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ABSTRACT

Let A(x) be & monotone non-decreasing function of x,
and let

X
T(x) = > A(ﬁ) .
n=1

It is possible that T(x) ~ ax log x, but

j__g&ix—lzo, m&m:w.
X x_’&x

X-»o0
If T(x) = ax log x + 0(x), then

].'..i."l Axx > 0y ﬁﬁ A-'L‘lxx < @,
XPoo X0

but A(x) ~ax is in general false. If T(x) = ax log x + bx + °(1o; x)’

then A(x) ~ ax.

The prime number theorem is the special case A(x) = 4) (x)e
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SOME TAUBERIAN THEOREMS CONNECTED WITH THE PRIME NUMBER THEOREM

8 1. Introductory remarks.

Before beginning a discussion of the results to be proved
in this thesis it is convenient to assemble a few standard definitions
and notations to be used throughout the sequel.

n will always denote an arbitrary positive integer.

P denctes a prime number.

x denotes any positive real number.

[x] stands for the "integer part" of x, i.e., the greatest

integer not exceeding x.

X
A summation of the form Z is to be extended over all integers n
n=}

not exceeding the real number x; tlms
x [x]

n={ n=1 ’

w(x) stands for the number of primes less than or equal to x.

A(n)  is the function defined by

lJogp 4if n 1is a prime power, n =pa

A(n) =
0 otherwise
H (n) is the Mobius M-function, defined by
o if n has a square factor
V.(n) =
(<1)F 1 n=p p, *eep,
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W (x) is the function defined by

$@=> Al)
n=1

The symbols O, 0y and ~ are used in the classical sense., That is, if
g(x) is a positive function of x, then

£(x) = o(g(x))

means that :; remains bounded as x * w«,
f(x) = o(g(x))
fx
means8 that 2(x +0 a8 X+ @, ad

£(x) ~ glx)

means that %&}*1 as X = w,

It may be remarked that f(x)~g(x) is equivalent to £(x) = g(x) + o(g(x)).
The prime number theorem was conjectured by Gauss and Legendre
as early as 1798, and was proved in 1896 by Hadamard and de la Vallee

Poussin.. It asserts that

[ ] .;—
" (x) log x

but is usually proved in the equivalent form

’«l"(x) ~ Xy

because the function J) (x) is more directly related to the classical
functions of analysis than is u(x). The known proofs of the theorem
fall into three general categories according to the nature and degree of
sophistication of the methods employed. The first class of proofs
includes those of Hadamard and de la Vallee Poussin, which are based on

the identity



> Alm) . _ &i(s
(1) n§=‘i 0 7(s ’

valid for complex nmumbers s = O+ 1t whose real part O is greater than
one, Here ((s) is the Riemann ( =function:

Ms

;‘; (0> 1),

{(s) =

it

n

and 7t (s) its derivative. The identity relates A(n) and hence
indirectly (b (x) to a function whose properties can be studied by the
theory of functions of a complex variable. Using rat.hei- delicate
estimates of a function-theoretical character, it can be shown from (1)
that h

x 2
b (x) = jo ¢ (1) as ~ %,

and the monotonicity of ) (x) then implies the result

¢ (x) ~x

with the aid of an elementary Tauberian theorem.

The second elass of proofs includes those of Wiener and
Ikehara, which are again based on the identity (1). 'fhis time, however,
the only function-theoretical property used is the non-vanishing of Z; (s)
on the line O = 1, The main burden of the argument rests on a Tauberian
theorem of far greater complexity than the one already referred to in
connection with the first category of proofs. Thus a precarious balance
peens to exist between the roles of function theory and Tauberian
analysis, so that the easing of one carries with it a corresponding
strengthening of the other.
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The third and most recent group of proofs is typified by
those of Selberg and Erdos. These proofs are completely elementary
in the technical sense that the theory of functions of a complex variable
is elimina‘ted altogether. It might be conjectured in view of the
preceding discussion that the effect of this would be to make the
Tauberian element completely dominant, but at first there seemed to be
no Tauberian arguments whatsocever in the Selberg-Erdcs proof. It will be
shown in this thesis that s First appearances to the contrary, ﬁhe whole
proof is purely Tauberian.

This is accomplished by studying instead of (1) another
formila connecting () (x) to stendard functions of analysis, namely

(2) >4 () = 1og [x]1
n=1

{for a proof see for example [1], p. 76).
It is interesting to note that this relation was used by
Chebyshev in his celebrated memoir on the prime mumber theorem in order

to prove the existence of positive constants ¢4 and ¢, such that

c1x<«l)(x)<c2x.
Thus he showed that () (x) 4is of the order of magnitude of x, but
failed to establish the existence of |

i 0
Xbco x

which would be needed for the proof of the prime mumber theorem,
Accordingly the identity (2) was abandoned by later investigators in
favor of (1) which, as has already been remarked, ultimately formed the
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baé.is of the first proof. In fact Landau stated in his Handbuch ([1]

Pe 597) that Chebyshev's failure was due to the intrinsic impossibility
of deriving the prime number theorem fram (2), This assertion is,
however, incorrect, as will be seen in what follows.

The problem, then, is to stert with (2), and conclude, using
only‘elementary methods, that ¢ (x) ~x. This is clearly a special
case of the following question: If A(x) 3is some function of x, and
if information is known about the function

X x
T(x) = ;1 A(;) ’

then what can be said about A(x) itself? In particular what hypothesis

on T(x) 1is needed in order to conclude that
A(x) ~ ax (a a constant)?
A necessary condition on T(x) would certainly be

T(x) ~ax log x »
For if A(x) ~ ax, then

b4
log x : x
t) = > a@ e S ald) .
-n=l = X
n log x

X
When n 1s in the range between 1 and 10’;){,;-'& a8 x » «, and
£ may be applied there to give

therefore A(E) ~a=



u6-
X

' log x x
Tx) = 2 [ZE+o@N+ >~ o)
n= - X
= Jog x
= ax log (10; x) + o(x log 10: x) + O(x log x - x log ﬁ )

]

ax log x + o(x log x) + O(x log log x)
~ax log x «
An examination of the familiar Tauberian theorems of analysis might lead
one to suspect that conversely the condition
(3) T(x) ~ax log x

plus a Tanberian condition such as the monotonicity of A(x) should be
sufficient to guarantee that A(x) ~ ax. It turns out, however, that the
situation is considerably more complicated than this. In fact an example
is given in 8 2 in which (3) is satisfied (with a > 0) and A(x) 1s
monotone non-decreasing, but where
0= ln %5)- < Iim ‘5%1 = w,

X0 X-vc
Thus it can be seen that something stronger than (3) is needed.

In 1950, H.N. Shapiro [3] proved that if

(4) T(x) = ax log x + O(x),

and if A(:_:) is monotone non-decreasing then the Chebyshev estimates

ex < A(x) < ¢ X
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(where ¢y and ¢, are positive constants) hold for all large x.
Actually Shapiro considered only the special case where A(x) is a step
function, but his method works in general, and this extension will be
made in 8 3, as it is needed later on.
Thus the strengthening of (3) to (4) eliminates the extreme
pathology méntioned abéve, in which
lim M;_Q = 0O, 1im %E)- = we
X->00 X0
It may be interpreted as a weak Tauberian theorem in the desired direction.
But unfortunately Shapiro's condition (4) still does not imply A(x) ~ ax,
except in the case & = O, The proof of this is given in 8 4.
One must therefore loock for an even stronger hypothesis on
T(x)e Such a condition was given by Landau [2], who proved ([1], pp.599=

604) that if A(x) is monotone, and if

(5) T(x) = ax log x + bx + O(w (x)) _ (b a conétant)

with w (x) monotone increasing and such that

o0
[~ e,
1 x

then A(x) ~ ax.

Later Ingham [4) relaxed this to the requirement that A(x) be

monotone, and

(6) T(x) = ax log x + bx + o(x) «

Unfortunately the results of Landau and Ingham are unsuitable for the
present prupose of deriving the prime number theorem in an elementary
manner from (2), because their proofs rely on machinery of greater depth
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than the prime number theorem itself, including the theory of functions
of a complex variable,
Accordingly the problem is tackled afresh in 8 5, where it is

shown by elementary means that if A(x) 1is monotone, and if
) = p 4

(7) T(x) = ax log x + bx + o(-——log = ) s

then A(x) ~ ax.

This condition is intermediate between (5) and (6), so that the resulting
theorem is better than Landau‘'s, but not as good as Ingham's., However,
it suffices for all the cases commonly encountered, including the case

of the prime mumber theorem, where A(x) = ) (x). For then the
corresponding T(x), by identity (2), is log [x]! , and using Stirling's
formula, it is seen that

T(x) = x log x - x + O(Llog x)e
Thus (7) is easily satisfied with a =1, b = =1, and since ¢ (x) 18
monotone, the desired result ¢ (x) ~x follows. This accomplishes
the Tauberianization of the Selberg-Erdos proof, and also brings out its
relation to the work of Chebyshev, |



8 2. A pathological example.
In this section an example will be given of a monotone non-

decreasing funetion A(x) such that

X
T(x) =2 A() ~ax log x (a > 0),
_ n=1 .
but where
un 2xl-o
X-co
and

T Al -,

xvo X
To construct such an example, consider a sequence of points X, such that
x4 < x, < Xg < ss+ » o, and an increasing sequence of positive real

numbers ¢4 <e, < e, Define A(x) tobe O if =x < X4 and if

x11:53:<xm+1 ’

t
» A(X) = cmo

Thus A(x) is a step function which jumps at the points x,» and whose

values are the ck .

handled as follows. By definition,

The corresponding function T(x) may then be

x) = x
A(n) k iz %S0 T

x x
<n s . and is
T+ *
therefore fulfilled by [;t] - [x-f-] different integers n. Hence
+1

The condition x < % <X is equivalent to
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X
T(x) = nZ&_1 a®) = ([;:’51-] - [x-’;-]) o) + ([;’i—] - [;‘;]) eyt ee [x-i] o,

(the series naturally breaks off because x < X, )e Rearranging,
' - -)-L -x— - [ XX —;- -
T(x) [11] ey + [x2] (cy =) + + ["m] (e =cpq) o

Since [6] £ @, T(x) ecan be estimated from above by writing

x x L X N L -
'.t'(::)f_x °, +--(c2-c1)+ + 2= (e, °m—1)

1 ) *n
(8)
c c,=C cC =cC
- x(i + L—i + oee + -n;-—m—-.‘-)
21 x2 xm

On the other hand, a lower estimate is gotten by using ([e] > e - 1,
Thus

T(x)>(f;-1)c1+(fz-1) (6 = ) + ooe 4 (1-1-‘--1) (g =)
m _
-em“'i)_'c ~C. 4+ ¢, =9 mage +¢
1 21 m m-1

Cc c, ~c c
(9) =.x(;l+-2‘;--1+u-+ 2

1 2

c (4]

- c =¢
= x(<l + =2 1+,,.+J.t_x_1.n:.-3.)-cm,

X X2 ™

The inequalities (8) and (9) are applicable to any step function A(x)

of the type under consideration, and will prove useful later on.

2 2
Now choose xk=2k,and ck=k'2k » Then the upper

estimate (8) becomes
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2 2
T(x) <x 1 +Zm E’zk = (k-1) z(k 1) }

k=2 21;2
3 > k=l m(ntl)
=x {1+2 k=2 et =x 5=+ 0(1)
k=2 k=2 2 !
- 2 k- |
(since the series > he] converges). But m was determined so
k=2 2
that 2
2
2m £x< 2(m+1)
2 _logx
Hence m <1og2 s and so

(10)  T(x) <x %—g—g-g + o vViog x) .
Similarly, the lower estimate (9) becomes

2
T(x)>x{1+Zk P } >

k=2 2
2
{ﬂ“,g—"'l)-+o(1)} -2,
Again using the fact that

2m2 < x < 2(m+1)2

2 og X log x
it follows that (m+1) >1og2’°r m > 1082_~1,andso

(11) T(x) >x{log2 + 0( V1og x )} .

Inequalities (10) and (11) together imply

T(x) = ’—‘-1-95-£+o(x1/1“").



On the other hand 1lim ‘-“%—l and lim -A-g-‘-)- can be caloulated as followse
X0 X
2
At the points x = ’

2
A o2t
Mr .22 oy

which is unbounded. Hence

Tm A, |
X"wx

| 2
But immediately to the left of these points, say at the points x = 2® -¢,

2
Alx) _ (m-1) 2(m-1) - =1
x

2 2n-1 ?
Zm -t 2

which becomes arbitrarily small. Thms

un 2o,
X+

This completes the constructicn of the proposed example in the case
a= ]-.;%—2- o Of course a similar example can now be constructed for any
a > 0 by multiplying this particular ore by a log 2.

It is worth noting that the error O(x 1/log x) is better than
the hound o{x log x), which is all that would be required. As a matter
of fact even sharper bounds. can be obtained by a modification of _t.he
above construction. It is not difficult to see that by choosing

q
x =28
n
- a
c’n---nq‘l 2 (@>1)

a function A(x) with
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u HEl-o, g AE - o

X
X~

P(x) = 55:-"6-3555 + O(x(log x)q"Vq)

will result. By taking q arbitrarily close to 1, examples can
therefore be created with
T(x) = ax log x + O(x(log x)€)

It will be seen in the next section that this pathology is eliminated
by imposing Shapiro's condition

T(x) = ax log x + 0(x),

and the above result makes the necessity of some such condition obviocus,



8 3, The Shapiro condition,

In this section the results of H.N. Shapiro [3] are extended
from the case of a step function to that of an arbitrary non-decreasing
function A(x). Only the case a > 0 is considered here, since in 8 4

a stronger result will be proved for a = 0.
THEOREM 1. If A(x) is monotone non-decreasing, and if

T(x) = Ei A(:f) = ax log x + 0(x),
n=

then there is a (positive) constant ¢y such that

A(X) < ezx .

Proof. Assume without loss of generality that A(x) =0 for x< 1
(this affects neither the hypothesis nor the conclusion). Using

Stieltjes integration,
x x
1) =2 @) = [ a)alel .
=1 1
Integrating by parts, the integrated terms vanish, and the result is

X
T(x) = = f1 (4] aad) .

Making the change of variables t =

-3 b

s this becomes

X
T(x) = f1 (%] aa(u)

Hence
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' x x/2
(x) - 215) = j1 (%] asw) - 2 f1 [£) aa()

x/2 x
= f1 ([ﬁ] - 2[-2-xu-]) dA(u) + fx/z [ﬁ] da(u)
Since [6] - 2[§] > 0, and since A(u) is non-decreasing, it follows that

x
Tx) - 21(3) 2 Ix/Z (% aa(u)

= [ w@ = -a@ .
x/2 _

But by hypothesis,
T(x) - 2‘1‘(%:) =xlog x + O(x) = %x_ log -125 + 0(x) = o(x) .

Hence A(x) - A(g) < Kx for some constant K. This implies that

4G)-a@) <k 3

AZ) - AG) <K T ete.

By summation,

A(x) < 2Kx = ¢ x 'q.e.d.-
THEOREM 2. Under the hypothesis of Theorem 1,

x
f %=alogx+0(1)
1

Proofs As in the previous theorem,

g————

16 = [ “E aw .



Using the fact thet [{] = ’;GE + 0(1), this becomes
x x
= dA(t
T(x) = x _]; —-é—l + f1 0(1) da(t)
By the monotone character of A(t), the second term on the right is
x
o f1 dA(t)) = 0(A(x)) = O(x),
using theorem 1 for the last step. Hence

T(x) = x flx d-é':(bﬂ+0(x).

But by hypothesis
T(x) = ax log x + O(x) »

Comparing the two expressions for T(x), it is seen that

x
x f1 %=axlch+0(x),

X
f d—%ﬂ=alogx+0(1).
1

THEOREM 3. Again let the hypothesis be the same as in thecrem 1. Then

there is a positive constant c4 such that

A(x) > C4X o

Proof: WUrite

x
f d-‘iél)-=alogx+1:t(x).
1
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By theorem 2, there is some constant M such that
IR(x)| <M.

2M+1

Choose c1 = e a « Then

T . famw L [ aw
J [ -

t 1 t

]

a log x + R(x) - a log c,x = R(cjx)

v

-alogc1-2M=1.

Hence
Mo o L [T g L fx dh(t)
cyX cX Yy = ex yx
x
> M > 1 .
T Ye.x t
1
Thus
A(x) > c,x Geeede

Combining theorems 1 and 3, there result the Chebyshev inequalities

cqx < A(x) < C X o



8 /. lLimitations of the Shapiro condition.

It has been shown that if

T(x) = ax log x + O(x),
then inequalities of the form
x<A(x)<e

(4} X

1 2
hold with ¢ and c, positive, so that A(x) is of the order of

magnitude of x. The question of whether or not
A(x) ~ax

can be asserted is dealt with in this section, and is answered in the

affirmative for a = 0, but in the negative for a > Q. ‘

THEOREM 4. Let A(x) be a non-decreasing function of x, and suppose

the Shapiro condition is satisfied with a = 0, i.e.,

T(x) = 0(x)
Then A(x) ~ ax, 1.6y A(x) = o(x).

Proof. The proof is by contradiction. Suppose that A(x) # o(x). Then

there is some ¢ > 0 such that

(12) 5%1 >¢ infinitely often .

Suppose that this inequality occurs at a sequence of points

x4 < X, < x3 < ess » v, Now let B(x) be the step function defined by

A(0) if X < x
B(x)=

<x<
€x if Xy SX <X
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Then inequality (12) asserts that at the points X9
A(x) > B(x).

By the monotonicity of A(x), and the fact that B(x) 1is a step
function, it follows that ‘
A(x) > B(x) for all x.
Hence also
x x X
) =2 4@ 22 8@ .
n=} n=}

The latter sum can be estimated by the general inequality (9) which
was developed in 8 2 for step functions. The steps ¢, 2are given by

cm=5xm’
and hence (9) yields
x X, X, =X X =x
=] @ *1 %2 *n -
x x x
1 2 m-‘l)
= ex T + 1= 4t 1B )| (e )
(2 )

iv

«F (-3

k=1 X+

The proof can be completed by showing that

because the hypothesis T(x) = O(x) 4is then violated, giving a
contradiction. But an infinite series of the form

]

>

k=1
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with ¢,_> O diverges if and only if the infinite product

k

[

TT @ -¢.)

k=1
diverges to 0. In this case the corresponding product is

o0

TT X
=ox,?
X
and its partial products telescope to x--N-— s Which tends to 0 as
+1

N » qoe.do

THEOREM 5. For any & > 0O, there is a monotone non-decreasing funetion
A(x) such that
X >4
Tx) = > A(g) = ax log x + O(x),
n=1

but

L

1in Af;:z < Iim A(:)
X+ X+
Proof. Choose a fixed number c¢ > 1, and define the function A(x) by

+
cm if c:m £x< cm 1

Alx) =

0 if X<Coe

A(x) 1is a step function whose jumps occur at the points X, = ¢, and
whose steps are of heights ¢, = c®. Hence inequalities (8) and (9)

of 8 2 may be applied in order to estimate T(x) from above and below,



From (8) it follows that

2

B ¢ c cm

o c2 cm—‘l
=_x+(c-1)x(:5+:§+u-+-;5-)
=x+m(1-—1c-)x.

Since c¢" £x< cm+1, m is at most '1‘53‘&' » Hence
(13) T(x)ﬁx-!»il—]-o'-ggf 1-1.

On the other hand (9) asserts that

c 2 n_ m=] n
c
1 n
=x+m(‘l-;)x-c .

1, it follows that

Again using " £x< "

(14) T(J:)>x+(]_0gc 1) (1--)x~x.

Combining inequalities (13) and (14), the result is

1
1 - -
- C
(15) T(x) = Tog o * log x + O(x) .
1 -1
Thus the Shapiro condition is satisfled with a = log(; . But it is

immediately seen from the definition of A(x) that
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(16)

Q-

=un A8 gy A oy
X0 x X0

To get an example for any a > 0, multiply this particular example by

log o
y oL
[¢]

Then equations (15) and (16) become

T(x) = ax log x + O(x)

limezzalogc
=  x c -1
X0

EA(::Z:glog‘c
X0 > {1 =

[
This shows somevhat more, for by choosing c¢ large, examples are
obtained with Lim ‘%’9- arbitrarily small and 1lim %—’5)- arbitrarily

X-*c0 b g
large. Qqee ode
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8 5, A sufficient condition.
In this section a sufficient condition for concluding

A(x) ~ax will finally be established, namely

)s

T(x) = ax log x + bx + o(loz -

where' b is a constant.
LEMMA 1, If P(x) is any function defined for x > 1, and if
x
G(x) = log x Z F(-E),
n=}
then

X
(16a) F(x) log x + > F() A(n) = gl‘r&(n) &) ,
n—=

n=1
Proof. Making use of the identities

Ap) = 2 (d) log 2
(n d'n H( %8 3

Z m(d) =

dln
0 if n> 1,

the left hand side of (16a)may be written in the form

> r@ 1gE X I.L(d)+£ rE 2 p@ gl .
=t © n d|n =1 ° dln d

Since log % + log -3 = log 3—‘ s this becomes



- u -
X X X
> PE) 2 @) leg 3
n=1 djn

Now set n = md, and the double series can be rearranged to give

> u@ 1 X,ZgF") > u@ o
og E X o

= = i =1a G

by the definition of G. q.e.do

THEOREM 6. let A(x) be any function of the positive real variable x,

and suppose that

T(x) =Zx A(-)-axlogx+bx+o( )

log x

Then
x
Alx) log x + 2_ A(-;-) A(n) = 2ax log x + o(x log x).
n=1

Proof. Apply lemma 1 to the funetion
F1 (X) = A(x) .

The corresponding G is

log x Z A(—) = P(x) log x

Gy (x)
e n=}

ax(log x)2 + bx log x + o(x),

1]

using the hypothesis on T(x). By lemma 1,

A(x) log x + Zx1 A(ﬁ) A(n)
n=

=a 2 pm) X (og 5P + 2 % 10g X+ 3 p(n) o)
..an=1}1.n S (log 3 +n=1}.l(n)bnlogz+n=1p(n Q(;
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x
Now 2 ‘u(n) o(ﬁ-) = o(x log x). Because

=1
x
x £\ _ log x x x x
| nZ=1 pa) o) = 2 jaln) o) + f‘“_ (@) 0F) .
B = Jog x

Since | i,l(n)l < 1, the first ternm is

x
log x
o( > §)=o(xlogx),

n=1
and the second term is

x

of 2

log x

=] ]

= 0(x log x = x log )

X
log x

0(x log log x) = o(x log x) .

Therefore

(17) A(x) log x + Z:: AE) A@)
n=

x X _
=8 é_:—, pM(n) ,'é (Log %)2 +b né‘l y.(n) -ﬁ-l‘og %:- + o(x log x).

Next apply lemma 1 to the function

F(x)=ax+b -y,

where Y is Fuler's constant. The corresponding G is
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x )
log x 2_ (a§+b -Y) = log x(ax log x +yx + 0(1) + bx = ¥x)

G2 (=) n=1

ax(log x)2 + bx log x + 0(log x).

Hence by lemma 1,

: X
(ax + b =) 1.>gx+z1 E+b-y) A@)
n=

= Z u(n) 2 (log X)* + Z pin) b E10g £ + Z i(n) 0(Log %)

n=1

Again the last term is o(x log x). Because I‘H(n)l <1, and
X X
o(Z1 10g %) = of f log ¥ at) .
n=

Making the change of varisbles t = E s this becomes

o( j;x 3_‘..1_"’.:2_‘.1.@.2) = 0(x) = o(x.log x)

Hence

: X ax
(a.x+b-y)logx+z1 (-;1-+b-y) An)
n=

(18)
=g Z }x(n) = (log —) +b Z_ p(n) = log X 4 o(x log x)e
n=1 n=1
In equations (17) and (18) the right hand sides are identical. Therefore
the left hand sides differ by o(x log x), i.e.s
A(x) log x + > A%) A(n) = (ax +b =) log x

n=1

"'Z (ﬁ +b=Y) An) + o(x log x)e

n=1
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But X
2 A(n) = 0(x) = o(x log x),
n=1
and
x
> %&l= log x + 0(1),
n=1

as is seen by applying theorems 1 and 2 to the special case A(x) = { (x)e
Hence

x
(19) A(x) log x + 2_ A(f) A(n) = 2ax log x + o(x log x) Qe8edo
n=1 '

Formula (19) is very suggestive of Selberg's identity, which is the
key to the elementary proof of the prime number theorem. In fact, it
would be possible to proceed from here along much the same lines as
those of Selberg himself, However, a more direct line of attack will

be taken.

LEMMA 2. Iet A(x) be a function of x such that A(x) = 0(x). Then

e

x % vx |
2 a®aw = [ a@apw s [7 6@ w0,

n=1

Proof. Z: AE) An)
n=

X
Joa@ e

Jx x
J xA(%)d«L(t) + f}/_ AR ad(r)

1 x

In the second integral, make the change of variables u =7 « Then

AL

f
1 (u
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Integrating by parts, this can be written as
vx /X
ARG R [T e @ ae = [T aw o .

It is now convenient to introduce the following notation. Let

i
3
>
3
[

i
16l

TR
5

1

£ E

THEOREM 7. If A(x) is a monotone non-decreasing function of x
such that

x
T(x)=2;1A(§)=axlogx+bX+0( )s

X
log x
then

ay<a<fB<ad .
Proof. By theorem 6,

x
(20) A(x) log x + Z_1 A(ﬁ') A(n) = 2ax log x + o(x log x)e.
n=

By theorem 1, A(x) = O(x), and hence lemma 2 can be applied to the
second term of (20), giving

v v
A(x) log x + f1 * A(i_f—) a(t) + f! * Y (f) dA(t) = 2ax log x + o(xlogx)



Dividing by x log x, this becomes

f g &) an(e)

vx
(21) %ﬁ*'xllgx f1 A(%)dwt) " x log x

=2a+0(1)o

Now let x - = in such a way that
Axgx} “a.

Then the right hand side of (21) tends to 2a, and the left hand side

can be bounded as follows. For any € > O,
X b4
(22) 2 < (p+e) ¥
X x
J @) < (0+€) Y

for sufficiently large f o In(21) ¢t runs from 1 to vX, and so
T runs from VX to x. Hence as X + =, inequalities (22) may be

spplied, glving

f Y &) aa(e)

vx
1
x log x f1 A(%) dl’b(t’)+xlogx

Vx Yx
w= LT ratam s [T GroFaw

<xlogx

logx[(ﬂ"' £) log vx + 0(1) + a(d+ €) log Vx + 0(1)]

= g +a25+5 5+ O

1ogx ’



Theorem 2 has been used here in carrying out the integration.
Together with (21) this inequality gives

B+ad tetac
2

a + > 2a

Since this holds for any € > 0, it follows that

(23) a+-g~+-a-2;5-32a

Similarly, by letting x - =« in such a way that

. p,
and bounding the integrals in (21) from below, it can be seen that

a
(%) B+3+2coa,

Inequalities (23) and (24) can now be applied to the special case

A(x) = (x), where a=y ,3=56, and a=1 to obtain-

y +o022

Yy +0<2.
Thus it follows that Y+ & = 2, Next multiply (23) by 2, (24) by =4,
and add, getting
20+ B +ad > 4a
~4f=2a =22y > -8a

~33 + ad - 2ay > -4a
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Using Y+ 0 = 2, this becomes

=33 +ad =2a(2=-86) > ~ia
~33 +ad =4a +2a0d > =48
=303 + 3ad > 0,
or finally,
B 2ad . |
Similarly, if equation (23) is multiplied by 4 and (24) by =2,
there results
4o +23 +2ad > ¢ga
2f =a ~ay z-ia
Adding,

30.+2a5 ""ay 243.

From the fact that Y + & = 2, one gets

3a+22(2=-y)~ay 24a
3a+4a =22y =~ay > 4a
3a¢ =~3ay 20
a 28y .
Combining these inequalities, it follows that

ay s GS ﬁ _<_a5 'q.e.d.
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As an application of theorem 7, let
X
M(x) = 2_ . (n),
n=1

and let x
A(x) = 21 (pln) +1) = M(x) + [x]
=&

Since }.L(n) + 12> 0, A(x) 1is a non-decreasing function of =x. The

corresponding T(x) 1is

> {u® + 3]

n=1

X
1+ [

n=f B

xlog x + (2y~1)x + 0(1/;);

The hypotheses of theorem 7 are therefore satisfied with a =1,

b=2YyY -1, and so

Y$QW<EM§5,

3
i

The prime number theorem asserts that Yy = o = 1, and hence that

1im !fﬂﬂ).
X0

This gives an alternative derivation of the result of Landau's
dissertatit;n, that ¢ (x) ~x implies M(x) = o(x) in an elementary

WaYe
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Actually, somewhat sharper inequalities can be obtained by
the same method. Since

],L(n)=0 if n=0 (mod 4).

the function A(x) = M(x) + [x] - [%] is monotone non~decreasing, and

the corresponding T(x) is
T(x) = % x log x + %(2)/- 1)x + 0(Vx).
Hence by theorem 7,

M(x) + [x] -~ EE]_

b 4

M(x) + [x] - @

X

,5%5,

1E

< 1im
X-»00

2(y-1)<11m M<m M<2(5-1).
4 Txwm X Txew X T4

By contimuing the process the inequalities

S(y-1sun Hal 1y M) & 5oy
11 Xre X x w
will finally result, since the square~free numbers form a set of

6
measure =3 .
a®

Theorem 7 asserts that of all non-decreasing functions

A(x) satisfying

£ )
log x

(25) T(x) = ex log x + bx + of



with a fixed a, the one having the most widely separated limits of
indetermination

M%’Q and m‘ﬁ?:
X0 X0

is a ¢(x). Hence in carrying out the deduction of A(x) ~ ax from
(25) it is sufficient to work only with this special case. One may
therefore follow the Selberg-Erdos line of attack, or more appropriately

the modification of it due to E.M. Wright [5]. Thus we have

THEOREM 8. If A(x) is non-decreasing, and

T(x)=axlogx+bx+o(1ozx),

then A(x) ~ ax.

In conclusion it should be mentioned that this elementary
method‘ will give Tauberian theoreme other than the one workéd out
in detail. For example, it is not difficult-to see. that if A(x)

is monotone non=decreasing, and if

- .2 X
T(x) = ax” + bx + °(1_—_og x),

then A(X) ”'—62' xzo
"
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