long traces and their 

inter-connection are much more likely to break the balance of the drive signal.  

In this amplifier, a multi-layered board is used to boost the balance of two input signals, 

180° out of phase to each other. Each input signal is distributed to transistors through 

different layers as shown in Figure 3.9. Single-ended RF input is converted to balanced 

signals by the input balun. One signal is distributed to two gate terminals through the top 

layer indicated by blue, while the other through the middle layer indicated by cyan. Multi-
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layered distribution traces eliminate the need to use air bridges that would be necessary to 

connect traces in a single-layered board and perturb the balance of signals. The multi-layered 

traces are simulated and optimized in an EM simulator, Sonnet [47], which gives a multi-port 

S-parameter of the input-power distribution network. This simulated S-parameter is plugged 

into the schematic of the amplifier for harmonic balance simulation. Figure 3.10 shows the 

simulated voltage waveforms at four gate terminals. It can be seen that all drive signals of the 

four transistors are well-balanced relative to each other, 180° out of phase. 

 

 

Figure 3.9: Input-power distribution network in a multi-layered board. Blue and cyan 
traces are on the top and middle layers, respectively. 
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Figure 3.10: Simulated voltage waveforms at each of four gate terminals fed by 
input-power distribution network. 

3.3.3 Performance Simulation 

With accurate models of the DAT, transistor, and input-power distribution network 

together, the amplifier is simulated by harmonic balance. From the simulation, it is found that 

the output power and drain efficiency are strongly dependent on the parameters of the output 

resonant tank, particularly the magnetization inductance of the output transformer. Figure 

3.11 shows the simulated output power and drain efficiency versus the copper slab length of 

the DAT. There exists an optimum length to achieve the highest drain efficiency, while the 

output power keeps a similar value around the length. For a length of 9.4 cm, the output 

power of 1.6 kW is predicted with the maximum drain efficiency of 87 % when the drain bias 

voltage is 110 V. It should be noted that the optimum length gives 40 nH of inductance to the 

resonant tank, which resonates along with 560 pF capacitance at the frequency higher than 

the operating frequency of 29 MHz. This mistuning of the resonator comes from the 

excessive susceptance component in equation (3.1) that is required to fulfill the ZVS 

condition.  

The simulated voltage and current waveforms of a switch with 1.6 kW are shown in 

Figure 3.12. It can be easily seen that the ZVS condition is well-fulfilled. The high-frequency 
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ringing at VHF that is superimposed on the waveforms results from a parasitic resonance 

with package inductance and resistance [46]. However, it has small influence on the drain 

efficiency because the conduction angle of the two waveforms does not overlap each other. 

Out of the total power loss of 13 %, the loss from transistors is the largest at 7.5 %, 

followed by the loss from capacitors in the resonant tank and the DAT, which is 3.3 % and 

1.7 %, respectively. 

 

Figure 3.11:  Simulated output power and drain efficiency versus slab length of the DAT. 
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Figure 3.12:  Simulated switch voltage and current waveforms for 1.6 kW output power. 
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3.3.4 Implementation of the Amplifier 

The amplifier is constructed on an FR-4 circuit board, as shown in Figure 3.13. The 

transistor packages are mounted directly on a water-cooled heatsink. The 3:1 input 

transformer is built from a binocular powdered-iron core with three turns of wire. For the 

capacitor Cres in the resonant tank, an ATC 100E porcelain capacitor with a maximum 

working voltage of 2500 V and Q of 450 at 29 MHz is used. Since the DAT presents a 

balanced RF output, an external 1:1 output balun, B1-5K Plus from Radioworks, is employed 

for driving a conventional unbalanced load. The balun has a bandwidth of 2−50 MHz, a loss 

of 0.3 dB at 29 MHz, and a power rating of 5 kW at 3.5 MHz. Total circuit size is 

15.2 cm × 12.2 cm. 

 

Figure 3.13:  Photo of the 1.5-kW, 29-MHz power amplifier. 
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3.3.5 Experimental Results 

Due to its huge output power level, special attention should be taken to build the 

measurement setup of the power amplifier. The complete block diagram of the measurement 

setup is shown in Figure 3.14. The RF input drive is applied by a Yaesu FT-840 transceiver. 

The input and output power of the amplifier is measured by Bird 4022 and 4024 power 

sensors respectively, which are connected to Bird 4421 power meters. Especially, the Bird 

4024 power sensor can measure power up to 10 kW for 1.5−32 MHz. The output power is 

attenuated by a Bird 8329 oil-filled 30-dB attenuator and a JFW 20-dB attenuator in cascade. 

Then, the output spectrum is taken using an Agilent E4407B spectrum analyzer. The drain 

voltage is measured by a digital multimeter while a Hall-effect device is used to measure the 

drain current higher than 10 A. A 4-channel digital oscilloscope, Tektronix TDS3014B, is 

connected to each of the four drain terminals to monitor the drain voltage waveforms. All 

measurement instruments are controlled by National Instrument LabVIEW, so that all 

measurements are taken almost simultaneously with minimum time delay. It helps to 

minimize a possible thermal effect on the measured results of amplifier performance. The 

heatsink of the amplifier has meandering copper tubes through which water flows to extract 

heat from the amplifier. An external water pump is used for forced water flowing. The DC 

power supply is built by connecting several 12-V sealed lead-acid batteries in series, which 

turns out to be a decent DC source with low source impedance and low noise. Figure 3.15 

shows a photo of the measurement setup. 
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Figure 3.14:  Block diagram of measurement setup for high-power amplifiers. 

 

Figure 3.15:  Photo of the measurement setup. 
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The measured drain efficiency and gain versus the output power is shown in Figure 3.16. 

The output power is varied by changing the drain bias voltage. The gain increases with the 

output power, because the input-drive power required for switching operation of transistors is 

not varied much with the drain bias. The drain efficiency also increases and is saturated in 

high output power. At a drain bias of 107 V, the maximum output power of 1.5 kW is 

achieved with 85 % drain efficiency and 18 dB gain. The input SWR is 1.6. Note that this 

measurement was taken when the input-drive power was large enough to make the transistors 

turned on and off completely, so that the desired Class-E/Fodd operation was ensured. With 

input-drive power below the optimum value, the amplifier showed interesting instabilities, 

which will be presented in Chapter 5. 

The measured output spectrum for 1.5 kW is shown in Figure 3.17 (a). All even 

harmonics are more suppressed than odd harmonics due to the push-pull characteristic of the 

amplifier. The highest harmonic is the ninth with 32 dB below the fundamental. The peaks of 

the seventh and ninth harmonics result from the transient ringing exhibited in drain voltage 

waveforms in Figure 3.12.  These peaks are also observed in the simulated spectrum, shown 

in Figure 3.17 (b). The accurate prediction of the transient ringing results from the 

appropriate modeling of transistor parasitics. 

Figure 3.18 shows the measured voltage waveforms at two drain terminals in a push-pull 

pair. The two waveforms exhibit half-sinusoidal shapes and well-balanced characteristics, i.e., 

180° out-of-phase and similar amplitude relative to each other. This confirms that the 

amplifier operates in Class-E/Fodd mode quite well, which leads to the high output power with 

high efficiency. The transient ringing can also be observed in the measured waveforms. 

Finally, thermal characteristics are investigated when the amplifier operates in 

CW (continuous wave) for a long time. A thermal image of the amplifier is taken after it is 

driven at 1.5 kW output power for 30 seconds, as shown in Figure 3.19. The maximum 

temperature is exhibited at ATC 100E porcelain capacitors with 140 °C. The temperature of 
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transistor packages is well-suppressed to 73 °C max, which indicates that the water-cooled 

heatsink works in high performance to extract the heat generated inside the packages. Note 

that most of power dissipation and resulting heat generation occur in the transistor packages; 

7.7 % out of 13 % total power dissipation in simulation. Also, a similar temperature between 

the two transistor packages verifies the balanced operation of each push-pull pair. 

 

Figure 3.16:  Measured gain and drain efficiency versus output power at 29 MHz. 
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Figure 3.17:  Output power spectrum for 1.5 kW. (a) Measured, (b) Simulated. 
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Figure 3.18: Measured drain voltage waveforms for 1.5 kW. Two drain terminals in the 
same push-pull pair are taken. 

 

Figure 3.19:  Thermal image of the amplifier driven at 1.5 kW for 30 seconds. 
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3.4 2.7-kW, 29-MHz Class-E/Fodd Amplifier with a 
DAT  

The design technique for the 1.5-kW power amplifier has been extended to obtain higher 

output power. For a 2.7-kW amplifier, four push-pull pairs are combined by a DAT instead of 

two. Each push-pull pair is independently tuned to Class-E/Fodd as in the 1.5-kW amplifier. 

Also, the same models of the DAT and the active device are used for simulation. The 

complete schematic is shown in Figure 3.20, and each component value is listed in Table 3.2. 

The input-power distribution network is modeled in a multi-layered board and simulated in 

Sonnet, as in Section 3.3.2.  

Ω

 

Figure 3.20:  Complete schematic of a 2.7-kW, 29-MHz power amplifier.  

Table 3.2: Component values of the power amplifier. 

Cres Lg C1 C2 L1, L2 

470 pF 48 nH 1770 pF 3300 pF 5 nH 
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3.4.1 Performance Simulation and Implementation 

In the simulation, the value of Cres and the length of the output slab transformer are 

optimized to provide not only a parallel resonant tank at the operating frequency, but also the 

appropriate susceptance given in equation (3.1) for the ZVS condition. The simulation 

predicts a drain efficiency of 83 % at an output power of 2.7 kW. This includes a transistor 

loss of 13 %, a capacitor loss of 2 %, and an inductor loss in the slab transformers and the RF 

chokes of 2 %. In addition, an external output balun from Radioworks has a measured loss of 

7 %, which means that the predicted overall drain efficiency will be 76 %. 

The amplifier is built on an FR-4 board that is mounted on a water-cooled heatsink. 

Figure 3.21 shows a photo of the amplifier. The DAT forms a square structure of copper slabs 

and combines four transistor packages. Signal traces for the input-power distribution network 

stretch in a star shape, from the center point of the DAT to each gate of the transistors. Other 

circuit components are same as those of the 1.5-kW amplifier. 

 

Figure 3.21:  Photo of the 2.7-kW, 29-MHz power amplifier. 
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3.4.2 Experimental Results 

The measured drain voltage waveforms of the eight transistors for 2.7 kW output power 

are shown in Figure 3.22, where the simulated waveforms of two transistors are 

superimposed. Good agreement can be seen between them. The visible good balance among 

the measured waveforms leads to high drain efficiency. The transient ringing observed in the 

waveforms results from the parasitic resonance among the transistor package inductance, the 

transistor output capacitance, and the capacitance in the resonant tank. 

Figure 3.23 shows the gain and the drain efficiency versus the output power at 29 MHz. 

The drain efficiency stays above 80 % up to 2 kW output power. The gain increases with the 

output power, as expected in a switching amplifier. At a drain voltage of 83 V, an output 

power of 2.7 kW is obtained with 79 % drain efficiency and 18 dB gain. This compares with 

76 % predicted drain efficiency. The input drive is 37 W and the input VSWR is 1.3. 

The measured output power and input VSWR at a drain voltage of 72 V are shown as a 

function of input frequency in Figure 3.24. The output power exhibits a peak at the center 

frequency of 29 MHz, and the VSWR is better than 2:1 over a bandwidth of 1 MHz. 

The measured output power spectrum of the amplifier for 2.7 kW is shown in Figure 

3.25. The largest harmonic is the fifth, at 34 dB below the fundamental. Even harmonics are 

much lower than odd harmonics due to the push-pull operation of the amplifier. 
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Figure 3.22: Measured (solid lines) drain voltage waveforms of eight transistors for 
2.7 kW output power. Simulated (dotted lines) waveforms of two transistors 
are superimposed. 

 

  

Figure 3.23:  Measured gain and drain efficiency versus output power at 29 MHz. 
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Figure 3.24: Measured output power and input VSWR vs. input frequency for a drain 
voltage of 72 V.  

 

 

Figure 3.25: Measured output power spectrum for 2.7 kW. The harmonics power level is 
normalized by the fundamental. 
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Chapter 4  

Nonlinear Stability Analysis Techniques  
 

This chapter presents stability analysis techniques that are effectively applicable to 

predict and analyze the instabilities of power amplifiers. Since most of the instabilities shown 

in power amplifiers come from parametric oscillations [48], the instabilities are not presented 

when the amplifiers are only DC biased without any input-drive signal. On the other hand, 

when the input signal drives amplifiers, the large-signal periodic solution triggers instabilities. 

For this reason, the linear stability analysis is not appropriate for power amplifiers and 

nonlinear techniques are required instead. In this chapter, the conventional linear techniques 

and their limitations are briefly described first, and then, the nonlinear techniques are 

introduced. 

4.1 Linear Stability Analysis Techniques  
The conventional and widely used way to examine the stability is to investigate k- and 

Δ-factors of a two-port represented network of the circuit. The k-Δ factors are calculated 

as [49]: 

2112

22
22

2
11

2
1

SS
SS

k
Δ+−−

=  (4.1) 

and 

21122211 SSSS −=Δ  , (4.2) 

where Sij are linear S-parameters of the two-port network. Usually, the two-port network 

represents a transistor employed in the circuit. The unconditional stability, which means that 



 
 
 

                     60 
 
 
 
 
the circuit is stable no matter what passive terminations are presented in the input and output 

of the two-port network, is achieved when 

1>k  (4.3) 

and 

1<Δ  . (4.4) 

On the other hand, in the case of a conditionally stable condition, the stability circles are 

useful to determine the stable range of input and output termination impedances for the 

two-port network. The center and radius of the input and output stability circles are also 

calculated as functions of linear S-parameters of the two-port network [49]. 

Although simple and powerful for checking the stability only with S-parameters, these 

linear stability analysis techniques have limitations when applied to nonlinear circuits like 

power amplifiers. Since the techniques are based on linear S-parameters given at a single bias 

condition, only the instabilities raised from the DC solution are detected. In other words, the 

linear techniques are unable to accurately predict the instabilities that originate from the 

large-signal periodic solution at input-drive frequency. Actually, when the circuit is pumped 

by a strong RF signal, the linear S-parameters at one bias point make no sense anymore in 

stability analysis. The RF signal will change the parameters of nonlinear circuit components, 

so that the S-parameters will also be varied periodically at the RF frequency. Hence, even 

with the conditions of (4.3) and (4.4) satisfied at a given bias point, power amplifiers may 

have instabilities in the large-signal periodic regime.  

One might ask the question: What if the linear techniques are applied to multiple bias 

conditions that cover the whole range of the RF large-signal solution? Is this approach 

enough to check the stability of power amplifiers, taking into account the large pumping 

signal? Unfortunately, it is not true because of the parametric oscillation that is often shown 

in power amplifiers. The nonlinear reactance (mostly nonlinear capacitance) pumped by the 

large RF signal, exhibits negative resistance that gives rise to oscillation [48]. This parametric 
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oscillation is not predicted by the linear analysis techniques, because its analysis requires the 

inclusion of nonlinearity of the reactance components. 

4.2 Nonlinear Stability Analysis Techniques  
In order to overcome the limitation of linear techniques when applying to the stability 

analysis of power amplifiers, this section introduces nonlinear techniques that analyze the 

stability of the large-signal periodic solution obtained from harmonic balance simulation. 

Harmonic balance is an efficient method to approach the steady-state solution of nonlinear 

RF and microwave circuits in the frequency domain. Since state variables of the simulated 

circuit are expressed by the Fourier series, all of the frequency bases involved with the circuit 

operation must be pre-assigned before the simulation. The problem of harmonic balance, 

however, is that it may lead to a coexisting unstable solution to which the circuit never 

evolves. For example, when an amplifier has an oscillation at a different frequency than the 

input-drive, harmonic balance is unable to simulate the oscillating solution because the 

frequency basis of the oscillation is unknown and cannot be pre-assigned during the 

simulation. The solution obtained by harmonic balance will be an amplifier periodic solution 

without an oscillation, which is an unstable solution coexisting with the stable oscillating 

solution. Therefore, complementary techniques are required to check the stability of 

harmonic balance solutions and to obtain the stable one.  

The important concept for the stability analysis is bifurcation that is defined as 

qualitative stability change when one or more circuit parameters are varied. At the 

bifurcations, a real pole or a pair of complex-conjugate poles of the system transfer function 

crosses the imaginary axis of the complex plane [37], [38]. There are plenty of types of 

bifurcation, but three bifurcations commonly observed in power amplifiers are shown in 

Figure 4.1: Hopf bifurcation, flip bifurcation, and D-type bifurcation. In Hopf 

bifurcation <Figure 4.1 (a)>, a conjugate pole pair crosses the imaginary axis at the frequency 

fa that is not related with the input frequency fin. So, the oscillation at fa and its 
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intermodulation with fin are presented in the circuit, as in Figure 2.17 (b). In flip 

bifurcation <Figure 4.1 (b)>, a conjugate pole pair crosses the axis at fin/2 and frequency 

division by two occurs, as in Figure 2.17 (a). D-type bifurcation <Figure 4.1 (c)> has a real 

pole crossing the axis, so that no frequency variation is involved in this type. Instead, 

hysteresis and jump of solutions are shown in the circuit like Figure 2.17 (e). The nonlinear 

stability analyses in this section are based on detection of these bifurcations from the 

large-signal periodic solution of power amplifiers. 

 

 

(a)           (b)          (c) 

Figure 4.1: Three common types of bifurcation. (a) Hopf bifurcation. (b) Flip bifurcation. 
(c) D-type bifurcation. 

4.2.1 Pole-Zero Identification 

The first technique used for the bifurcation detection is pole-zero identification. The 

system poles and zeros are identified by fitting the single-input, single-output transfer 

function of the circuit, which is obtained from the large-signal periodic solution. When a 

series of identifications is carried out with some circuit parameters varied, it is possible not 

only to determine the stability of the solution at each of the parameter values, but also to find 

the value that leads to the bifurcation. Any circuit parameters can be chosen for the stability 
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analysis depending on designers’ interest: input-drive power, input-drive frequency, bias 

voltages, circuit element values, etc. Figure 4.2 shows a representative example of 

identification results for a power amplifier when input-drive power is varied. In this example, 

Hopf bifurcation occurs at Pin = 3 W, from which a spurious oscillation is presented at fosc in 

the output spectrum. 

The question that arises now is how to calculate the single-input, single-output transfer 

function from the large-signal periodic solution. In [50], it has been proven that the 

impedance function, calculated at any circuit node looking into the circuit, serves as the 

closed-loop transfer function to which pole-zero identification is performed. Note that this 

impedance function has to be calculated under the large-signal periodic solution presented in 

the circuit. Figure 4.3 shows how to obtain the impedance function in harmonic balance 

simulators. A small-signal current source is connected to a node of the nonlinear circuit 

driven by input signal at fin. Using the conversion-matrix approach [51], [52], the nonlinear 

components in the circuit are linearized around the large-signal harmonic balance solution at 

fin. Then, the impedance function defined by 

s

s
in )(

V
IZ =ω  (4.5) 

is calculated on the linearized circuit elements. Vs and Is are the voltage and current of the 

current source, respectively. By sweeping frequency fs of the current source, the impedance 

function is obtained as a function of frequency, which is used for pole-zero identification. In 

this dissertation work, STAN [53] has been employed for the identification process once the 

impedance function is at hand. Finally, it should be noted that judicious choice of the circuit 

node where the current source is connected is of importance to obtain a proper closed-loop 

transfer function. In principle, any node of the circuit provides a transfer function that has the 

same denominator, which means the same pole system [52], [54]. However, the circuit nodes 

close to active devices, such as gate or drain terminals, are sensitive to stability, so that they 

are the optimum nodes to probe the current source empirically. 
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Figure 4.2: Example of pole-zero identification result. 

 

Figure 4.3: Schematic for obtaining the impedance function calculated from a large-signal 
harmonic balance solution. 

4.2.2 Auxiliary Generator 

An auxiliary generator (AG) is another versatile method to analyze the stability of 

steady-state solutions obtained from harmonic balance simulation. As mentioned earlier, 
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harmonic balance has difficulty in predicting an oscillation at unknown frequency due to the 

failure to provide the frequency basis of the oscillation. So, harmonic balance simulation 

converges to an amplifier periodic solution that is unstable and so unobservable in real. The 

auxiliary generator is a technique to circumvent this difficulty by assigning the oscillation 

frequency and amplitude to harmonic balance simulation. The implementation of the 

auxiliary generator is shown in Figure 4.4. A nonlinear circuit is driven by an input signal of 

fin and Vin, and is assumed to give an oscillation at a different frequency. The auxiliary 

generator consists of an ideal voltage source and an ideal bandpass filter in series [38]. The 

amplitude VAG and frequency fAG of the voltage source correspond to those of the oscillation 

signal. The ideal bandpass filter passes only the oscillation signal at fAG and prevents the other 

signals from flowing into the original nonlinear circuit. By connecting this auxiliary generator 

to a circuit node in shunt, the frequency basis and amplitude of the oscillation can be loaded 

into harmonic balance simulation.  

 

Figure 4.4: Implementation of an auxiliary generator in harmonic balance simulation. A 
nonlinear circuit is driven by a large input signal of Vin and fin. 
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The next step is to determine the oscillation parameters, VAG and fAG, because they are 

still unknowns. Since the auxiliary generator is an artificial source added into the original 

circuit, it must not perturb the original harmonic balance solution that exists before 

connecting the auxiliary generator. This non-perturbation condition is fulfilled when the 

input admittance looking into the auxiliary generator is zero at fAG: 

0
AG

AG
AG ==

V
IY  , (4.6) 

where IAG is current flowing into the auxiliary generator. The equation (4.6) is solved in 

combination with harmonic balance equations of  

0)( =XH  , (4.7) 

where X  is a vector of state variables. Since equation (4.7) is a complete system of equations, 

which means the number of real variables is the same as that of real equations, two more real 

variables are needed to solve the simultaneous equations of (4.6) and (4.7). The auxiliary 

generator parameters, VAG and fAG, serve as those two real variables, and can be determined. 

Note that the phase of the ideal voltage source is not a variable in case of non-synchronized 

circuits [38]. In commercial harmonic balance simulators, the non-perturbation condition is 

solved by optimization or error-minimization, in combination with harmonic balance as the 

inner loop.  

Using an auxiliary generator, a bifurcation locus, which is a boundary of stability, can be 

traced in a plane of two circuit parameters η1 and η2. At a bifurcation point, an oscillation just 

starts up, so that the amplitude of oscillation VAG will be very small. Hence, the 

non-perturbation condition is solved in terms of fAG, η1, and η2, with fixed VAG = ε (tiny 

amplitude): 

0) , ,( 21AGAG =ηηfY  . (4.8) 
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Here, η1 and η2 can be any circuit parameters that designers are interested in: input-drive 

power, input-drive frequency, bias voltages, circuit elements, etc. By sweeping one of the 

variables in equation (4.8), a locus is traced in terms of the other two variables. When the 

locus has a turning point or an infinite-slope point, the sweep parameter is changed to another 

and the equation is solved for the other two as well [38], [55], so that a complete locus is 

traced. An illustrative bifurcation locus is shown in Figure 4.5. In this locus, there are two 

infinite-slope points in terms of η1 (marked by two dots), so the sweep parameter has to be 

changed to fAG or η2 at those points. 

An oscillating solution curve inside the unstable operating region of Figure 4.5 can also 

be traced through the auxiliary generator technique. The oscillating solution curve is 

necessary for investigating the oscillation characteristics such as oscillating mode or possible 

hysteresis phenomenon. In order to trace it, the non-perturbation is solved for VAG, fAG, and 

one circuit parameter η1: 

0) ,,( 1AGAGAG =ηfVY  . (4.9) 

Note that the oscillation amplitude VAG is not a tiny value any more and has to be considered 

as one of the variables in equation (4.9). A switching-parameter algorithm should also be 

applied when sweeping a parameter. Figure 4.6 shows an illustrative oscillating solution 

curve obtained by solving equation (4.9), in which two bifurcations, hysteresis, and resulting 

jumps of solution are presented. Oscillation is generated or extinguished at the values of η1 

corresponding to the two bifurcation points, when the circuit parameter is increased. However, 

when the circuit parameter is decreased, the value of η1 at which the oscillation is 

extinguished by Jump2 is lower than the bifurcation point, which suggests a hysteresis 

phenomenon. It is very important to figure out the oscillation characteristics in order to devise 

an efficient way to eliminate the oscillation. 
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Figure 4.5: Illustrative bifurcation locus traced by the auxiliary generator technique. 
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Figure 4.6: Illustrative oscillating solution curve traced by the auxiliary generator 
technique.  
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Chapter 5  

Global Stability Analysis and 

Stabilization of a Class-E/F Amplifier 

with a DAT  
 

During measurements of switching-mode amplifiers, several different operating 

behaviors can be observed. In particular, unstable behaviors are likely to be presented due to 

the strong nonlinearity, depending on input-drive level. Below a certain level of input power, 

the transistor is completely turned off and only leakage power from the input-drive source, 

passing through the feedforward capacitance of the transistor, is obtained at the output. For an 

intermediate input power range, the output power and drain efficiency of the amplifiers 

increase rapidly. However, it is also not unusual to observe spurious oscillations, sub-

harmonic oscillations, or even chaos when the amplifiers are not completely 

stable [4], [35], [56]. As the input drive increases further to a high power level, the amplifiers 

show a typical switching amplifier operation with high drain efficiency.  

In switching-mode amplifiers, the gain increase versus the input power for intermediate 

drive level, besides the negative resistance presented by nonlinear capacitances, may give rise 

to oscillations. These oscillations, observed from a certain level of input power, cannot be 

detected through a small-signal stability analysis of the circuit, such as the one based on the 

k-factor and the stability circles. Instead, a large-signal stability analysis must be performed 

through the techniques in [57], [58], [59] and (or) in Section 4.2. The qualitative changes in 
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the observed spectrum, when varying the input power, are the result of bifurcations, or 

qualitative stability variations [60], taking place in the circuit.   

 In previous work, large-signal analyses of the mechanisms leading single-ended or 

power-combining power amplifiers (PAs) to unstable behavior have been carried out 

[57], [58], [59], [61], [62]. As an example, the frequency division by 2, commonly observed 

in power-combining amplifiers, has been related to odd-mode instabilities, favored by the 

symmetries of the circuit topology. The analyzed amplifiers were operated in either Class-A 

or Class-AB. No similar study has ever been attempted in the case of switching amplifiers. 

To devise a proper stabilization procedure for these amplifiers, an understanding of the 

oscillation mechanism is necessary. This study will be carried out here through the use of 

accurate stability and bifurcation analysis tools presented in Section 4.2.  

In particular, stability of the 1.5-kW, 29-MHz Class-E/Fodd PA designed in Section 3.3 

will be analyzed in detail. The amplifier operates properly with high efficiency when the 

input-drive level is high enough to saturate the amplifier. However, when the input power is 

decreased, the amplifier shows interesting instabilities including self-oscillation, chaos, and 

hysteresis. In this chapter, the instabilities will be characterized with regard to the bias 

voltage and the input power. The instability contour, in terms of these two parameters, will be 

obtained through a bifurcation-detection technique. Then, a suitable stabilization network will 

be designed in order to globally suppress the instabilities and be verified experimentally. 

5.1 Instabilities of a Class-E/Fodd Power Amplifier 
The power amplifier in Section 3.3 shows various instabilities as a function of 

input-drive power. The variation of the measured output spectrum at a drain bias VDD = 72 V 

with different input-drive power is presented in Figure 5.1. As shown in Figure 5.1 (a), for 

low input power, only a leakage signal is obtained at the amplifier output. When the input 

power Pin reaches Pin_1 = 5.5 W, the output spectrum turns into the one in Figure 5.1 (b). The 
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continuity of this spectrum suggests chaotic behavior. Two peaks can be seen on each side of 

the fundamental line at the input frequency of 29 MHz. The distance from each peak to this 

fundamental line is about 4 MHz.  As the input power is further increased, this kind of 

spectrum continues to be observed until the input power reaches Pin_2 = 13.0 W. From this 

value on, the spectrum becomes the proper one, shown in Figure 5.1 (c). The amplifier 

behaves in the expected switching mode with high drain efficiency as in the measurements in 

Section 3.3.5. 

The reverse sense of input power variation has also been considered and we have found a 

hysteresis phenomenon. If the input power is reduced, the chaotic spectrum is observed until 

the value Pin_3 = 5.3 W is reached and a mixer-like spectrum is obtained. Thus chaos is 

observed for the input power below the value Pin_1 = 5.5 W, at which it had originated when 

increasing the power. As we decrease the power further from Pin_3 = 5.3 W, the amplifier 

behaves in a self-oscillating mixer regime. The input signal at 29 MHz (fin) mixes with a 

self-oscillation at about 4 MHz (fa) and gives the output power spectrum of Figure 5.2. It is 

interesting to note that the intermodulation products with even orders at the oscillation 

frequency, fin ± 2nfa (n: positive integer), are stronger than those with odd orders at this 

frequency, fin ± (2n–1)fa. This is attributed to the common-mode oscillation in each push-pull 

pair, which will be discussed in more detail in Section 5.3.3. If the input power continues to 

be reduced, the oscillation vanishes at the input power Pin_4 = 5.0 W.  

To summarize, as the input power increases, the amplifier undergoes bifurcations at the 

values Pin_1 = 5.5 W (jump to chaotic solution) and Pin_2 = 13.0 W (extinction of oscillation). 

When the input power decreases, the amplifier undergoes bifurcations at the values 

Pin_3 = 5.3 W (extinction of chaotic solution) and Pin_4 = 5.0 W (extinction of oscillation). 
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Figure 5.1: Variation of the output power spectrum when increasing the input power. (a) 
Pin = 4 W, showing leakage power at the input-drive frequency. (b) Pin = 10W, 
showing a chaotic spectrum. (c) Pin = 16.5 W, showing the proper spectrum in 
switching-mode operation. 
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Figure 5.2: Quasi-periodic output power spectrum observed near the bifurcation boundary 
when the input power is decreased. The circuit behaves in a self-oscillating 
mixer regime, at the input-drive frequency fin = 29 MHz and the oscillation 
frequency fa ≈ 4 MHz. 

5.2 Transistor Modeling 
One of the objectives of the work is to fully understand the different instability 

phenomena involving self-oscillation, chaos, and hysteresis that have been observed in the 

measurements. With this aim, stability and bifurcation analysis tools will be applied to the 

PA, in combination with harmonic balance. In order for the simulation tools to be successful, 

accurate models for the different linear and nonlinear elements will be necessary. Thus, 

special effort has been devoted to the transistor modeling.  

The active device employed in the amplifier is the ARF473 VDMOS from Advanced 

Power Technology [45]. The transistor is modeled primarily as a voltage-controlled current 

source with two nonlinear capacitances [63], [64]. One is the drain-to-source capacitance Cds. 

This is modeled as a reverse-biased diode, in which the parameters of the junction 

capacitance are fitted in order to match the measured capacitance as a function of the drain 
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bias voltage. The other is the feedback capacitance between the gate and the drain. The values 

of the feedback capacitance are extracted from the data sheet of the transistor, and a junction 

capacitance model is also used to fit the values. The gate-to-source capacitance is assumed to 

be constant as a first-order approximation [64]. The parasitic resistances and inductances at 

both gate and drain are also incorporated in the model as linear elements. 

5.3 Stability Analysis 
As shown in Section 5.1, different instability phenomena have been observed in the 

experimental characterization of the Class-E/Fodd amplifier, including self-oscillation, chaos, 

and hysteresis. Thus, the stability analysis of the amplifier will be a demanding one, 

involving different kinds of tools. The entire analysis procedure is presented in the following 

sub-sections. 

5.3.1 Local Stability Analysis 

The initial objective is to analyze the stability of the amplifier solution for several values 

of drain bias voltage and input power at which unstable behavior had been experimentally 

observed. Pole-zero identification presented in Section 4.2.1 is employed. This analysis is 

based on the linearization of the amplifier circuit about its large-signal steady-state regime at 

the input-drive frequency fin, calculated with harmonic balance and 15 harmonic components. 

To obtain this linearization, a small-signal current generator is connected to a particular 

circuit node. Due to the complex topology of the amplifier circuit, different observation nodes 

must be considered. The generator operates at a frequency f, non-rationally related to fin. The 

purpose of the generator is to enable the determination of the total impedance function Zin at 

the frequency f, at the observation node. This is obtained by taking the ratio of the node 

voltage to the injected current, using the conversion-matrix approach [50], [52]. In this way, a 
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single-input, single-output transfer function is calculated, to which pole-zero identification 

will later be applied.  

Initially, the operation conditions of VDD = 72 V and Pin = 10 W, for which instability 

had experimentally been observed, were considered. By sweeping f and representing the real 

and imaginary parts of the admittance function Yin = 1 / Zin, a critical resonance at 5.6 MHz 

was found at the drain terminal of any of the four transistors. Negative conductance and a 

zero crossing of the susceptance with positive slope were obtained, which are the start-up 

conditions for an oscillation at that frequency [65].  

For a more rigorous stability analysis, pole-zero identification was applied to Zin [50]. 

Since all circuit nodes share the same denominator of the characteristic equation [54], the 

pole values are independent of the particular location of the current generator. However, 

exact pole-zero cancellations may occur at some current-generator locations. Thus, the need 

for the initial consideration of different observation nodes arises. Applying this technique, a 

pair of conjugate poles are found on the right-hand side of the complex plane, for the 

considered conditions of VDD = 72 V and Pin = 10 W, confirming the unstable behavior 

(Figure 5.3). 

Now the variation of the input power will be considered. When increasing the input 

power from a very small value, the critical poles evolve as shown in Figure 5.3. The amplifier 

solution is initially stable, with the poles located on the left-hand side of the complex plane. 

When increasing the input power, the critical poles cross the imaginary axis at Pin_Hl = 6.1 W. 

From this power value, the amplifier periodic solution becomes unstable. At Pin_Hl, a Hopf 

bifurcation [37], [38] is obtained (the additional sub-index l means lower boundary). This 

Hopf bifurcation gives rise to the onset of an oscillation at the frequency 4.8 MHz, 

determined by the imaginary part of the poles. As the power continues to increase, the poles 

move further to the right, turn, and cross the imaginary axis again, to the left-hand side, at the 

input power value Pin_Hu = 13.5 W (the sub-index u means upper boundary). At this power 
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value, the oscillation vanishes. This corresponds to an inverse Hopf bifurcation, occurring at 

Pin_Hu. 

The above stability analysis provides the input-power range for which the amplifier 

periodic solution is unstable and thus unobservable. At Pin_Hl, an oscillation is generated, 

giving rise to a self-oscillating mixer regime. At Pin_Hu, the oscillation is extinguished and the 

amplifier recovers stability. Note that the stability analysis of the amplifier periodic solution 

does not enable, by itself, the prediction of the experimentally observed hysteresis 

phenomenon. Actually, in experiment, chaotic and mixer-like spectra had been found for the 

input power below Pin_Hl as well, which is not explained by the previous analysis. Hysteresis 

is associated with Hopf bifurcations of the subcritical type [38]. The determination of the 

bifurcation type requires higher-order derivatives of the circuit equations about the 

bifurcation point [66], which is beyond the scope of the paper. A different technique will be 

used in this work, to be shown in Section 5.3.4. 

5

π

l

 

Figure 5.3: Evolution of the critical poles with increasing input power for VDD = 72V. For 
simplicity, only poles in the upper half of the complex plane have been 
represented. The input power has been increased from 5 W to 15 W by 1-W 
steps. 
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5.3.2 Instability Contour 

The amplifier circuits generally have one or more parameters, susceptible to variation in 

the different applications. The designer will be interested in knowing the parameter ranges 

that give rise to unstable operation of the amplifier. In the case of this amplifier, the 

parameters are the drain bias voltage VDD and the input power Pin. Thus, the objective will be 

the determination of the set of (VDD, Pin) values with unstable behavior. The set will be 

delimited by the Hopf-bifurcation locus, containing the points at which the oscillation is 

generated or extinguished, depending on the variation sense of the parameters [38].  

To obtain this locus, the continuity of local bifurcations is taken into account, according 

to which the oscillation amplitude tends to zero at the Hopf bifurcation. Unlike previous 

work [58], the small-signal current generator, introduced in Section 5.3.1, will be used here to 

obtain the input-admittance function Yin at the observation node. This generator operates at a 

frequency f, non-rationally related with fin. The admittance Yin is calculated as the ratio 

between the delivered current and the node voltage by means of the conversion-matrix 

approach. At the bifurcation point, occurring for f = fa, both the real and imaginary parts of 

the input admittance vanish. This oscillation condition is fulfilled for oscillation amplitude 

tending to zero, as expected at the Hopf-bifurcation point. Thus, the Hopf-bifurcation locus, 

which delimits the unstable behavior region in terms of VDD and Pin, is obtained by solving 

the following system:     

0),,( inDDain =PVfY  , (5.1) 

with fa being the oscillation frequency. The above system (5.1) is solved through error 

minimization or optimization, using harmonic balance with 15 harmonic components and the 

conversion-matrix approach. The goals are Real (Yin) = 10-18 S and Imag (Yin) = 10-18 S. 

There exist three unknowns, fa, VDD, and Pin, in the two equations given by the real and 

imaginary parts of Yin. This gives a curve in the plane defined by the bias voltage VDD and the 
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input power Pin. Note that the oscillation frequency fa must be included in the calculation, as 

the frequency is autonomous and thus varies along the locus. 

The application of the above technique to the Class-E/Fodd PA has provided the 

instability contour of Figure 5.4. The dashed line shows the input power variation, at 

VDD = 72 V, considered in the pole-zero identification of Figure 5.3. The consistency in the 

bifurcation points resulting from both analyses should be noted. Through several applications 

of the pole-zero identification technique, the unstable region is confirmed to be inside the 

locus. The locus exhibits three points of infinite slope. To pass through these points, we 

switch the sweep parameter between VDD and Pin. Thus, the entire contour has been traced, 

enabling accuracy in the determination of the unstable operation region.  

In Figure 5.4, experimental points have been superimposed. In the lower border, two 

different sets of experimental points are represented. The triangles correspond to the points at 

which the amplifier becomes unstable for increasing input power. A chaotic regime is 

immediately obtained at most of the represented points, as shown in the spectra of Figure 5.1. 

The stars correspond to the oscillation extinction for decreasing input power. The two sets of 

points show the hysteresis phenomenon discussed in Section 5.1. On the other hand, in the 

upper border, no hysteresis has been experimentally obtained and only one set of measured 

points has been represented by squares. This set of points shows good agreement with the 

upper section of the simulated locus. 

The instability contour provides the set of points at which the amplifier periodic solution 

becomes unstable, i.e., at which a pair of complex-conjugate poles cross the imaginary axis to 

the right-hand side of the complex plane. Thus, in the lower border, the contour must agree 

with the set of experimental points providing the instability threshold for increasing input 

power. As can be seen in Figure 5.4, the obtained locus enables a good prediction of this set 

of values represented by triangles. The prediction of the hysteresis interval demands a 

different procedure to be presented in Section 5.3.4. 
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Figure 5.4: Instability contour (solid line). The Hopf-bifurcation locus delimits the VDD 
and Pin values for which the amplifier periodic solution is unstable. 
Experimental points have been superimposed. Squares indicate the upper 
border. In the lower border, triangles indicate the onset of instability for 
increasing input power, whereas stars indicate recovering of stable behavior 
for decreasing power. The dashed line shows the input power variation in the 
pole-zero identification of Figure 5.3. Note that both analyses show good 
consistency in bifurcation points. 

5.3.3 Analysis of the Self-Oscillating Mixer Regime 

For understanding of the oscillation mechanism, a steady-state analysis of the circuit in 

its undesired self-oscillating mixer regime has been carried out. The oscillating solution will 

exist inside the instability contour of Figure 5.4. Due to the hysteresis phenomenon, it may 

also exist for input-power values below the lower border of the instability contour. 

In order to obtain the oscillating solution in harmonic balance, a two-tone analysis must 

be carried out. One of the fundamentals is the input-drive frequency fin. The other 

fundamental is the oscillation frequency fa. By default, harmonic balance will converge to the 

amplifier periodic solution, with zeros at all spectral lines containing fa. In order to avoid this, 
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an auxiliary generator (AG) is introduced into the circuit [38] for simulation purposes only. 

When choosing a voltage AG, this generator is connected in parallel at a circuit node. We 

will use the drain node, as in Section 5.3.1. The AG operates at the oscillation frequency, i.e., 

fAG ≡ fa, and must be an open circuit at all other frequencies. Thus, an ideal bandpass filter is 

used in series with the AG. Furthermore, the AG must not perturb the circuit steady-state 

solution. This is ensured by imposing a zero value to its current-to-voltage relationship 

YAG = IAG / VAG = 0, where IAG and VAG are the current and the voltage of the AG, 

respectively. For given VDD and Pin, the amplitude VAG and the frequency fAG of the AG are 

calculated in order to fulfill the condition YAG (VAG, fAG) = 0. Even though the amplifier 

contains four transistors, only one AG, connected at one of the drain terminals, is necessary 

to determine the oscillating steady state.  

To investigate the nature of the oscillation, the phase at each drain terminal of the four 

transistors has been analyzed at different harmonic frequencies (see Table 5.1). At the 

oscillation frequency fa, the two transistors in the same pair are in phase, whereas the two 

pairs are 180º out of phase. However, at the input-drive frequency fin, the original phase-shift 

relationships are maintained, i.e., 180º phase shift between the two transistors in the same pair 

and 180º phase shift between the two pairs as well. Other phase relationships exist at 

intermodulation products of the two frequencies. The oscillation can be understood as the 

result of the negative resistance exhibited by the transistor under relatively strong pumping 

signal and the resonant circuit formed with the equivalent capacitance and inductance seen 

from the drain terminals. This equivalent circuit will be discussed in detail in Section 5.4.  

The two drain voltage waveforms in the same push-pull pair, Vd1 and Vd2, are compared 

in Figure 5.5. It can be seen that the slowly varying envelopes at fa are in phase whereas the 

fast-varying carriers at fin show a 180º phase shift relative to each other. 

Since the amplifier is operated in push-pull, the in-phase drain voltage waveforms at the 

oscillation frequency will ideally be cancelled, presenting no power in the output spectrum. 
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This explains why the intermodulation products of the form fin ± (2n–1)fa, n: positive integer, 

are much more attenuated than those having the form fin ± 2nfa, as can be seen in Figure 5.2. 

In a practical amplifier, however, no perfect cancellation can occur due to the imperfect 

symmetry. 

Taking the above phase relationships into account, different virtual-ground and virtual-

open planes can be considered in the circuit topology. At the input-drive frequency fin, 

virtual-ground planes exist between any of two adjacent transistors. At the oscillation 

frequency fa, two virtual-ground planes are located between the two push-pull pairs, as shown 

in Figure 5.6. In addition, two virtual-open planes develop at the symmetry planes of the pairs.  

Considering these virtual-ground and virtual-open plane concepts, a simplified 

equivalent circuit at the oscillation frequency will be obtained in Section 5.4, which will be 

useful in efficiently finding the stabilization network. 

 

Table 5.1:  Phase of signals with different frequencies at each drain terminal of the four 

transistors (Vd1 ~ Vd4 are defined in Figure 3.5). 

Frequency Vd1 Vd2 Vd3 Vd4 

fa 0° 0° 180° 180° 

fin–fa 156° –64° –64° 156° 

fin –71° 109° –71° 109° 

fin+fa –86° 118° 118° –86° 
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Figure 5.5: Comparison of two simulated drain voltage waveforms Vd1 and Vd2 in the 
same push-pull pair. 

at at at at 

+ +

 

Figure 5.6: Schematic of the push-pull amplifier, showing the virtual-ground and the 
virtual-open planes at the oscillation frequency. 
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5.3.4 Hysteresis Prediction 

To study the hysteresis phenomenon, the evolution of the self-oscillating mixer solution 

versus the input power will be analyzed. As in Section 5.3.3, an AG is connected to any drain 

terminal and the equation YAG (VAG, fAG) = 0 is solved versus Pin, in combination with 

harmonic balance. A two-fundamental frequency basis, at fin and fAG, the latter playing the 

role of the oscillation frequency fa, must be considered in the harmonic balance simulation. 

The resulting variation of the oscillation amplitude at the drain terminal, agreeing with VAG, is 

represented in Figure 5.7. A constant bias voltage VDD = 72 V has been assumed. As can be 

seen, the curve exhibits an infinite-slope point or turning point T. To pass through this point, 

the sweep parameter has been switched to the oscillation amplitude VAG in the neighborhood 

of the turning point, calculating the input power Pin and the oscillation frequency fAG for each 

VAG value. 

The turning point is responsible for the hysteresis phenomenon. Actually, when the input 

power is increased, the transition from stable amplifier behavior to the self-oscillating mixer 

regime (J1 in Figure 5.7) is due to a Hopf bifurcation Hl
1 occurring in the amplifier solution. 

When the input power is decreased, the transition back to stable amplifier behavior (J2) is due 

to the turning point T in the self-oscillating mixer solution. Note that the simulated hysteresis 

interval, in terms of the input power, is in good correspondence with the experimental one 

shown in Figure 5.4. On the other hand, no hysteresis is obtained in the upper input-power 

range, delimited by Hu
1, which also agrees with the measurement results.  

The hysteresis phenomenon is well-predicted by Figure 5.7. However, in the 

measurement, an abrupt transition from stable amplifier behavior to the chaotic regime 

occurred for most VDD values, when the input power was increased. The study of this chaotic 

solution will require additional tools, to be presented in Section 5.3.5. 
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Figure 5.7: Simulation of the undesired self-oscillating mixer regime of the PA. Variation 
of the oscillation amplitude at the drain terminal is represented with the 
input-drive power. The points at which the different bifurcations occur are 
indicated. H stands for a Hopf bifurcation and T stands for a turning point. Hl

1 
and Hu

1 are Hopf bifurcations from amplifier periodic regime. Hl
2 is a Hopf 

bifurcation from self-oscillating mixer regime. J1 and J2 indicate jumps of the 
solution. Chaotic solutions are observed from Hl

2, which is analyzed in 
Section 5.3.5. 

5.3.5 Envelope-Transient Analysis of the Oscillating Solution 

The envelope-transient enables an efficient analysis of the regimes in which two 

different time scales may be distinguished. In this technique, the circuit variables are 

expressed in a Fourier series with time-varying coefficients and a differential-equation system 

is obtained in these coefficients [67], [68]. The technique is efficiently applied to forced 

circuits. However, when used for the simulation of an oscillating regime, like that of the 

unstable amplifier, it generally converges to the coexisting non-oscillating solution, in a 

similar manner to harmonic balance. To avoid this, the oscillation must be properly 

initialized [69]. This can be done through the connection of an AG to the circuit at the initial 

envelope time t0. The amplitude and the frequency of the AG are determined through a 
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previous harmonic balance simulation. Since the AG is used for the initialization of the 

solution only, it must be disconnected from the circuit for time t > t0. After this disconnection, 

the circuit will evolve according to its own dynamics. The AG disconnection from the circuit 

can be carried out with the aid of a time-varying resistor, in series with the AG [69], changing 

from zero to a very high value (ideally infinite). 

The objective will be to analyze the circuit along the entire solution curve of Figure 5.7, 

corresponding to a self-oscillating mixer regime. Thus, the variables are represented here in a 

Fourier series, with fin and fAG as fundamentals, i.e., ∑ +=
lk

tlfkfj
lk ett

,

)(2
, )()( AGin Xx π . At each point, 

the AG amplitude VAG and frequency fAG, resulting from the harmonic balance analysis 

in Figure 5.7, are used for initialization purposes. From the point Hl
2 in Figure 5.7, the 

magnitude of the harmonic components |Xk,l (t)| becomes time-varying <Figure 5.8 (a)>. It 

oscillates at a few hundred kHz, the actual oscillation frequency depending on the input 

power. Thus, there is a second oscillation, in addition to the previous oscillation at about 

4 MHz (fa). Together with the input-drive frequency, this gives rise to a three-fundamental 

regime. The simulated spectrum is shown in Figure 5.8 (b). To verify this qualitatively, an 

expanded view of the experimental spectrum near the turning point T in Figure 5.7 is shown 

in Figure 5.9. This confirms the existence of the second oscillation at about 500 kHz, in 

agreement with the envelope-transient simulation, which has enabled the efficient detection 

of the second oscillation. 

As has been shown, there are two autonomously generated fundamentals involved in the 

circuit solution, in addition to the input-drive frequency. According to the Ruelle-Takens 

theorem [60], this kind of solution is likely to give rise to chaos, which would explain the 

chaotic spectrum that was observed in the experiment <see Figure 5.1 (b)>. Actually, chaotic 

envelope variations have also been obtained in simulation for some values of input power. 

However, it should be noted that there is limited accuracy in the representation of these 

solutions using the two-tone basis fin and fAG. 
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Figure 5.8: Envelope-transient simulation of the amplifier. (a) Time-domain evolution of 
the magnitude of the fin harmonic component of the drain voltage when a 
two-fundamental basis at fin and fa is considered. (b) Spectrum of the 
harmonic component, showing the presence of two oscillation frequencies. 
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Figure 5.9: Expanded view of the experimental output power spectrum about the 
input-drive frequency. VDD = 72 V and Pin = 5.15 W.  

The interval in which the self-oscillating mixer solution at fin and fa is unstable has been 

indicated with stars in Figure 5.7. At the point Hl
2, the self-oscillating mixer solution 

becomes unstable, due to the generation of the second oscillation frequency. It is a Hopf 

bifurcation from the self-oscillating mixer regime. Thus, starting from very low input power, 

the amplifier periodic solution is initially stable, and as the input power is further increased, it 

suddenly becomes chaotic at the Hopf-bifurcation point Hl
1. This is because the input power 

for the bifurcation Hl
1 is larger than the input power for the bifurcation Hl

2, so the solution 

jumps from Hl
1 to the chaotic regime (see J1 in Figure 5.7). The chaotic regime persists until 

the input power reaches the bifurcation point Hu
1, from which the amplifier periodic solution 

becomes stable. 

When decreasing the input power, the second oscillation vanishes at Hl
2 and the self-

oscillating mixer regime (at fin and fa) becomes stable for a very short input-power interval. At 

the turning point T, the system jumps to the stable amplifier periodic solution (J2 in Figure 

5.7). 
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In conclusion, the bifurcation diagram of Figure 5.7 gives a satisfactory explanation of 

the experimental observations of Figure 5.1. All the different phenomena observed in the 

measurements are associated with the occurrence of particular kinds of bifurcations. 

5.4 Stabilization Technique 
After understanding the different phenomena observed in the measurements, the 

objective will be the stabilization of the amplifier. For this purpose, a stabilization network 

will have to be added to the circuit. In order to efficiently obtain the optimum network, a 

simplified equivalent circuit will be derived here, taking into account the virtual-ground and 

virtual-open planes at the oscillation frequency, identified in Section 5.3.3. 

Figure 5.10 shows the equivalent circuit, which corresponds to a quarter section of the 

amplifier at the oscillation frequency. It is a parallel resonance oscillator composed of the 

transistor exhibiting negative resistance and the equivalent capacitance, inductance and load 

resistance seen from the drain terminal. The output capacitance Cres connected between two 

transistor pairs is doubled due to the virtual-ground developed at the center of the capacitance, 

and the magnetization inductance Lres in the output transformer is divided by two due to the 

virtual-open at the center of the transformer. Note that the RF choke inductance Lchoke is also 

a critical element included in the equivalent circuit. The resonance frequency is 5.3 MHz, 

which is quite close to the oscillation frequency obtained both in measurement and in 

simulation. This confirms the validity of the proposed equivalent circuit. 

From the schematic of Figure 5.10, a simple means to stabilize the amplifier is the 

addition of a resistor at the node N. The value of this resistance must be small enough to 

avoid the oscillation for all the possible operation conditions, in terms of VDD and Pin. It also 

must not affect the normal operation of the amplifier.  

The node N corresponds to the center point of the primary circuit in the output 

transformers. The push-pull operation introduces a virtual ground at the node for the 
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operating frequency fin and odd harmonics. Hence, the addition of the resistance at the node N 

will have little effect over these frequencies. However, the resistor will impose a finite 

impedance to even harmonics instead of an open circuit, which would be the right 

termination for the Class-E/Fodd operation. Thus, a second harmonic trap at 2fin will be 

connected in series with the resistor to reduce the effect. This will provide an open circuit at 

the second harmonic frequency. The effect of higher even harmonics on the operation, 

expected to be small, will be analyzed through simulation. The schematic of the amplifier, 

with the stabilization network, is shown in Figure 5.11. 

Once the topology and the location of the stabilization network have been determined, 

the next step will be the calculation of stabilization resistance value, in order to ensure stable 

amplifier operation for all the expected values of VDD and Pin. An efficient technique will be 

applied for this purpose. The technique is based on the plot of the small-signal input 

admittance Yin. This is calculated at the drain terminal using the small-amplitude current 

source and the conversion-matrix approach (see Section 5.3.1). Comparing the frequency 

variation of Yin with pole-zero identification results, it has been possible to associate the 

instability with the existence of negative conductance and resonance at the oscillation 

frequency. Thus, the plot of Yin will allow a fast verification of these oscillation conditions.  

Three different values of the stabilization resistance have been considered: 100 Ω, 50 Ω, 

and 15 Ω. For each value, two nested sweeps are carried out in the two amplifier parameters 

VDD and Pin. For each (VDD, Pin) point, a harmonic balance calculation is performed, together 

with a sweep in the current-source frequency f, using conversion matrix. This yields the input 

admittance Yin(f) seen by the current source. Then, the imaginary part of Yin(f) is plotted 

versus the real part. The resulting plots, for the original amplifier and for the amplifier with 

the three indicated resistance values, are shown in Figure 5.12. Each admittance curve 

corresponds to a pair of values (VDD, Pin). The same frequency-sweep range has been 

considered for each curve. In the representation, this range has been limited to 3−5.5 MHz, 

for the sake of clarity. For global stability, no crossing of the real axis with negative 
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conductance and positive increase of the susceptance must be obtained [65]. As expected, 

larger stability ranges are achieved as the stabilization resistance is reduced. For Rstab = 15 Ω, 

the amplifier becomes stable for all the operation values of VDD and Pin. This has been 

rigorously verified by extending the range of the frequency sweep and applying pole-zero 

identification. 

Through bifurcation detection, it is possible to directly calculate the stabilization 

resistance Rstab, for given VDD and Pin values. To achieve this, the stabilization resistance Rstab 

and the oscillation frequency fa will be determined in order to fulfill Yin (Rstab, fa) = 0. For each 

VDD and Pin, the resulting resistance R0
stab is the maximum value allowed for stable behavior. 

The resistance value R0
stab is actually a bifurcation value: The amplifier is unstable for 

Rstab > R0
stab whereas it is stable for Rstab < R0

stab. 

In order to globally determine the variation of R0
stab, a sweep of Pin is performed for 

several VDD values covering the expected operation ranges. For each VDD, the equation 

Yin (Rstab, fa) = 0 is solved to calculate R0
stab versus Pin, which is shown in Figure 5.13. As can 

be observed, R0
stab decreases with the bias voltage. On the other hand, as Pin approaches 

values for which the amplifier periodic solution is stable, this resistance tends to infinity. 

From Figure 5.13, a resistance value smaller than 17 Ω is required for global stabilization of 

the amplifier. The results are consistent with those obtained from the admittance plots of 

Figure 5.12.  

In view of the results of Figure 5.12 and Figure 5.13, the resistance value Rstab = 15 Ω 

has been chosen for the corrected design of the amplifier. As the final step, the influence of 

this resistance on the amplifier drain efficiency and output power has been analyzed. This is 

shown in Figure 5.14, where the drain efficiency and output power is traced versus the 

resistance value. As can be seen, the stabilization resistance has only small influence. This is 

due to the fact that the connection point is a virtual ground at the fundamental and the odd 

harmonics, and the second-harmonic trap has been used to maintain the connection point as 
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an open circuit at that frequency. The higher even harmonics turned out to have negligible 

influence. 

 

Figure 5.10: Simplified equivalent circuit of the PA at the oscillation frequency after 
considering the virtual-open and virtual-ground planes. 
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Figure 5.11: Amplifier schematic with stabilization network. The stabilization network 
consists of a stabilization resistor Rstab, a second harmonic trap, and a 
DC-blocking capacitor Cdc-block. 
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Figure 5.12: Stabilization action of the parallel resistance, analyzed by means of 
admittance plots. Three resistance values have been considered. (a) No 
stabilization resistor. (b) Rstab = 100 Ω. (c) Rstab = 50 Ω. (d) Rstab = 15 Ω. In 
(a), (b), and (c), the oscillation condition is satisfied for a certain parameter 
range, and thus the global stability is not achieved. 
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Figure 5.13: Variation of the maximum value of stabilization resistance R0
stab versus the 

input-drive power Pin, obtained through bifurcation analysis. Three different 
drain bias voltages have been considered. 

R  

Figure 5.14: Variation of the amplifier drain efficiency and output power versus the value 
of the stabilization resistance. The drain bias voltage is assumed as 
VDD = 72 V. 
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5.5  Measurements of the Stabilized Amplifier 
The amplifier has been modified for globally stable behavior by introducing the 

stabilization network developed in Section 5.4. A stabilization resistor of 15 Ω in series with 

the second harmonic trap and a DC-blocking capacitor is simply connected to the center point 

of each output transformer. Power resistors with a 35-W rating are used in order to handle the 

simulated current of 0.7 A at even harmonics of the input-drive frequency. The Q-factor of 

the second harmonic trap is carefully chosen considering a trade-off between low impedance 

at the oscillation frequency and the feasibility of realizing each component. A mica capacitor 

and an air-core inductor with 14-AWG copper wire are used for the second harmonic trap. 

This amplifier has shown global stability over the entire range of operating conditions of 

VDD and Pin, as predicted in the simulation. We never observed any oscillation or chaotic 

regimes. The output power spectrum was similar to Figure 5.1 (c), whenever the input drive 

was sufficient to turn on the transistors. The drain efficiency of the amplifier has been 

measured, which is shown in Figure 5.15. Compared to the original PA, the drain efficiency 

is degraded by less than 0.4 % for all output power levels except for 240 W, which shows 

1.3 % degradation. 

 
Figure 5.15: Measured drain efficiency versus the output power. Solid line: the stabilized 

PA, dashed line: the original PA.  
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Chapter 6  

Analysis and Elimination of Hysteresis 

and Noisy Precursors in Power 

Amplifiers  
 

Power amplifiers (PAs) often exhibit unstable behavior from a certain level of the input 

power [58], [61], [62], [70]. Frequency divisions by two and oscillations at incommensurate 

frequencies can be predicted through a large-signal stability analysis of the amplifier 

solution [36], [50], [59], [70]. In the stability analysis in Chapter 5, techniques were also 

presented for the efficient determination, through bifurcation detection, of the circuit 

parameters giving unstable behavior. Oscillatory and chaotic solutions were analyzed in 

detail, which enabled the derivation of a suitable stabilization technique. However, other 

phenomena, whose origins are difficult to identify, are also commonly observed in the 

measurement of PAs. The work in this chapter has been motivated by the anomalous 

behavior of a Class-E PA [35]. In the intermediate input-power range, this circuit exhibited 

pronounced noise bumps at frequencies different from the input-drive frequency, which 

degraded the amplifier performance. The bumps were observable for a relatively large 

input-power interval until an oscillation was suddenly obtained. The frequency of this 

oscillation fa mixed with the input-drive frequency fin, to give rise to sidebands whose 

frequencies were surprisingly different from the central frequencies of the previous noise 

bumps.  
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As will be shown, the observed phenomenon involves hysteresis in the power-transfer 

curve and sideband amplification [40], the latter giving rise to the spectrum bumps, also 

called noisy precursors [71]. These undesired phenomena may also be obtained in PAs for 

communications, in which linearity and spectral purity are essential. The hysteresis causes 

sudden spectral growth and disrupts the linearity of amplifiers. The noisy precursors degrade 

the spectral purity and, particularly, bumps around the input-drive frequency may give rise to 

interference with other channels.  

The in-depth investigation of the undesired behavior of PAs requires the combination of 

different analysis techniques, some of which will be presented here for the first time. The 

hysteresis in the Pin-Pout curve is due to the existence of a multi-valued section in the solution 

curve traced versus Pin, as a result of infinite-slope points or turning points [38], [72] 

occurring in this curve. This is shown in the sketch of Figure 2.17 (e). Increasing Pin from the 

lower curve section, the jump J1, from the point T1, leads to the upper section. Decreasing Pin 

from this upper section, the jump J2 leads to the lower one. When using harmonic 

balance (HB), the multi-valued solution curve can be traced by means of a suitable 

continuation technique like the switching-parameter algorithm [38], [55], [72]. Here a 

technique will be presented to obtain the multi-valued curve in commercial HB software, 

unable to pass through the tuning points. However, the actual goal of the designer is the 

suppression of the hysteresis phenomenon, which is generally carried out through a 

trial-and-error procedure. In order to improve the design efficiency, a new technique is 

proposed here allowing the removal of the turning points through a single simulation on 

commercial HB. It relies on the tracing of a turning-point locus on the plane defined by the 

input power and a suitable stabilization parameter. 

As already discussed, high-power bumps were observed in the output power spectrum of 

the Class-E PA. In previous work, these bumps have been related to noise amplification, 

coming from a small stability margin [40]. The circuit resonant frequencies have low 

damping and, under the continuous noise perturbations, give rise to bumps in the output 
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power spectrum. If a circuit parameter, such as the input power, is varied and the near-critical 

poles approach the imaginary axis, the noise bumps become narrower and higher. If the poles 

cross the imaginary axis, a bifurcation occurs and, from this parameter value, the bumps 

become distinct spectral lines. One of the objectives of this work is the study of this 

phenomenon in power amplifiers. 

The continuous pole displacement, approaching the imaginary axis, takes place in any 

circuit evolving to an unstable regime. However, the noisy precursors are not always 

observable. Another aspect that will be investigated here is the reason for the observation of 

this phenomenon in particular circuits only. Pole-zero identification will be applied to follow 

the evolution of the system poles, which will be related to the noise amplification. The output 

noise spectrum will be simulated with both the conversion-matrix approach [73] and the 

envelope-transient [67], [68]. The latter enables a prediction of nonlinear phenomena 

occurring for high-power bumps or in the immediate neighborhood of the bifurcation. A 

technique will also be presented for the elimination of noisy precursors from the amplifier 

output spectrum.  

This chapter is organized as follows. In Section 6.1, the measurements of the Class-E 

power amplifier, with anomalous behavior, are presented. In Section 6.2, the amplifier 

solution and its stability are analyzed versus the input power. In Section 6.3, the noisy 

precursors are simulated with the conversion-matrix approach and the envelope-transient. In 

Section 6.4, a general technique for the elimination of hysteresis in the Pin-Pout curve of 

power amplifiers is presented and applied to the Class-E power amplifier. Experimental 

confirmation is also shown. In Section 6.5, a technique for the elimination of noisy precursors 

is presented and applied to the Class-E power amplifier with experimental verification. 

6.1 Experimental Measurements on 
the Class-E Power Amplifier 
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The schematic of the Class-E power amplifier is shown in Figure 6.1. The output 

capacitance Cout and a resonant tank composed of Cres and Lres fulfill the Class-E tuning, 

together with the transistor driven as a switch [4], [7]. The resonant tank is slightly mistuned 

from the operating frequency fin = 7.4 MHz to present a zero-voltage switching characteristic 

to the drain voltage. In order to suppress the second harmonic level below −40 dBc, a second 

harmonic trap (C2nd and L2nd) is used at the output. This also performs the output impedance 

transformation to 8 Ω, an appropriate load impedance for switching operation. In addition, a 

low-pass filter (Clpf and Llpf) is added to suppress VHF harmonic components from the output 

spectrum at least 40 dB below the fundamental. The amplifier achieves an output power of 

360 W with a gain of 16.1 dB and a drain efficiency of 86.1 % at 7.4 MHz, when it is driven 

with sufficient input power for saturated operation. The input VSWR is 1.7.  

We observe different phenomena in the measurements of the Class-E amplifier. As the 

input power increases from zero, only leakage output power at the input-drive frequency fin is 

initially obtained. This is in good agreement with the fact that the transistor in the switching 

amplifier is not turned on below a certain level of input power. Then, from the input power 

Pin = 0.5 W, noise bumps of relatively high power arise in the spectrum. There are three 

bumps centered about fc = 560 kHz and fin ± fc, respectively <Figure 6.2 (a)>. As the input 

power is further increased, fc decreases and the bumps about fin become closer.  The bump 

power also increases <Figure 6.2 (b)>, until, at Pin = 0.83W, an oscillation is obtained at the 

frequency fa = 1MHz <Figure 6.2 (c)>, quite different from fc. From this power value, the 

circuit operates in a self-oscillating mixer regime, at the two fundamentals fin and fa <Figure 

6.2 (c)>. The high phase noise indicates a low quality factor of the oscillation. The oscillation 

frequency is close to fin / 7, which gives rise to spectral lines at short frequency distance from 

the oscillation harmonics.  

At the power value Pin = 0.89 W, a frequency division by 7 is obtained <Figure 6.2 (d)>. 

The synchronization at fa / fin = 1 / 7 is maintained for the input-power interval from 0.89 W 

to 0.92 W. The synchronization capability at this high-harmonic order also indicates a low 
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quality factor of the oscillation. When the power level is higher than Pin = 0.92 W, the circuit 

behaves again as a self-oscillating mixer. Finally, at Pin = 1.7 W, the oscillation is 

extinguished and, from this power value on, the amplifier operates in the desired periodic 

regime <Figure 6.2 (e)>. For reasons to be given later, we did not notice hysteresis in these 

initial measurements. When reducing the input power from power levels above 1.7 W, all the 

transitions between the different regimes seemed to occur for the same indicated Pin values. 

As stated in the introduction, the noise bumps are due to noise amplification about the 

natural frequencies of the circuit when the stability margin is small. Thus, the spectral lines 

due to the oscillation should be generated at frequencies near kfin ± fc, with k integer, which 

are the central bump frequencies. However, in the Class-E amplifier, there is a substantial 

difference between the bump frequency fc and the oscillation frequency fa. To give an 

explanation of this and other observed phenomena, several analysis techniques will be 

combined in the next section. 

 

 

Figure 6.1: Schematic of the Class-E power amplifier at 7.4 MHz [35]. 
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Figure 6.2: Measured output power spectrum of the Class-E power amplifier, for different 
input power values. Resolution bandwidth = 3 kHz. (a) Pin = 0.5 W. 
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Pronounced noise bumps are observed about the frequencies fc = 560 kHz and 
fin ± fc. (b) Pin = 0.8 W. The bump frequency fc is lower and its power is 
higher.  (c) Pin = 0.83 W. An oscillation suddenly arises at the frequency 
fa = 1 MHz. (d) Pin = 0.89 W. Frequency division by 7. The seventh harmonic 
of the oscillation is synchronized to the input frequency. (e) Pin = 4.0 W. 
Proper operation of the amplifier. 

6.2 Nonlinear Analysis of the Class-E Power 
Amplifier 

The analysis of the Class-E amplifier will be carried out in three different steps. Initially, 

its power-transfer curve will be obtained through an HB continuation technique. In a second 

step, stability-analysis techniques will be applied to study the amplifier stability along the 

resulting solution curve. Finally, the oscillatory solution will be analyzed using two-tone HB. 

6.2.1 Analysis of the Power-Transfer Curve 

The initial step in the nonlinear analysis of the power amplifier is the determination of its 

power-transfer curve, using HB. However, a discontinuity was observed when sweeping the 

input power, which indicated a possible hysteresis phenomenon. This is caused by turning 

points or infinite-slope points of the solution curve, at which the Jacobian matrix of the HB 

system becomes singular [38]. The used commercial HB software is unable to pass through 

the turning points. This requires a suitable continuation technique [38], [55], [74]. In the 

switching-parameter algorithm, the sweep parameter is switched, near the turning point, to 

the HB variable with the largest increment, given by the real or imaginary part of one of the 

harmonic components of one of the circuit variables [38], [55]. Here, a different technique 

will be applied, based on the introduction of an auxiliary generator (AG) into the circuit. 

Unlike previous work [58], [38], [75], this AG will be used for the analysis of a 

non-oscillatory regime, corresponding to the amplifier periodic solution at the input-drive 
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frequency fin. The AG will enable the implementation of a parameter-switching technique on 

the commercial HB software. 

When using a voltage AG, this generator is connected in parallel at a sensitive circuit 

node, typically corresponding to a transistor terminal. The AG will operate at fAG and must be 

an open circuit at all other frequencies. Thus, an ideal bandpass filter is introduced in series 

with this generator. Furthermore, the AG must not perturb the circuit steady-state solution. 

This is ensured by imposing a zero value to its current-voltage relationship 

YAG = IAG / VAG = 0, where IAG and VAG are the current and the voltage of the AG, 

respectively.  

The AG will operate at the input-drive frequency fAG = fin. The variables to be 

determined, in order to fulfill YAG = 0, will be the AG amplitude |VAG| and its phase φAG. The 

requirement for the AG phase calculation comes from the fact that it is a non-autonomous 

regime [38]. The equation YAG = 0 is solved through error-minimization or optimization 

procedures, with the HB system as the inner loop. When the condition YAG = 0 is fulfilled, the 

AG amplitude agrees with that of the fundamental harmonic component of the voltage at the 

AG connection node. Thus, sweeping the AG amplitude will be equivalent to sweeping the 

amplitude of this fundamental component.  

The continuation technique is applied as follows. In the curve sections with low slope 

with respect to the input power, this power is used as the sweep parameter. In the sections 

with high slope, the sweep parameter is switched to the AG amplitude |VAG|. In the Class-E 

PA, the AG is connected to the transistor drain terminal. Using the described technique, it has 

been possible to obtain the multi-valued Pin-Pout curve of Figure 6.3. 
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Figure 6.3: Multi-valued Pin-Pout curve of the Class-E power amplifier, obtained with the 
AG-based switching-parameter technique. The section in which the amplifier 
behaves in self-oscillating mixer regime is indicated by stars. 

6.2.2 Stability Analysis 

The next step will be the stability analysis of the amplifier periodic solution along the 

multi-valued curve of Figure 6.3, which will be carried out through a sequential application 

of the pole-zero identification technique presented in Section 4.2.1. This technique requires 

the linearization of the HB equations about the steady-state amplifier periodic solution, which 

is done through the introduction of a small-signal current generator is into the circuit, at a 

sensitive circuit node n. This generator operates at a frequency f, non-harmonically related to 

fin. By using the conversion-matrix approach, the ratio between the node voltage Vn(f) and the 

injected current Is(f) is calculated, which provides a single-input, single-output transfer 

function Zin(f). We will apply pole-zero identification to this function. Note that the poles of a 

periodic solution are non-univocally defined, because adding any integer multiple of j2π fin 

gives another pair of poles with the same real part. These extra poles provide no additional 

information, so only poles between −j2π fin and j2π fin will be considered here. 
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In the case of the Class-E amplifier, the small-signal current generator is connected at the 

transistor drain terminal. Initially, the input power is varied from Pin = 0.70 W to 

Pin = 0.79 W, in 0.01 W steps, following the section ζ1-ζ2-ζ4 of Figure 6.3 with a jump 

between ζ2 and ζ4. The pole-zero identification technique is sequentially applied to each 

periodic solution obtained with HB. For the Zin calculation, we consider the frequency 

interval from 1 kHz to 2 MHz. The resulting pole locus is shown in Figure 6.4 (a), where the 

two pairs of poles, σ1 ± j2πf1 and σ2 ± j2πf2, closest to the imaginary axis are represented. The 

pair σ1 ± j2πf1 is initially much closer to this axis than σ2 ± j2πf2.  

As Pin increases, both σ1 ± j2πf1 and σ2 ± j2πf2 move rightwards at very different velocity 

dσ / dPin. The displacement of σ2 ± j2πf2 is faster than that of σ1 ± j2πf1, which remains in the 

neighborhood of the axis for all the considered Pin values. For Pin = 0.79 W, due to the jump, 

there is a discontinuity in the pole locus and an anomalously large shift is obtained in 

σ2 ± j2πf2, whereas the pair σ1 ± j2πf1 is no longer present. From this power value, the pair 

σ2 ± j2πf2 is located on the right-hand side of the complex plane. The amplifier periodic 

solution is unstable, as the pair of poles σ2 ± j2πf2 gives rise to an oscillation at about 

fa = 1 MHz. 

For a detailed study of the pole variations, the sections around the turning points are also 

analyzed: ζ2-T1-ζ3 and ζ3-T2-H1-ζ4-ζ5 of Figure 6.3. Note that, unlike the case of Figure 

6.4 (a), Pin does not increase monotonically along these sections. The pole-zero identification 

technique is applied to the solution curve obtained with the AG-based parameter switching 

technique. 

Figure 6.4 (b) shows the pole evolution along the section ζ2-T1-ζ3. The pair of complex- 

conjugate poles σ2 ± j2πf2 approaches the imaginary axis without crossing it. For clarity, only 

the evolution of the poles σ1 ± j2πf1 is presented. The considered frequency interval is 0 to 

300 kHz. As the input power increases, the two complex-conjugate poles remain close to the 

imaginary axis and from 0.780 W to 0.789 W, move nearly vertically, approaching each  
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Figure 6.4: Pole evolution along the Pin-Pout curve of Figure 6.3. (a) Section ζ1-ζ2-ζ4 of 
Figure 6.3. The two pairs of poles σ1 ± j2πf1 and σ2 ± j2πf2 closest to the 
imaginary axis are represented. (b) Section ζ2-T1-ζ3. The complex-conjugate 
poles σ1 ± j2πf1 approach each other and meet on the real axis. They become 
two different real poles, γ1, γ2 and, from that point, follow opposite directions. 
One of the real poles crosses the imaginary axis at Pin = 0.790 W, 
corresponding to the turning point T1, and the solution becomes unstable.  (c) 
Section ζ3-T2-H1-ζ4-ζ5. The real pole γ1 crosses the imaginary axis back to the 
left-hand side at Pin = 0.777 W, corresponding to the turning point T2.  The 
pair of complex-conjugate poles σ2 ± j2πf2 crosses the imaginary axis to the 
right-hand side at the Hopf bifurcation H1, obtained for Pin = 0.781 W. 
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other, until they meet on the real axis. This gives rise to a qualitative change in the pole 

configuration, as the two complex-conjugate poles become two real ones γ1 and γ2 from this 

power value. By further increasing the power, the two real poles move in opposite directions. 

The pole γ1 moves to the right and crosses the imaginary axis at Pin = 0.790 W. This is the 

power value at which the turning point T1 is obtained in the Pin-Pout curve of Figure 6.3, in 

correspondence with the fact that a pole at zero implies a singularity of the HB Jacobian 

matrix [38]. From this point, the amplifier periodic solution is unstable.  

Figure 6.4 (c) shows the evolution of the two sets of poles σ2 ± j2πf2 and γ1, γ2 along the 

section ζ3-T2-H1-ζ4-ζ5 of the Pin-Pout curve. The considered frequency interval is 0 

to 1.5 MHz. After passing through zero, γ1 moves farther right, turns, and crosses the 

imaginary axis through zero again at Pin = 0.777 W, corresponding to the turning point T2. 

The entire section between T1 and T2 of the Pin-Pout curve is unstable because the pole γ1 is on 

the right-hand side of the complex plane for the section.  

For the same section ζ3-T2-H1-ζ4-ζ5 in Figure 6.4 (c), the poles σ2 ± j2πf2 move to the 

right, approaching the imaginary axis. At Pin = 0.781 W, they cross to the right-hand side of 

the complex plane. A Hopf bifurcation H1 [38], [60] is obtained, giving rise to an oscillation 

at about fa = 1 MHz. As Pin is further increased, the poles move to the right, turn, and cross 

again the imaginary axis at Pin = 1.45 W. At this power value, a second Hopf bifurcation H2 

is obtained, which extinguishes the oscillation. 

The analysis in Figure 6.4 is in correspondence with the measurements of Figure 6.2. For 

the input-power interval 0.5 W to 0.789 W, the first pair of complex-conjugate poles 

σ1 ± j2πf1 is very close to the imaginary axis and the small stability margin explains, as will 

be shown in Section 6.3, the observation of the noisy precursors. Actually, the pole frequency 

f1 agrees with the bump frequency fc. As the input power increases, the pole frequency 

decreases, which explains the decrease of the bump frequency observed in the measurements. 

At Pin = 0.790 W, the turning point T1 is encountered, which ordinarily would give rise to a 
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jump leading to the upper section of the periodic-solution curve. However, this periodic 

solution is already unstable when the jump takes place, because the second pair of 

complex-conjugate poles σ2 ± j2πf2 with f2 = 1 MHz is on the right-hand side of the complex 

plane (see the section indicated by stars in Figure 6.3). Thus, an oscillation at about 

fa = 1 MHz is obtained from this power, in agreement with the measurement results. 

 In fact, this explains why the hysteresis of Figure 6.3 was not initially detected in the 

measurements. The sudden variation of the output power was attributed solely to the 

oscillation. In addition, the hysteresis interval was too small to actually observe the difference 

between the input power values at which the oscillation was generated and extinguished. 

6.2.3 Analysis of the Oscillatory Solution 

For the input-power interval from 0.781 W to 1.45 W, the amplifier operates in a 

self-oscillating mixer regime, with the signal at the drive frequency fin mixing with the 

oscillation at fa. For a more detailed study of the amplifier behavior, this solution has also 

been simulated by means of HB. The existence of two fundamental frequencies fin and fa 

requires a two-tone analysis. In order to prevent the HB convergence towards the unstable 

periodic solution at fin, an AG at the oscillation frequency fAG = fa has been used. Both the AG 

amplitude |VAG| and frequency fAG must be calculated in order to fulfill the non-perturbation 

condition YAG = 0. This equation is solved through error-minimization or optimization 

procedures, with the HB system as the inner loop. 

Using the AG technique, it has been possible to obtain the evolution of the oscillatory 

solution versus the input power, which is represented in Figure 6.5. Two different curves are 

traced. One provides the power variation at the oscillation frequency. Increasing the input 

power, this curve arises at the Hopf bifurcation H1 and vanishes at the Hopf bifurcation H2. 

The second curve provides the output power at the input-drive frequency, when the circuit is 

oscillating. This curve joins the amplifier periodic solution at the two input-power values 
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corresponding to H1 and H2. The dashed curve shows the unstable amplifier periodic solution, 

when the circuit is oscillating. As can be seen, the Pin value for the Hopf bifurcation H1 is 

smaller than the Pin value for the turning point T1. This is in correspondence with the pole 

diagrams of Figure 6.4 and with the measurements. 

For the considered input frequency fin = 7.4 MHz, no harmonic synchronization of the 

oscillation frequency fa to the input-drive signal has been observed in simulation, which is 

attributed to modeling inaccuracies. However, for a somewhat higher frequency 

fin = 7.7 MHz, a frequency division by 7, has been obtained versus Pin. For the simulation of 

this divided solution of high order, an AG is connected to the drain terminal in parallel. The 

AG frequency is determined by the input-drive source and given by fAG = fin / 7. Instead, the 

AG phase φAG has to be calculated, due to the harmonic relationship between fa and fin. The 

synchronization curves are generally closed and can be efficiently determined by a sweep of 

the AG phase [76]. To obtain the synchronization curve versus Pin, this power, together with 

the AG amplitude |VAG|, is calculated at each phase step ΔφAG, in order to fulfill the condition 

YAG = 0.  

The application of the above technique to the Class-E amplifier provides the closed 

curve S1-T1′-T2′-S2 of Figure 6.6, where the output power at fin / 7 is represented versus Pin. 

The stability of the different sections of the closed curve has been analyzed with the pole-zero 

identification technique, with the results indicated in the figure. The turning points T1′ and T2′ 

give rise to jumps between the different stable sections. The output power at fa, outside the 

synchronization range, is also represented. The resulting paths approach the closed curve near 

the synchronization points S1 and S2. 
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Figure 6.5: Bifurcation diagram of the Class-E power amplifier versus the input power 
Pin. The dashed curve represents the output power of the unstable periodic 
solution. For the self-oscillating mixer regime, the power variations at both 
the oscillation frequency and input-drive frequency are represented. The 
turning points and Hopf bifurcations are also indicated. 
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Figure 6.6: Synchronization diagram versus Pin for frequency division by 7. The closed 
curve with butterfly shape represents the synchronized solution. This solution 
is unstable in the dashed-line sections. The power at the oscillation frequency, 
outside the synchronization region, is also traced. 
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6.3 Analysis of Noisy Precursors 
In this section, a simplified mathematical model is provided for the noisy precursors. The 

analysis techniques, based on the conversion matrix and envelope-transient, will also be 

discussed. These techniques will be applied in a detailed study of the noise bumps in the 

Class-E power amplifier. 

6.3.1 Precursor Model and Analysis Techniques 

Let the stable periodic solution x0(t) at fin be considered. If a small-amplitude 

perturbation is applied, an exponential transient will lead back to the original solution x0(t). 

This transient will be dominated by the pole or a pair of complex-conjugate poles with the 

smallest real part, in absolute value [38]. Assuming the dominant poles are σc ± j2πfc, the 

smaller the |σc|, the longer the transient at the frequency fc. Under continuous noise 

perturbations, bumps will appear in the spectrum about the frequencies kfin ± fc [77].  

If a parameter η is varied and the near-critical poles σc ± j2πfc approach the imaginary 

axis, the noise bumps will become higher and narrower. If the poles cross the axis, a 

bifurcation will be obtained, with the bumps turning into distinct spectral lines. Due to this 

fact, the bumps have been called noisy precursors [40], [71]. The phenomenon can also be 

explained as a result of negative-resistance parametric amplification [48]. Under the effect of 

the pumping signal, the nonlinear capacitances will exhibit negative resistance about the 

circuit resonance frequencies kfin ± fc. Prior to the bifurcation, the absolute value of this 

negative resistance will be smaller than the positive resistance exhibited by the embedding 

circuit. At the bifurcation, the positive resistance equals the negative one. From this point on, 

the negative resistance will be dominant and the solution will be unstable [65]. In 

negative-resistance parametric amplifiers, the product fGΔ , where G and Δf are the 

maximum gain and the 3-dB bandwidth, respectively, increases for a lower Q-factor of the 
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resonant circuits at the input and idler frequencies [48]. In the case of the noisy precursors, 

larger total bump power should be expected for a lower Q-factor of the resonance at fc. 

Following [40] and [77], it is possible to relate the precursor power with the stability 

margin and the frequency detuning from the central values kfin ± fc. Assuming white noise 

perturbations, the output noise spectrum can be approximately modeled: 
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where only the dominant poles σc ± j2πfc + j2πkfin are taken into account. The coefficients 

λk
lsb and λk

usb depend on the system linearization about the steady-state regime and the input 

noise sources. There are pairs of Lorentzian lines, centered about the resonance frequencies 

kfin ± fc. The height of these lines increases for lower σc, which means a smaller distance from 

the critical poles to the imaginary axis. Higher power is also obtained as the frequency 

approaches the critical values, kfin ± fc. It must also be noted that the linearization becomes 

invalid in the immediate neighborhood of the bifurcation. 

When using HB, the noisy precursors can be analyzed with the conversion-matrix 

approach [73] or the envelope-transient [67], [68]. The applicability of the conversion matrix 

is limited to a relatively low precursor power, in order for the linearization about the noiseless 

solution to be valid. For higher power, the circuit nonlinearities will give rise to gain 

saturation and other effects [40]. The envelope transient should be used instead. 

In the envelope transient, the circuit variables are expressed in a Fourier series at the 

harmonic components of the input-drive frequency, with time-varying coefficients: 

∑=
k

tkfj
k ett in2)()( πXx . Prior to the bifurcation, the time variation Xk(t) will be exclusively 

due to the noise perturbations. When these series expressions are introduced in the circuit 
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equations, a differential system is obtained in the harmonic components Xk(t), to be 

integrated in time. For the analysis to be accurate, the integration step must be small enough 

to cover the noisy precursor band about the near-critical frequency fc. This integration step is 

typically much larger than the one that would be required for a full time-domain simulation. 

The power spectrum is calculated using a periodogram technique. 

6.3.2 Application to the Class-E Amplifier 

Both the conversion-matrix approach and the envelope transient will be applied to the 

analysis of the noisy precursors of the Class-E amplifier. The noise sources that will be taken 

into account correspond to the channel noise, the thermal noise from the resistive elements, 

and the noise from the input generator.  

To validate our initial assumption of sideband amplification occurring in this circuit, the 

conversion-matrix approach will be applied to analyze the gain about the near-critical 

frequencies f1, fin − f1, fin + f1, with f1 corresponding to the imaginary part of the pair of poles 

σ1 ± j2πf1 in Figure 6.4. The gain from the channel-noise source to the circuit output is 

initially considered. For this gain analysis, the noise source is replaced with a deterministic 

current source of small amplitude. Its frequency is swept about f1, fin − f1, and fin + f1, in three 

different analyses, calculating the conversion gain at the three considered sidebands.  

As a representative case, Figure 6.7 shows the gain variation about f1, fin − f1 and fin + f1 

when sweeping the current source about f1. Three different Pin values are considered. Note 

that the conversion-matrix approach is applied about a different steady-state solution for each 

Pin value. Qualitatively, the gain curves have the Lorentzian shape of equation (6.1), except 

for the asymmetries about the central bump frequencies, which cannot be predicted with this 

model. The central frequency of the amplification bands changes with Pin due to the variation 

of f1. Extremely high gains will not be physically observed because small changes in Pin 
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cause large gain variations. Furthermore, nonlinear effects occur in the immediate 

neighborhood of the bifurcation.  

For Pin = 0.65 W, the gain curves are centered about 490 kHz, in agreement with the pole 

frequency f1 at this particular power value. The highest gain corresponds to the upper 

sideband fin + f. For the higher power values (Pin = 0.70 W and Pin = 0.75 W), the central 

frequency decreases in good correspondence with the pole displacement of Figure 6.4 (a) and 

also with the experimental observations in Figure 6.2 (a) and Figure 6.2 (b). The sideband 

gains increase more rapidly than the lower-frequency gain, also in agreement with Figure 

6.2 (a) and Figure 6.2 (b). Similar qualitative behavior is obtained when sweeping the current 

source about fin − f1 or fin + f1: the gain increases and the bump frequency decreases with the 

input power, showing the highest gain at the upper sideband. The behavior is also similar 

when the gain analysis is applied to other noise sources. Note that the purpose of this gain 

analysis is just to validate our initial assumption of sideband amplification. 

For the actual noise analysis, all the different noise sources must be simultaneously 

considered. The noise from the input-drive source has been modeled from experimental 

measurements. The available source providing the necessary power for the switching 

operation of the amplifier has high noise and constitutes the largest noise contribution. The 

results obtained with both the conversion-matrix approach and envelope transient are 

compared in Figure 6.8. The good agreement indicates that no relevant nonlinear effects are 

taking place in the system for these operation conditions. The power of the upper sideband 

about fin is higher than that of the lower sideband, in correspondence with the gain analysis of 

Figure 6.7 and with the measurements. As has been verified in simulation, noisy precursors 

of lower power are still obtained when using an input-drive source of higher spectral purity. 

Although the power is lower, the noisy precursors are still quite noticeable in the spectrum, so 

their observation in measurements can also be expected. 
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The Class-E amplifier combines three characteristics that contribute to the practical 

observation of the precursors. The Q-factor associated with the self-oscillation is low, so a 

relatively large precursor power may be expected. The near-critical poles have small 

derivative |dσ / dPin|, so they remain close to the imaginary axis for a relatively large Pin 

interval. Finally, the gain from the noise sources to the circuit output is high, as shown in 

Figure 6.7. This gain is critical in allowing the precursors to be observed. For other amplifiers 

operating close to instability, the gain is usually too low and the precursors are below the 

noise floor of the measurement system.  

This analysis of the circuit characteristics contributing to the observation of the noisy 

precursors will be very helpful in order to devise a technique for their efficient elimination 

from the spectrum. This will be shown in Section 6.5. 

Pin 

Pin 

Pin 

 

Figure 6.7: Validation of sideband amplification. Frequency variation of the current gain 
from the channel-noise current source to the amplifier output, calculated with 
the conversion matrix. Three different Pin values have been considered. 
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Figure 6.8: Analysis of noisy precursors. Comparison of the simulated output spectrum 
using the conversion-matrix and the envelope-transient methods. Higher 
power is obtained at the upper sideband, in agreement with the higher gain 
value obtained in Figure 6.7. 

6.4 Elimination of the Hysteresis in the Pin-Pout 
Curve 

Hysteresis is commonly observed in the Pin-Pout curve of power amplifiers. Its accurate 

prediction with a HB simulator requires the use of a suitable continuation technique, like the 

one that was proposed in Section 6.2.1. However, the actual design goal would be the total 

elimination of hysteresis from the Pin-Pout curve. To our knowledge, no technique has ever 

been presented for an efficient suppression of this phenomenon. Lengthy trial-and-error 

procedures are carried out instead. Here a new method will be shown, enabling the 

elimination of the hysteresis through a single simulation on HB software.  

As already discussed, the hysteresis is due to the existence of turning points in the 

Pin-Pout curve. Thus, the hysteresis can be suppressed if we remove these turning points. 
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Taking the curve in Figure 6.3 as an example, the two turning points occur at Pin = 0.790 W 

and 0.777 W, with a difference of 0.013 W. These points can be removed by making them 

approach each other and eventually meet in a single point, corresponding to a “cusp” 

bifurcation, through the variation of a suitable circuit parameter μ. This parameter can be 

either an existing circuit component or an added one for the hysteresis elimination. At the 

“cusp” bifurcation [60], [66], the two turning points meet and, for a further variation of the 

parameter, disappear from the solution curve, due to the continuity of the system. This 

continuity also ensures a limited disturbance of the original amplifier response.  

As already stated, the Jacobian matrix of the HB system becomes singular at the turning 

points, due to the existence of a real pole at zero γ = 0. In [38], it was shown that the Jacobian 

matrix associated to the non-perturbation equation YAG = 0 also becomes singular at these 

points. When simulating the amplifier periodic solution, this Jacobian matrix is given by 
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where r
AGY and i

AGY are the real and imaginary part of YAG, respectively. The derivatives are 

calculated through finite differences, using HB.  

The cusp point is a co-dimension 2 bifurcation, requiring the fine tuning of two 

parameters [60]. One parameter will be Pin and the other, the stabilization element μ. In the 

plane defined by these two parameters, the locus of turning points is given by 

( )
( )[ ] 0,,,det

0,,,

inAGAGAG

inAGAGAG

=

=

PVJY

PVY

μφ

μφ
 . (6.3) 

The above system contains four real unknowns in three real equations, so a curve is obtained 

in the plane (μ , Pin). All the points in this curve have a real pole at zero γ = 0. 
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The curve defined by equation (6.3) will be traced from the initial value μ = μ0, 

corresponding to the original circuit. In the case of a multi-valued curve like the one in Figure 

6.3, for μ = μ0, there will be two different turning points. Provided there is enough sensitivity 

to μ, the two turning points will vary versus μ and, at given μ = μcp, they will meet in a cusp 

point, obtained for the input power Pin_cp. At the cusp point, the two following conditions are 

satisfied: 

0),(

0),(
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P
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μγ
 . (6.4) 

Note that all the rest of turning points, composing the locus defined by equation (6.3), fulfill 

∂γ / ∂Pin ≠ 0, as they give rise to a qualitative stability change in the solution curve. The 

second condition in equation (6.4) comes from the fact that the unstable section between the 

turning points does not exist anymore due to the merging of these points, so the real pole does 

not cross the imaginary axis. Instead, it is tangent to this axis at the origin. For a further μ 

variation (in the same sense), the solution curve will exhibit no turning points and the 

hysteresis will be eliminated. 

We can implement this technique on a commercial HB simulator. It requires the 

consideration of the original circuit, plus two identical copies. An AG will be connected to 

each of the three circuits, with different values of the AG amplitude and phase in each of 

them. The two copies will enable the calculation of the derivatives that compose the Jacobian 

matrix of equation (6.2). The first of the three circuits operates at the nominal values |VAG| 

and φAG and must fulfill the equation (6.3). One of the copies operates at |VAG| + Δ|VAG| and 

φAG, and is used for the calculation of the derivative ∂YAG / ∂|VAG|. The other copy operates at 

|VAG| and φAG + ΔφAG, and is used for the calculation of the derivative ∂YAG / ∂φAG. The three 

circuits are solved simultaneously in a single HB simulation. In order to obtain the turning- 
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point locus in the single simulation, the phase φAG is swept, optimizing |VAG|, Pin, and μ in the 

nominal circuit, in order to fulfill the equation (6.3).  

This approach has been applied here to eliminate the hysteresis phenomenon in our 

Class-E amplifier. After inspection of the circuit schematic, it was considered that the 

variation of the elements in the output low-pass filter, composed of Llpf and Clpf, should not 

strongly affect the drain efficiency and output power. Their possible influence on the turning 

points of the Pin-Pout curve was examined. The capacitance Clpf was taken as a stabilization 

parameter μ = Clpf. The turning-point locus fulfilling equation (6.3) was traced in the plane 

defined by Clpf and Pin, for three different Llpf values.  

The results are shown in Figure 6.9. The two Pin values obtained for each Llpf and Clpf are 

the ones corresponding to the turning points in the particular Pin-Pout curve. For the original 

amplifier, Llpf = 257 nH and Clpf = 100 pF, the turning points, indicated with dots in Figure 

6.9, are the same as those in Figure 6.3. As can be seen, the range of Clpf values for which the 

Pin-Pout curve exhibits turning points decreases with larger Llpf. For each Llpf value, as Clpf 

decreases, the two turning points approach each other until they meet at the cusp point CP. 

For smaller Clpf, no turning points exist, so no hysteresis phenomenon should be observed in 

the circuit. 

The results of Figure 6.9 have been verified by tracing the Pin-Pout curves for 

Llpf = 257 nH and different Clpf values between 80 pF and 100 pF (Figure 6.10). For 

Clpf = 100 pF, two turning points are obtained at the power values predicted by the locus of 

Figure 6.9, and a hysteresis phenomenon is observed. For Clpf = 90 pF, the two turning points 

are closer, in agreement with Figure 6.9, and a narrower hysteresis interval is obtained. For 

Clpf = 85 pF, the two turning points meet at the cusp point CP2. For Clpf = 80 pF, no hysteresis 

is observed. The small disturbance of the original Pin-Pout characteristic by the application of 

this technique should also be noted. Similarly small disturbance can be expected regardless of 
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the particular circuit. It is due to the continuity of the system, evolving smoothly when the 

stabilization parameter is varied. 

To analyze the effect of the output-filter modification on the amplifier stability, the 

pole-zero identification technique has been sequentially applied along the solution curves in 

Figure 6.10. Figure 6.11 shows the variation of the real pole γ1 versus Pin, for each of the 

considered curves. As can be seen, for Clpf values giving hysteresis, the γ1-curve crosses the 

horizontal axis γ1 = 0 twice, at the turning points T1 and T2. At the cusp point, the γ1-curve is 

tangent to the axis γ1 = 0, in agreement with equation (6.4). For Clpf values without hysteresis, 

there is no crossing of the axis γ1 = 0.   

The analysis of Figure 6.11 has been carried out in a Pin range for which the real pole γ1 

is in the neighborhood of the imaginary axis. For Clpf = 80 pF, with no hysteresis, a wider Pin 

variation has also been considered. For low Pin, there are two pairs of complex-conjugate 

poles σ1 ± j2πf1 and σ2 ± j2πf2, as in the original circuit. As Pin increases, the poles σ1 ± j2πf1 

approach each other, merge, and split into two real poles at Pin = 0.83 W that never cross the 

imaginary axis to the right-hand side. Although the distance of σ1 ± j2πf1 to the imaginary 

axis has increased, the precursors are still obtained in simulation. On the other hand, for Clpf 

values below 50 pF, the instability at fa = 1 MHz, due to the pair of complex-conjugate poles 

σ2 ± j2πf2, is not observed. This is a beneficial effect of the modification of the output 

low-pass filter. Thus, in order to obtain a Pin-Pout curve without hysteresis and without 

oscillation, capacitor values below 50 pF must be chosen. 

 The validity of the new technique has also been experimentally verified. Maintaining 

Llpf = 257 nH, the capacitor value Clpf was changed to below 50 pF. The experimental Pin-Pout 

curves of the stabilized amplifier with Clpf = 20 pF, 10 pF, and 0 pF are shown in Figure 6.12, 

where they can be compared with the original curve exhibiting a jump. Note that only the 

curves without oscillation are presented for the stabilized PA. The oscillation was suppressed 

for a capacitor value smaller than 30 pF. Although this value is lower than the one obtained in 
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simulation (50 pF), there is a good qualitative agreement with the predictions of Figure 6.10. 

The reduction of Clpf value eliminates the hysteresis, with minimum disturbance of the 

power-transfer curve. As the capacitor value decreases, the intermediate range of the curve 

becomes smoother and shifts to the right in similar manner to Figure 6.10. For the chosen 

capacitor value Clpf = 20 pF, all the output harmonic levels were suppressed more than 50 dB 

below the fundamental, so the low-pass filter still fulfills the original purpose. No oscillation 

was observed when varying the input power, but the bumps were still noticeable in the 

spectrum, both corresponding to the simulations. Thus, an additional technique is needed for 

the elimination of the noisy precursors. This will be presented in Section 6.5. 

 

Figure 6.9: Locus of turning points in the plane defined by the stabilization parameter Clpf 
and the input power Pin. The two power values obtained for each Llpf and Clpf 
correspond to the two turning points of Pin-Pout curves, like the ones in Figure 
6.3. For Clpf smaller than the value corresponding to the cusp point, no turning 
points are obtained and no hysteresis phenomenon is observed. 
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Figure 6.10: Elimination of the hysteresis phenomenon, with Llpf = 257 nH. The 
hysteresis interval becomes narrower as the capacitance Clpf is reduced, in 
agreement with the loci in Figure 6.9. For capacitor values smaller than 
Clpf = 85 pF, corresponding to the cusp point of this locus, no hysteresis is 
observed. 

γ 1

 

Figure 6.11: Variation of the real pole γ1 versus the input-drive power for different values 
of the capacitance Clpf. At the cusp point, the curve is tangent to the 
horizontal axis. 
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Figure 6.12: Measured Pin-Pout transfer characteristics before and after the elimination of 
the hysteresis. For the stabilized PA, only the curves without oscillation are 
presented. 

6.5 Elimination of Noisy Precursors 
As already stated, the noisy precursors are noise amplification due to the circuit 

operation under a small stability margin. Their practical observation is closely dependent on 

the gain functions from the different noise sources to the circuit output. In order to eliminate 

the precursors, both aspects must be considered.  

From the analysis of Section 6.3, the precursors of the Class-E amplifier are due to the 

proximity of the pair of poles σ1 ± j2πf1 to the imaginary axis, with σ1 < 0 for all the Pin 

values. According to equation (6.1), for a reduction of the precursor power, we need to move 

σ1 away from the axis. A possible technique is described in the following.  

The same small-signal current source is, introduced for the stability analysis, is connected 

in parallel at the transistor drain terminal. The input admittance from this current source is 

calculated as the ratio between the delivered current and the node voltage. When traced 
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versus frequency, this admittance exhibits a clear resonance around 400 kHz, with positive 

slope of the imaginary part of Yin and positive real part of Yin, because the amplifier solution 

is stable [65]. The parallel connection of a resistance at the drain terminal will increase 

Real (Yin). In the pole diagram, this will give rise to a leftward movement of the near-critical 

poles σ1 ± j2πf1, increasing the stability margin. The pole shift will be larger for smaller value 

of the resistance in parallel. However, the resistance at the transistor output will substantially 

degrade the drain efficiency and output power of the amplifier. To avoid this degradation, an 

inductor of relatively high value is connected in series with the resistor. So the correction 

network is composed of a stabilization resistance of 33 Ω, an inductor of 4 μH and a 

DC-blocking capacitor of 80 nF in series. This network is connected in parallel at the drain 

terminal. With the addition of the inductor, the impedance exhibited at fin will be large, and 

little current will flow at that frequency. However, due to the fact that the resonance 

frequency fc is relatively close to fin, the impedance of the inductor at fc will affect the system 

poles. To analyze this influence, the pole locus versus Pin has been retraced.  

In the lower Pin range, the introduction of the inductance changes the former 

complex-conjugate poles σ1 ± j2πf1 into two real poles γ1′ and γ2′, the apostrophe referring to 

the modified circuit. As Pin increases, they approach each other, meet, and become a 

complex-conjugate pair σ1′ ± j2πf1′, with f1′ being significantly smaller than f1 for the entire 

Pin range. On the other hand, the real part σ1′ is only slightly smaller than σ1. However, the 

observation of the precursors is also strongly dependent on the gain from the noise sources to 

the amplifier output at the near-critical frequencies f1′, fin − f1′, fin + f1′, … This gain has also 

been analyzed, with the results of Figure 6.13. Compared with Figure 6.7, there is a 

substantial gain decrease for all the Pin values. This is due to high attenuation of the 

embedding circuit at the much lower value f1′ of the near-critical frequency. The gain curves 

about the input-drive frequency maintain the Lorentzian shape. Similar low-gain values are 

obtained when sweeping the current source about fin − f1′ or fin + f1′. The output power 
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spectrum, simulated with the conversion-matrix and envelope-transient methods, is shown in 

Figure 6.14. No noise bumps are obtained, which shows the validity of the technique. 

The elimination of the precursors has been experimentally confirmed. A separate 

heatsink is used for the resistor in order to handle the dissipated power at the input-drive 

frequency. No precursors or instability were obtained in the measurements for the entire 

range of input power and drain bias voltage, in agreement with the simulations. Figure 6.15 

shows a representative measurement of the output power spectrum, corresponding to 

Pin = 0.95 W. The noise coming from the input-drive source is still present about fin but, 

unlike the spectrum of Figure 6.2 (b), no noise bumps are observed about fin or at low 

frequency. The measured gain and drain efficiency of the corrected amplifier is shown in 

Figure 6.16. Compared with the original amplifier, the degradation of the drain efficiency is 

below 1.5 % for all output power levels. The gain is almost same because of the saturated 

switching operation of the amplifier. 

Pin 

Pin 

 

Figure 6.13: Corrected amplifier. Frequency variation of the current gain from the 
channel-noise current source to the circuit output, calculated with conversion 
matrix. 
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Figure 6.14: Simulated output power spectrum of the corrected amplifier, in which no 
noise bumps are observed. 

 

Figure 6.15: Measured output power spectrum of the corrected amplifier at Pin = 0.95 W. 
The noise from the input-drive source is still present about fin. However, the 
noise bumps have disappeared, which validates the proposed correction 
technique. 
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Figure 6.16: Comparison of the measured gain and drain efficiency versus the output 
power between the original and corrected amplifiers. The input power is 
9 W for saturated switching operation in the entire measurements. 
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Chapter 7  

Nonlinear Design Technique for 

High-Power Switching-Mode Oscillators  
 

RF and microwave high-power sources have diverse applications in the industrial and 

scientific fields, including induction heating, electric welding, RF lighting, and plasma 

generation [41], [42], [78]. For power sources, the efficiency is an important aspect because 

high power loss and its resulting thermal stress will degrade the reliability of transistors and 

increase the cost for thermal management. 

A number of works [79]−[85] have been devoted to improve the DC-to-rf conversion 

efficiency of oscillators by adopting the switching-mode amplifier concepts. In [79], [80], 

Class-E oscillators are designed by synthesizing the required phase shift with a feedback 

network. However, the assumption of lumped elements and the approximate calculation of 

the transistor phase shift make the technique difficult to apply to high-frequency oscillators. 

In [81], [82], an experimentally tunable feedback network is added to stand-alone Class-E 

and Class-F amplifiers, respectively, to give an oscillation at higher frequency. The 

small-signal circular function [81] and the required attenuation of the feedback network [82] 

are calculated to fulfill the oscillation condition, but no systematic nonlinear technique is 

proposed for the design. In [83], the design criterion is also linear and based on the 

calculation of a small-signal loop gain providing high efficiency in the high-power oscillator. 

On the other hand, [84] and [85] present systematic nonlinear-design procedures, based on 

the load-pull optimization of the transistor harmonic terminations. These load-pull techniques 

are versatile and powerful, since they are not constrained to a specific embedding topology. 
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However, the performance of the final design is closely dependent on the synthesis accuracy 

at the different harmonic frequencies. 

In this chapter, a new systematic nonlinear technique to optimize the output power and 

efficiency of switching-mode oscillators is proposed. Although constrained to a specific 

feedback-network topology, the technique enables a simple and reliable design of 

high-efficiency oscillators, taking into account an arbitrary number of harmonic components. 

It combines existing quasi-nonlinear methods [86], [87] with the use of an auxiliary 

generator (AG) [38] in harmonic balance (HB). An AG is an ideal voltage generator 

introduced into the circuit only for simulation purposes. It operates at the oscillation 

frequency and fulfills a non-perturbation condition of the steady-state solution. In the 

optimization of the switching-mode oscillators, the AG has a twofold role. First, the AG is 

used to set the oscillation frequency to the desired steady-state value. Hence, circuit 

parameters can be optimized to maximize the output power and efficiency without affecting 

the oscillation frequency. Second, the AG with large voltage amplitude drives the transistor in 

deep saturation region, which leads to the switching-mode operation with high efficiency. 

To achieve a robust convergence of the HB system including the AG, the provision of 

suitable initial values is of importance. Accordingly, a quasi-nonlinear design is initially 

performed using the techniques developed in previous works [86], [87]. This gives the proper 

circuit topology and the initial values for the circuit elements. Here, a nonlinear optimization 

of the amplifier is also carried out, tracing contour plots of the output power and drain 

efficiency versus critical circuit elements. Then the appropriate embedding network for the 

oscillator circuit is determined from the resulting terminal voltages and currents. 

The oscillator optimization is performed with an AG, the amplitude of which is made 

equal to that of the input-terminal voltage in the former amplifier design. This ensures the 

switching-mode operation of the transistor. Using the AG, the circuit parameters are tuned to 

achieve high output power and efficiency at the specified oscillation frequency. Contour plots 
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are traced to determine the optimum element values. The oscillation start-up and steady-state 

stability are verified with the pole-zero identification technique. The influence of the gate bias 

on the oscillator output power, efficiency, and stability is analyzed, together with the causes 

for the common observation of hysteresis versus the gate bias in high-power oscillators. The 

techniques have been applied to the design of a Class-E oscillator, which showed an output 

power of 75 W from a single transistor and 67 % DC-to-rf conversion efficiency at 410 MHz. 

This chapter is organized as follows. Section 7.1 presents the optimization of the initial 

Class-E amplifier and the synthesis of the embedding network. Section 7.2 presents the 

nonlinear optimization of the Class-E oscillator, the verification of the oscillation start-up, 

and the stability analysis of the steady-state solution. Section 7.3 presents the analysis of the 

influence of the gate bias on the oscillator output power and efficiency. Finally, Section 7.4 

presents the experimental results. 

7.1 Optimization of Class-E Amplifier and 
Synthesis of Embedding Network 

The Class-E oscillator considered in this work consists of a transistor that operates in the 

saturation region, and an embedding network that includes the output load. The transistor in 

an oscillator operates in the same way as in an amplifier under the same set of terminal 

voltages and currents [86]. Thus, a Class-E amplifier with optimized performance is first 

designed. Then, the embedding network is synthesized, applying the substitution theorem to 

the optimized terminal voltages and currents [87]. It should be noted that this synthesis 

considers only the fundamental frequency, so the performance of the designed oscillator will 

be further investigated with the proposed fully nonlinear technique in Section 7.2. 
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7.1.1 Optimization of Class-E Amplifier 

The schematic of the Class-E amplifier is shown in Figure 7.1. The active device is the 

MRF183 LDMOS from Freescale Semiconductor. The series LC tank resonates at the 

input-drive frequency fin, which must be the same as the oscillation frequency, fo = 410 MHz. 

Note that the detuning inductance Ldetune, required for the zero voltage switching (ZVS) [4], is 

separated from the LC tank. The input-drive level (Vin) and the output circuit parameters (Cout, 

Qres, Ldetune, and RL) are optimized so that the amplifier achieves a proper Class-E tuning, 

which leads to high drain efficiency.  

The loaded Q-factor of the series resonator Qres is set to 18.  This is higher than usual in 

Class-E amplifiers, where the Q is usually below 10.  The higher Q increases losses slightly, 

but helps to obtain a more stable oscillation. Cout and Ldetune can be calculated using the 

well-known Class-E design equations [23]: 

Lin 
out 2

1836.0
Rf

C
π

=  , (7.1) 

in

L
detune

 2
1525.1

f
R

L
π

=  . (7.2) 

 Assuming 2 Ω for RL, the equations give Cout = 36 pF and Ldetune = 0.9 nH. Since this 

transistor already has an output capacitance that is near 36 pF [88], Cout is completely 

absorbed into the transistor.  

Starting from these initial values, an HB optimization is next performed, using the 

nonlinear transistor model provided by the vendor. The considered value of the input-drive 

amplitude is Vin = 40 V, for which the transistor operates in the saturated region. For the HB 

simulation, 11 harmonic components are taken into account. Contour plots of constant output 

power and constant drain efficiency are traced, respectively, as functions of Ldetune and RL, 

shown in Figure 7.2. As can be seen, the optimum element values to achieve the highest drain 

efficiency are not the same as the ones providing the highest output power. The output power 
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keeps increasing until Ldetune becomes zero, whereas a small detuning inductance is required 

to satisfy the ZVS condition for the highest drain efficiency. This is due to the fact that the 

output power has its maximum value at the net resonance frequency of the output LC tank 

including Ldetune. We choose Ldetune = 0.6 nH and RL = 2.6 Ω, which give the highest 

efficiency at the expense of some loss of output power.  

After setting Ldetune and RL to the above optimum values obtained for Vin = 40 V, the 

influence of the input-drive level is analyzed. A sweep in Vin is carried out, with the results of 

Figure 7.3. As a compromise between the saturated operation and the maximum voltage 

rating of the transistor, the initially considered value Vin = 40 V is chosen. This provides an 

output power of 58 W and a drain efficiency of 73 %. 

 

Figure 7.1: Schematic of the Class-E amplifier. The input-drive frequency is set to the 
oscillation frequency. TLin is a transmission line added at the gate to facilitate 
the layout of the feedback network, which will be synthesized in 
Section 7.1.2. Dashed lines represent the reference planes for the synthesis. 
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Figure 7.2: Simulated output power (a) and drain efficiency (b) of the Class-E amplifier 

as functions of detuning inductance and load resistance. The drain and gate 
bias voltages are 25 V and 4 V, respectively. 

V  

Figure 7.3: Simulated output power and drain efficiency as a function of the input-drive 
level Vin. Ldetune and RL are tuned to the maximum drain efficiency point. The 
dotted line at 40 V represents the determined input-drive level for the 
saturated operation. 
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7.1.2 Synthesis of Embedding Network 

Once the HB optimization of the amplifier has been carried out, the next step is to 

synthesize the embedding network from the terminal voltages and currents at the reference 

planes of Figure 7.1 (indicated with dashed lines). For convenience, both the transmission 

line TLin and the series LC tank are taken inside the reference planes. This choice of the 

output-reference plane facilitates the synthesis of the embedding network. Although the 

optimum terminal voltages and currents are calculated with 11 harmonic components, the 

strong bandpass-filtering action of the LC tank allows a synthesis of the embedding network 

at the fundamental frequency only, without substantial degradation of the design accuracy. At 

all other harmonic frequencies, the drain of the transistor will be terminated by a shunt 

capacitance or Cout, which is the proper harmonic loading for a Class-E oscillator. 

The embedding network is usually configured as a T-network or Π-network [87]. In this 

work, a Π-network is chosen, as shown in Figure 7.4. It consists of three reactive 

elements (jB1, jB2, jB3) and one resistive element (G1) representing the load resistance. For 

this particular network, the 2-port Y-parameters relating the terminal currents, Iin, Iout, and 

voltages, Vin, Vout, are 
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Thus, the four element values are calculated in terms of the terminal voltages and currents, as 

follows: 
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Figure 7.4: Basic structure of the Class-E oscillator, consisting of a transistor, a series LC 
tank, and an embedding network. The embedding network substitutes for the 
input-drive source and output load circuitry of the Class-E amplifier in Figure 
7.1, keeping the same set of terminal voltages and currents. 

In order for equations (7.4) and (7.5) to be solvable, the matrices on the right-hand side 

must be invertible (not singular). As derived in [87], this requires two conditions, easily 

fulfilled by the amplifier: Vout must not be zero and a phase difference between Vin and Vout 

must exist. The element values for the T-network could also be derived in a similar way. 

The fundamental components of the terminal voltages and currents of the optimized 

amplifier in Section 7.1.1 are shown in Table 7.1. The phase of Vin is set to 0° without loss of 

generality. The element values of the embedding network, obtained from equations (7.4) and 

(7.5), are shown in Table 7.2. As can be seen, the network will be composed of two 

capacitors for B2 and B3, an inductor for B1, and a resistive component transformed from the 

output load.  
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Table 7.1: Optimized terminal voltages and currents at fundamental frequency. 

Vin (V) Iin (A) Vout (V) Iout (A) 

40.0 e j0° 2.6 e j 91.3° 19.9 e − j 25.8° 6.9 e − j 52.1° 

 

Table 7.2:  Evaluated element values of embedding network and corresponding circuit 

elements. 

Element G1 B1 B2 B3 

Evaluated value 302.9 mS -147.5 mS 6.7 mS 60.6 mS 

Circuit element R1 = 3.3 Ω L1 = 2.6 nH C2 = 2.6 pF C3 = 23.5pF 

 

 

Figure 7.5 shows the complete schematic of the Class-E oscillator with the implemented 

embedding network. A shunt transmission line of 110 Ω characteristic impedance (TLind) is 

used for the implementation of L1. The 50 Ω output load is transformed to R1 by a simple 

L-section matching (Co = 28 pF and a transmission line TLo) [49]. This oscillator 

configuration with the determined element values will serve as the starting point for the new 

nonlinear optimization, to be presented in Section 7.2. 
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Figure 7.5: Complete schematic of the Class-E oscillator. The embedding network is 
implemented by capacitors (C2, C3, Co), transmission lines (TLind, TLo), and a 
50 Ω load (RL). The AG, consisting of a voltage source and an ideal bandpass 
filter inside the dashed box, is not a part of the oscillator, but will be used for 
the nonlinear simulation of oscillatory solutions in Section 7.2. 

7.2 Nonlinear Optimization of the Oscillator 
Performance 

In Section 7.1, the Class-E oscillator was optimized in terms of the output power and 

efficiency, taking into account the saturated operation of the transistor. However, the design 

has two intrinsic limitations. As already stated, the synthesis of the embedding network is 

carried out, considering only the fundamental frequency. In spite of the judicious choice of 

the output-reference plane to reduce the influence of the other harmonic components, the 

approach is not appropriate to accurately predict the performance of switching-mode 

oscillators in which many harmonics are strongly generated. Moreover, the onset of the 

oscillation from a small-signal level is not guaranteed by the steady-state oscillation condition. 

The oscillation start-up should be investigated separately to check whether or not the 

oscillation is triggered truly and growing to the designed power level. 
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To overcome those limitations, a new optimization technique taking into account all the 

generated harmonic components will be employed, together with the stability analysis based 

on pole-zero identification. 

7.2.1 Nonlinear Optimization through the AG Technique 

The AG technique was initially proposed to avoid trivial solutions in the HB simulation 

of autonomous circuits [38]. However, the AG can also be used for nonlinear oscillator 

design at a specific frequency, using HB. The AG, composed of a voltage source and a 

bandpass filter in series (Figure 7.5), is connected in parallel at a circuit node. The AG 

frequency is made equal to the oscillation frequency fAG = fo. The series bandpass filter is an 

ideal short circuit at fAG and an open circuit at all the other frequencies. Thus, the AG 

amplitude VAG agrees with the fundamental component of the voltage amplitude at the 

connection node. Since the AG is introduced only for simulation purposes, it should have no 

influence on the steady-state oscillatory solution. This is imposed by the following 

non-perturbation condition:  

0/ AGAGAG == VIY  , (7.6) 

where IAG is the current through the AG at fAG. The equation (7.6) is solved through 

error-minimization or optimization procedures, with the HB system as the inner loop. For the 

optimization of the power oscillator, the AG is connected to the same node considered in the 

definition of the input-reference plane in Figure 7.1. Thus, the AG amplitude VAG is made 

equal to the input-drive amplitude Vin = 40 V obtained in Section 7.1, i.e., VAG = 40 V. In this 

way, the transistor is in deep saturation during the nonlinear simulation, which leads to the 

switching-mode operation of the oscillator. The AG frequency, fAG is set to the desired 

oscillation value, 410 MHz. With both the AG amplitude and frequency imposed by the 

designer, two circuit element values must be determined in order to fulfill the 

non-perturbation condition (7.6). In our oscillator, two capacitors in the feedback network, C2 
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and C3, are calculated. The rest of elements are set to the values obtained in Table 7.2. 

Equation (7.6) is solved through optimization in HB, considering 11 harmonic components. 

The simulation predicts 61 W output power with 71 % DC-to-rf conversion efficiency for the 

imposed VAG value, VAG = 40 V. This agrees well with the amplifier performance for the 

same input-drive voltage Vin = 40 V in Section 7.1. 

To investigate the influence of the feedback-element values on the oscillator 

performance, two nested sweeps are carried out in C2 and C3. For each pair of 

capacitance values (C2, C3), the oscillation amplitude VAG and the capacitance (or the 

inductance) in the series LC tank, i.e., Cres (or Lres) are optimized, in order to fulfill the 

non-perturbation condition YAG = 0. It is important to note that the oscillation frequency 

keeps the desired value during the entire double sweep, which is ensured by setting the AG 

frequency to fAG = 410 MHz. In contrast, the oscillation amplitude is modified during the 

sweep, since VAG is one of the considered optimization variables, together with Cres (or Lres).  

The simulated contours of constant output power and constant efficiency in the plane of 

(C2, C3) are shown in Figure 7.6. The efficiency in Figure 7.6 (a) exhibits its maximum value 

near the point resulting from the quasi-nonlinear analysis, corresponding to 2.6 pF of C2 and 

23.5 pF of C3 (marked by a star). It means that the effect of harmonic components on the 

efficiency is not too significant in this particular Class-E oscillator. This is mainly due to the 

series LC tank with high Q-factor, which prevents the harmonics generated at the drain from 

affecting the output load. This confirms the assumptions in the synthesis technique discussed 

in Section 7.1.2. It is also interesting to see that the contour plot in Figure 7.6 (a) has a narrow 

ridge of the efficiency along the dashed line. By changing (C2, C3) along this line, the 

oscillator output power could be optimized further, maintaining a high efficiency of more 

than 67 %.  

As can be seen in Figure 7.6 (b), the output power does not show its peak at the point 

marked with a star but keeps increasing along the dashed line toward the point marked with a 
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square. Hence, the feedback elements can be modified from the original values determined in 

Section 7.1, in order to obtain a higher output power without impairing the efficiency 

significantly.  

C

C
3

C

C
3

 

Figure 7.6: Contour plots of the simulated DC-to-rf conversion efficiency (a) and output 
power (b) in the plane of (C2, C3). For the entire solutions, the oscillation 
frequency is fixed to 410 MHz. The points of a star and a square represent, 
respectively, the original values of (C2, C3) obtained in Section 7.1 and the 
new values nonlinearly optimized in the output power and efficiency. 

For the circuit-element values corresponding to the square point (C2 = 9.0 pF, 

C3 = 18.7 pF), the oscillation amplitude fulfilling the non-perturbation condition (7.6), at the 

imposed frequency fAG0 = 410 MHz, is VAG0 = 97 V. The predicted output power is 85W with 

68 % DC-to-rf conversion efficiency. We did not want to further increase the output power 

because the transistor might become too hot. Figure 7.7 shows the simulated voltage and 

current waveforms at the extrinsic drain terminal. Due to the complete absorption of Cout into 

the transistor output capacitance, the drain current exhibits an almost sinusoidal waveform. 
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The above analysis and optimization are applied to the circuit in its steady-state 

oscillatory regime. However, even if the obtained solutions are accurate and valid, the 

oscillator might fail to start up from its DC solution with the optimized values of the circuit 

elements. The oscillation start-up from the DC regime is due to the instability of the DC 

solution at the oscillation frequency. Thus, the start-up condition depends on this DC solution 

and its stability properties. The stability of the DC solution and that of the steady-state 

oscillatory solution must be separately analyzed, as will be shown in Section 7.2.2. 

 

Figure 7.7: Simulated voltage and current waveforms at the extrinsic drain terminal, 
corresponding to the square point in Figure 7.6. The drain and gate bias 
voltages are 25 V and 4 V, respectively. 

7.2.2 Stability Analysis 

To verify the oscillation start-up, the stability of the DC solution, coexisting with this 

oscillation, must be analyzed. This is done with the pole-zero identification technique, which, 

in the case of a DC solution, requires the calculation of the input impedance function Zin(f) at 

a given circuit node through AC analysis. A sweep in the frequency f is carried out, applying 
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pole-zero identification to the resulting function Zin(f). In our Class-E oscillator, the 

considered observation port, at which Zin(f) is calculated, is defined between the gate node 

and ground.  

For the stability analysis, the parameters C2 and C3 are varied along the dashed line in 

Figure 7.6 by changing C2 in 1 pF steps and calculating the corresponding C3 from the linear 

equation of the dashed line. Pole-zero identification is applied to the DC solution associated 

with each pair of values C2 and C3. For all the points in the line, a pair of complex-conjugate 

poles, with frequency close to the oscillation frequency, is located on the right-hand side of 

the complex plane. The evolution of this critical pair of poles along the dashed line is shown 

in Figure 7.8. All the pairs are located in the right-hand side of the plane with a nearly 

constant imaginary part. This implies that all the points along the dashed line satisfy the 

oscillation start-up condition around 410 MHz. The nearly constant value of this frequency is 

explained by the fact that the oscillation frequency was kept constant at the nonlinear design 

stage by setting fAG = 410 MHz. However, the real part of the pole pair, indicating the 

instability margin for start-up, is very small at low values of C2 and increases as (C2, C3) 

approaches the square point along the line. This means that the square point is less likely to 

be affected in start-up by inaccuracies of the circuit model.  

The stability of the steady-state oscillation at this optimum point must also be analyzed, 

which will also be carried out using the pole-zero identification technique. For this analysis, 

the AG is maintained at the amplitude VAG0 = 97 V and frequency fAG0 = 410 MHz which 

fulfill YAG = 0 at the point marked with a square in Figure 7.6. Then, a small-signal current 

source at frequency f is added to the circuit. By the conversion-matrix approach, the 

impedance function Zin(f) is calculated as the ratio between the node voltage and the 

introduced current. Pole-zero identification is applied to this impedance function. For a 

rigorous analysis, several frequency intervals are considered in the range from 0 to fAG0. 

When sweeping near fAG0, a pair of complex-conjugate poles at this oscillation frequency is 

located on the imaginary axis, as expected in an oscillatory regime [38]. The rest of poles, for 
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all the different frequency sweeps, are located on the left-hand side of the complex plane, 

which indicates a stable oscillation. 

3102 −×× π

C C

 

Figure 7.8: Evolution of the critical pole pair with the values of C2 and C3 varied along 
the dashed line in Figure 7.6. C2 is varied from 1 pF to 9 pF in steps of 1 pF 
along the dashed line and the corresponding value of C3 is calculated from the 
dashed-line equation. At each point of (C2, C3), pole-zero identification is 
carried out on the input impedance function, which is obtained from the 
linearized DC solution. 

7.3 Analysis of the Oscillating Solution versus the 
Gate Bias 

Typically, Class-E amplifiers and oscillators exhibit higher efficiency for gate bias below 

the threshold voltage. However, in the case of oscillators, the start-up does not occur for gate 

bias below this threshold because no actual gain is exhibited by the transistor and so the DC 

solution is stable. Nevertheless, after the oscillation build-up for gate bias above the threshold 

voltage, it might be possible to experimentally reduce this bias voltage below the threshold 
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while the oscillatory regime is still observed. This may lead to an oscillation with higher 

efficiency. As an example, a triggering signal is used in [89] to start up a high efficiency 

oscillation at low gate bias voltage. The requirement for this signal must be due to the 

coexistence of the desired oscillatory regime with a stable DC solution.  

The evolution of the steady-state oscillation when reducing the gate bias is analyzed here, 

using an AG. For the simulation, the element values of the optimized design corresponding to 

the square point in Figure 7.6 are considered. The gate bias is reduced from Vgg = 5 V, 

calculating, at each sweep step, the oscillation amplitude VAG and frequency fAG in order to 

fulfill the non-perturbation condition YAG (VAG, fAG) = 0. When performing this gate-bias 

sweep, the bias can be reduced below the threshold voltage with the HB solution still 

converging to a steady-sate oscillation. A switching-parameter algorithm [38] must be 

applied to obtain the entire oscillation curve. Below a certain gate bias, the AG amplitude is 

swept instead of Vgg and reduced to zero, determining, at each sweep step, the bias voltage 

Vgg and oscillation frequency fAG in order to fulfill the non-perturbation condition 

YAG (Vgg, fAG) = 0.  

In Figure 7.9, the oscillation curve has been traced for four different values of the drain 

bias voltage. Figure 7.9 (a) shows the output power variation and Figure 7.9 (b) shows the 

efficiency variation versus the gate bias. Each curve has a turning point that divides it into a 

stable and an unstable section. As will be shown later, the solid-line section corresponds to 

stable solutions, whereas the dashed-line section corresponds to unstable ones. All curves 

start from zero amplitude at the threshold voltage, Vgg = 3.2 V. At this voltage value, a Hopf 

bifurcation takes place in the DC solution [38], i.e., a pair of complex-conjugate poles at the 

oscillation frequency crosses the imaginary axis. The DC solution is unstable above the 

threshold voltage. The Hopf bifurcation is of subcritical type [38], [60]. Thus, after the 

bifurcation, no stable oscillation exists in the neighborhood of the DC solution, which gives 

rise to a jump to the upper section of the oscillation curve in Figure 7.9. On the other hand, 

when the gate bias is reduced from a voltage above the threshold, the oscillation persists until 
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it reaches the turning point, below which no oscillation is possible. Thus, a hysteresis 

phenomenon is obtained versus the gate bias.  
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Figure 7.9: Simulated output power and DC-to-rf conversion efficiency in the oscillatory 
regime as a function of the gate bias voltage. Four drain bias voltages (Vdd) 
are considered. The solid-line and dashed-line sections represent the stable 
and unstable oscillating solutions, respectively, in each solution curve. 

The stability of the oscillation curves in Figure 7.9 has been analyzed with pole-zero 

identification. A turning point in a periodic-solution curve corresponds to the Floquet 

multiplier crossing the unit circle through 1 + j0 [60]. Due to the non-univocal relationship 

between poles and multipliers, this is equivalent to the simultaneous crossing of the 

imaginary axis by a real pole and infinite pairs of poles ± jkfo, with k positive integer and fo 

the oscillation frequency [60]. For the pole-zero identification, a frequency sweep about fo 

will be initially considered. Near the turning point, a pair of complex-conjugate poles σ  ± jfo 

is obtained at the oscillation frequency. This is an additional pair of poles different from the 

one located on the imaginary axis at ± jfo, which exists for all points in the curve due to the 

solution autonomy.  
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In the solid-line section of Figure 7.9, near the turning point, the pair of poles σ  ± jfo is 

located on the left-hand side of the complex plane. When varying the gate bias from the 

solid-line section to the dashed-line one around the turning point, the pair of poles approaches 

the imaginary axis and crosses it at the turning point. Then, the pair of poles σ  ± jfo stays on 

the right-hand side for all the entire dashed-line section, so this section is unstable. This is 

shown in the pole locus of Figure 7.10, corresponding to Vdd = 25 V. For all the considered 

solution points, another pair of poles at fo, very close to the imaginary axis, is also obtained. 

This is represented by solid squares. It must be pointed out that, to clearly obtain the two 

distinct pairs of poles at ± jfo and σ  ± jfo, high accuracy is necessary in the HB calculation of 

the steady-state oscillating solution.  
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Figure 7.10:  Evolution of the critical pole pair for the steady-state oscillating solution as 
the gate bias varies from the stable section to the unstable one near the turning 
point in Figure 7.9. The solid squares close to the imaginary axis represent 
another pair of complex-conjugate poles at each bias point, exhibited due to 
the singularity of the HB system for oscillating solutions. 
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The hysteresis in the oscillation curves of Figure 7.9 comes from the fact that a high 

power oscillation is built up when the gate bias reaches the threshold voltage. This is related 

to the high input-drive voltage considered in the initial amplifier design of Section 7.1, in 

order to ensure the switching-mode operation. In the oscillator design, the embedding 

network is synthesized from the terminal voltages and currents associated with this 

high-amplitude solution. Once the oscillation builds up at gate bias above the threshold, there 

exists a high-amplitude oscillating signal at the gate over the quiescent gate bias voltage. This 

signal turns the transistor on and off as in a switch, as shown in Figure 7.11 (the solid 

waveform). When the gate bias is reduced below the threshold voltage, this self-generated 

input-drive signal decreases in a continuous manner, so it is still large enough to make the 

transistor operate as a switch (see the dashed waveform in Figure 7.11). The situation is 

different when the gate bias is increased from a DC regime. In that case, no oscillation is 

possible until the threshold is reached, because there is no input-drive signal to the transistor. 

Vgg

Vgg
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Figure 7.11: Gate voltage waveforms at different gate bias voltages. The threshold 
voltage is represented by a thin solid line. The considered drain bias is 25 V. 
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When the gate bias is decreased to the turning point, the self-generated input-drive signal 

becomes marginal to turn on the transistor and so to sustain the steady-state oscillation (see 

the dotted waveform in Figure 7.11). If the gate bias is further decreased, no oscillation is 

observed. As can be seen in Figure 7.9, and in agreement with the previous discussion, the 

gate bias voltage at the turning point decreases with the drain bias, because a larger swing is 

obtained in the gate voltage waveform. 

In switching-mode amplifiers and oscillators, the output power is usually modified by 

varying the drain-bias voltage [4], [32], [81], [83], [85]. The reduction of output power, 

which might be required for some applications, is achieved by decreasing the drain bias, 

which generally gives rise to a severe degradation of the drain efficiency [32], [81], [83], [85]. 

This can be avoided by taking advantage of the possibility to maintain the oscillation at the 

gate bias below the threshold voltage. It enables the reduction of the output power without the 

efficiency degradation. As shown in Figure 7.9 (a), the output power decreases as the gate 

bias approaches the turning point. The efficiency, however, increases with lower gate bias 

<see Figure 7.9 (b)>, as expected in a Class-E oscillator. Hence, the output power can be 

varied by changing the gate bias down to the turning point, which provides higher efficiency. 

It must be noted, however, that the stable oscillation and the stable DC solution coexist in the 

interval comprised between the turning point and the Hopf bifurcation. Each of these two 

stable solutions has its own basin of attraction in the phase space [38]. Thus, the oscillatory 

solution will be robust under noise and small perturbations, but a big perturbation such as a 

high amplitude pulse may lead the system back to the stable DC solution.  

For a rough test for the robustness of the oscillation below the threshold voltage, 

envelope-transient simulations [67], [68] are performed. A sweep is carried out in the gate 

bias, which is reduced from Vgg = 4 V to lower values. At each bias-sweep step, the HB 

solution corresponding to Vgg = 4 V is used as the initial value for the envelope-transient 

equations. Actually, an AG with the steady-state values VAG0 = 97 V and fAG0 = 410 MHz, 

corresponding to Vgg = 4 V, is connected to the circuit for a short initial time interval and 
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disconnected afterwards. This disconnection is carried out with a time-varying resistor [69]. 

Figure 7.12 shows the time variation of the first harmonic amplitude of the voltage at the AG 

connection node. At 0.1 μs, the AG is disconnected for all the Vgg values. After a certain 

transient time, each solution reaches the steady-state amplitude, which decreases with smaller 

Vgg as expected from Figure 7.9. When Vgg is reduced below the turning point, for example 

−2 V, the oscillation is extinguished.  

The simulation of Figure 7.12 shows that, below the threshold voltage, the stable 

oscillation can be reached even when the initial conditions are not in the immediate 

neighborhood of the steady-state values. The robustness of the oscillation will actually 

depend on the size of the basin of attraction for this solution in the phase space [38], which 

would be extremely difficult to determine. 
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Figure 7.12: Simulated evolution of the oscillating solution as the gate bias changes from 
4 V to different values. The fundamental component of the voltage at the 
AG connection node is represented. The AG is disconnected at 0.1 μs. The 
considered drain bias is 25 V. 
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7.4 Experimental Results 
The Class-E oscillator designed following the proposed technique is fabricated on FR-4 

board. Figure 7.13 shows the photo of the oscillator mounted on a heatsink. An air-core 

inductor from Coilcraft with a current rating of 7.2 A is used for the inductor in the output LC 

tank. For tuning purposes, Giga-Trim variable capacitors from Johanson are employed along 

with ATC multi-layer capacitors. The capacitors are tuned to the nonlinearly optimized 

values obtained in Section 7.2 (marked by the square in Figure 7.6), which are 9.0 pF for C2 

and 18.7 pF for C3.  

The output power is measured by a Bird 4022 power sensor and a 4421 power meter. 

Figure 7.14 shows the measured output power and DC-to-rf conversion efficiency versus the 

drain bias voltage at three different gate bias voltages. The gate biases are slightly above the 

threshold voltage of the transistor, to give a free running oscillation. The output power 

increases as the square of the drain bias, as expected in a switching-mode operation [4]. The 

efficiency increases rapidly at low drain bias and saturates at high drain bias. As the gate bias 

increases, the efficiency is reduced, but the oscillator exhibits higher output power. This is 

due to the fact that the Class-E tuning shows the highest efficiency with the gate bias below 

the threshold voltage. The oscillator achieves the highest efficiency of 69 % with 67 W 

output power, and 67 % efficiency with 75 W at higher bias voltage. These results are 

compared with those of other switching-mode oscillators of high efficiency in Table 7.3. 

The hysteresis in terms of the gate bias is also experimentally verified. After the 

oscillation builds up at a gate bias of 4 V, the bias voltage is reduced gradually down to 0 V. 

The oscillation is sustained for all the gate bias voltages. Figure 7.15 shows the measured 

output power and efficiency versus the gate bias. The output power decreases when the gate 

bias is reduced, whereas the efficiency improves, in comparison with the values 

corresponding to the gate bias of Vgg = 4 V. 
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The output power spectrum, measured by an Agilent E4407B spectrum analyzer, is 

shown in Figure 7.16. The simulated spectrum is superimposed with square marks. The 

largest harmonic level is 46 dB below the fundamental, which corresponds to the second 

harmonic component. High-frequency ringing is observed at the fifth and sixth harmonics in 

the measured spectrum. It is due to a parasitic resonance when the transistor is turned on and 

off abruptly [46]. The phase noise is −117 dBc/Hz at a frequency offset of 100 kHz. 

 

 

Figure 7.13: Photo of the Class-E oscillator built on FR-4 board. The transistor is 
mounted directly on a heatsink through a slot in the board. The circuit size is 
49 mm x 35 mm. 
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Figure 7.14: Measured output power and DC-to-rf conversion efficiency versus the drain 
bias voltage. 

Table 7.3:   Performance comparison of published switching-mode oscillators. 

Oscillation 
frequency Output power Efficiency Class Reference 

2 MHz 3 W 95 % E [79] 

800 kHz 1.19 W 86 % E [80] 

5 GHz 0.47 W 56 % E [81] 

1.6 GHz 0.25 W 67 % F [82] 

915 MHz 65 W 65 % Not specified [83] 

1.86 GHz < 0.03 W 61 % Between B  
and F [84] 

6 GHz Not specified 48 % F [85] 

410 MHz 75 W 67 % E This work 

410 MHz 67 W 69 % E This work 

 



 
 
 
                     152 

 
 
 
 

 

Figure 7.15: Measured output power and DC-to-rf conversion efficiency versus the gate 
bias voltage. The applied drain bias voltage is 23 V. 

 

Figure 7.16: Measured and simulated output power spectrum. The largest harmonic is the 
second, at 46 dB below the fundamental. 
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Chapter 8  

Suggestions for Future Investigations  
 

Due to ever-increasing demand for high-efficiency amplifiers in communication 

applications, nowadays the interest in high-performance switching-mode amplifiers rapidly 

grows. Suggestions can be made for the performance improvement of switching-mode power 

amplifiers at RF and microwave frequencies. First, special attention to the waveform shaping 

of input-drive signal can enhance the efficiency of power amplifiers significantly. Obviously, 

a sinusoid is not the optimum input drive to maximize the efficiency of switching-mode 

amplifiers. By imposing appropriate harmonic terminations at the input, e.g., short at the 

second harmonic, the input waveform can be shaped in such a way that the transistor operates 

as a switch more ideally. A substitution generator [90] in harmonic balance simulation can be 

employed to impose the appropriate harmonic components on the input waveforms as well as 

the output ones, required for the efficient waveform shaping. A technique for suppression of 

high-frequency transient ringing at the output waveform will also be worth investigating, in 

order to reduce loss and to improve the efficiency. 

Additional progress will be achieved by employing wide-bandgap transistors such as SiC 

and GaN, recently released in commercial packages. These devices will make a marked 

impact on the switching-mode power amplifiers, which considerably extend the achievable 

output power level and the operating frequency limit. 

The nonlinear stability analysis techniques introduced in Chapter 4 are general-purpose 

and versatile. Although the techniques have been applied to predict and eliminate the 

instabilities exhibited in switching-mode amplifiers in Chapter 5 and Chapter 6, any type of 

amplifiers at any frequency are able to be analyzed by the techniques. Particularly, it will be 
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interesting to apply the techniques in detail to odd-mode oscillations in power-combined 

MMIC power amplifiers and commonly observed oscillations in Doherty amplifiers. In 

addition, a theoretical approach to the origin and the growing mechanism of instabilities 

exhibited from power amplifiers will be a good research issue. This study will be helpful to 

understand the instabilities more in general, so that a universal rule can be devised for the 

design of globally stable power amplifiers. 

Finally, the stability analysis techniques can be employed to design other nonlinear 

circuits in addition to a free-running oscillator presented in Chapter 7. It includes frequency 

dividers/multipliers, injection-locked circuits, and self-oscillating mixers. As an example, an 

injection-locked oscillator (ILO) operated in a switching mode (Class-E) has been designed 

based on the auxiliary generator and pole-zero identification techniques at 1.8 GHz. This 

switching-mode ILO can be used as a substitute of a switching-mode amplifier, particularly 

in transmitter systems [91]. Since an ILO requires a very tiny injection signal to lock the 

power oscillation, it has substantially larger gain and larger power-added efficiency than an 

amplifier. Figure 8.1 shows the simulated output power and efficiency of the Class-E ILO 

and the comparison with those of the Class-E amplifier under the same transistor and bias 

conditions. It can be seen that the power-added efficiency of the ILO keeps a high value even 

with large input power, which is almost the same as the drain efficiency. On the other hand, 

the power-added efficiency of the amplifier decreases significantly from its drain 

efficiency (more than 7 % at the peak envelope power condition). Furthermore, even when 

the input power of the ILO is decreased to a very small value, the output power and 

efficiency keep an high value almost constantly until it loses the locking condition. These 

characteristics will make the ILO useful for many transmitter applications. 
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Figure 8.1: Comparison of simulated output power (a) and efficiency (b) between a 
Class-E injection-locked oscillator and a Class-E power amplifier. The 
transistor and bias conditions are identical between the two circuits. 
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