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ABSTRACT

i}_go;i
Feynman has used the wave function #Z e to represent
i

an excitation (phonon or roton) of momentum hk in liquid helium.

# 1s the ground state wave function, and the sum runs over all the
atoms in the liquid. The resultant energy spectrum is correct for
phonons (k < 0.5 £71) and has the qualitatively correct feature of
exhibiting a minimm at k =2 £~ L (roton region). Landau and
subsequent workers have shown that the specific heat and second sound
velocity data require the value A/& = 9.6°K, where A 1s the minimum
roton energy and # 1is Boltzmann's constant. Feynman's energy spectrum

locates the minimum correctly but gives 4/ = 19.1°%K,

iker
A wave function of the form ¢ Zj e J exp (1 Z;:éj g(gkj )) is
k

proposed here to represent an excitation of momentum ‘hk. The function
g represents the fact that the neighbors of a moving atom execute

some smooth pattern of backflow around it; g is taken as the potential
function for a dipole velocity field, the strength of the dipole being
left arbitrary until the end of the computation. To facilitate
computation, it proves useful to replace exp(iZ g(?-kj) by 1 +12 g(;kj).
This procedure is mathematically legitimate, not only because > g(;;kj)
is small, but because the wave function is inserted intec a variational
principle for the energy and is guaranteed to yield an overestimate.

The strength of the dipole 1s finally chosen to minimize the energy,
yielding the new value A/% = 11.5° . The optimal value for the dipole
strengthb is very close to the "classical' value which one would expect

on the basls of a current conservation argument.
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INTRODUCTION

in analogy with the ideal Bose gas, which condenses when the
femperatnre is low enough, a Bose liquid might be expected to demonstrate
some remarkable quantum-mechanical properties at very low temperatures.
But with the single exception of helium, all Bose liquids freeze before
they have a chance to menifest their extreme quantum-mechanical propertiest
Liquid helium is consequently an attractive subject of investigation for
both the experimenter and the theorist. The latter is in an especially
comfortable position, since he can, without the risk of embarrassment,
mske statements which presumably apply not only to helium but ailso to
the general imperfect Bose liquid.

Liquid helium undergoes a thermodynamlic transition of the
second kind (i.e. the specific heat is discontinuous) at 2.19°K.** Below
this temperature, many of the properties of the liquid are explained by
Tisza's phencmonologicsl two-fluid model, which is described in greater
detail below. Landau realized that the macroscopic properties of the
1liquid would resemble those of a mixture of two fluids, provided that a
certain form is assumed for the energy-momentum curve of the elementary
excitations in the liquid, Starting from first principles, Feynman has
recently computed an energy-momentum curve which is based on certain
ideas about the nature of the wave functions representing the excitations.
The shape of the curve is in qualitative agreement with Landau's, but

*
The low mass and consequent high zero~point motion of He atoms melt

any lattice structure which might try to forms On the basis of this
argument, one might also expeect molecular hydrogen to remain liquid
at very low temperatures; but the high polarizability of the molecules
(as contrasted with He atoms) creates strong intermolecular forces
which make the formation of a regular structure energetically advan=
tagecus despite the high kinetic energy involved.

The transition is known as the "lambda transition" because of the shape
of the Specifiq heat curve near 2.190K. The resemblance is not close,



-2-

some serious gquantitative discrepancies exist. In the present thesis
we pursue Feynman'a idéas somewhat further and construct a more
cbmplicated wave function to represent an excitation. The energy-
momentum curve computed with this wave function will prove to be in
better agreement with Landau's.

The first section of this thesis describes the two~fluid
model, as pﬁt forth by Tisza, and the subsequent work of Landau. The
second section deals with Feynman's work, and the third section with
our refinements of it. In addition to the actual computations, the
third section contains discussion of approximate methods which may be

useful in other work of this sort.



I. THE TWO~-FLUID MODEL
 migza [1), [2], [3] found that many aspects of the behavior of
liquid helium below the A ~point can be understood by regarding the
liquid as a mixture of two fluids, a normal and a superfluide The two
'fluids, though completely mixed together, are assumed capable of flowing
with different velocities. The superfluid flows with no viscosity
along surfaces and through thin tubes. The proportion of the liquid
vwhich is in the superfluid state is assumed to decrease monotonically
with increasing temperature; the proportion is unity at absclute zero
and decreases until the superfluid component vanishes at some temperature
which is identified with the lambda temperature. At least at temperatures
above 1°K, the normal fluid carries all the entropy of the liquid.
The major quantitative success of Tisza's theory was his prediction of
temperature waves ("second sound") and his calculation of their velocity
in terms of thermodynamic data. Tisza made no serious attempt to justify
his model from a microscopic theory based on first principles., Hence
the theory does not predict such numbers as the proportion of superfluid
at a given temperature; but it does give relations among various
measurable quantities,
Landeu [4] made considerable progress toward an explanation
of the behé.vior of liquid helium from first principles. He argued that
there are only two kinds of 1ow~enérgy excitations of the liquid: "phonons™
and "rotons". The phonons are ordinary longitudinal sound waves; the

energy of a phonon with momentum p is

E

cp | (1)
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where ¢ -is the velocity of sound (about 240 m/sec). Any vortex motion
of the nuid mst _be‘ carried by the rotons. Landau introduced quantum=
mechanical operators to represent the current, density, and velocity at
a given point in the fluid; he found that the operators corresponding to
‘different components of curl ¥ do not commute, and by analogy with the
theory of angular momenta concluded that vorticity is qua::x‘t.izecljG
Consequently, "no states can exist in which curl y would be non-zero,
but arbitrarily small over the whole volume of the liquid." A roton
must therefore have a certaln minimum energy 4. Landau originally

%
assumed that the energr* of a roton with momentum p is

E=4+ p2/2/u

vhere M is some kind of “effective mass",

At sufficiently lov temperatures only a few phonons and rotons
are present, and the interference among them is negligible. Phonons are
known to obey Bose statistics; the statistics of the rotons proves to
be unimportant because at temperatures of interest o/RT is 86 large
as to make all kinds of statistics equivalent. Knowing the spectra and
statistics of the excitations, one can treat them as an ideal gas
(neglecting interference) and thﬁs obtain the partition function for the
liquid at low temperatures. In this way Landau obtained a formula for
the specific heat, and found that he could fit the data of Keesom and

*
Landau's argument on this point is vague. He points out that the

commitation relation MjMjy - MgMj = ihMe lmplies that the angular
momentum M cannot be arbitrarily small, since the left side is
quadratic and the right side linear. Hs does not, however, derive
an analogous inhomogeneous commmtation relation for the components
of curl ¥, '

We always measure energies relative to the energy of the liquid
in its ground state. '
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Miss Keesom [5] in the range 1.2°-1.5% by choosing
& = 8-9% M= T-gm

By considering the equilibrium of a gas of phonons and rotons
vin a rotating vessel, Landau found that the angular momentum of the
fluid is proportional to the angular velocity of the vessel, but with a
coefficient smaller than the moment of inertia which one would compute
under the assumption that the entire mass of fluld is rotating. The
coefficient of proportionality increages from zero at absolute zero to
unity at the A =point (but the picture of independent excitations
breaks down at temperatures somewhat lower than T, ). Hence it is
possible to regard the liquid as

"... a mixture of two liquids, one of which is superfluid having

no viscosity and not carried along by the walls of the vessel

and the other =~ a 'normal' one which 1s carried along by

the moving walls and behaves like a normal liquid. It is

most essential that 'there is no friction' between these

two liquids moving through each other.... If there can be

some sort of relative motion in the state of statistical

equilibrium ... it cannot be accompanied by friction."

In this way Landau showed that the two~fluid picture follows from his
form for the energy spectrum of the elementary excitations,

The details of the energy spectrum in Landau's theory have changed
somewhat since he proposed it in 1941, but with the best spectrum the
theory is in good agreement with all the experimental data accumlated
gince then.* Discrepancies between the predicted valuss of the veloeity
of second sound and the values measured by Peshkov led landau [6] to

propose that low-snergy rotons have their momenta centered about some

rry -
We refer, of course, only to experiments which measure quantities for

which the theory predicts a value, Many quantitles, such as the
critical velocity for superfluid flow in thin tubes, have not yet been
unambiguously computed from Landau's theory.
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non-zero value P s with the resultant spectrum
E=a+(p=-p)%2pm . (2)

The specific heat and second sound velocity data avallable at that time
(1947) could be fitted with the values

vk =96, pfi=195x1fa’, m=0Trm, . (3)

This new form for the energy of the rotons led Landau to belleve that
the energy spectrum of the excitations does not have two branches, one
for phonons and one for rotons, but congists rather of one continuous
curve (Fig. 1) which rises linearly for small momenta and goes through
a minimum at some momentum p 0° At low temperatures, only the linear
portion of the speectrum (phonons) and the portion near the minimum (rotons)
are excited. The formulas resulting from this spectrum are therefore the
same as those arising from the two-branch spectrum, with the énergy of
the branches given by (1) and (2). |

| Subsequent measurements of the specific heat [7] down ‘to‘0.25°K
(which is well below the temperature at which the 'l'3 phonon contribution
dominates the exp(~A/AT) roton contribution) and the velocity of
secand sound [8) down to 0.015°K confirm the value 4&/R = 9.6° . This
nunber is well determined (to within less than 0,2 degrees ) becauss it
enters into formulas exponentially. The specific heat depends on /A
and P, through the combination /4"‘ pi o Since Landau's values (3)
fit the full range of specific heat data very well, de Klerk et al. [8]
conclude that any modification of MM and p ° should leave the product

,A'/z p§ unchanged. Observing this restriction, they find that the second
z ——
I am indebted to Dr. J.R. Pellam for committing himself on this point.







sound data below 1°K are fitted best with the values
A/A = 90601 " po/‘h = 2.30 b 4 108 cm.1, [A = 0.40 mHe 'Y (4)

although landau's values (3) also fit quite well. The differences
betwsen (3) and (4) are probably a fair measure of the present
uncertainty in the values of /‘A and p 0°

Landau's theory is very successful in showing how the macroe
scopié properties of liquid helium follow from certain assumptions about
the energy spectrum, It is posaible to question the conceptual grounds
of his quantum hydrodynamics, and in particular it is disturbing* that
the reasoning by which he infers the form of the spectrum makes no
reference to the Bose statistics of the atoms. A complete microscopic
theory ought to start with Schrodinger's equation and deduce the form
of the spectrum, including the values of 4, p o’ and Mo

Espec:ially in view of the experimental faet, now quite well established,
that the isotope He3 does not demonstrate superfluidity.
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II, FEYNMAN'S WAVE FﬁNCTION FOR THE EXCITATIONS

| In several'récent papers ([9], [10], and especially [11]) Feynman
has explained many prdperties of helium from first principles by analyzing
solutions of the Schrodinger equation for a large number of Bose particles
‘with strong short-range mutual repulsions. He arrives at a theoretical
form for the energy spectrum of the excitations which is in qualitative
agreement with thevlater curve proposed by Landau (Fig. 1). The quanti-
tative disagreement between the Feynman and Landau energy spectra is
serious, but the present thesis was motivated by the idea that Feynman's
argunents are essentially correct and, if refined, would lead to a
spectrum in better agreement with Landau's. Consequently, we shall review
some of these arguments with an eye toward refining them,

Since the excited states represent modifications imposed on

the ground state, one ought first to have a picture of the ground state.,
The wave function for the ground state is non-degenerate and has no
nodas,* and may therefore be taken as real and positive for allvconfig-
urations, These statements apply to the ground state of a c¢ollsction of
particles when no symmetry requirements are imposed on the wave function,
Since the Hamiltonian for a collection of identical particles is unchanged
by any interchange of the names, it follows that the wave function of a
non~degenerate level must be odd oreven under the interchange of any pair
of variables. But since the ground state has no nodes, it cannot be odd
under any interchange and mst therefore be even under all interchanges.
| Hence, the ground state is the same for Bose or (if there were such a thing)
Boltzmann helium atoms. For atoms of Ferml helium, the ground state is

These statements are proved in Appendix A,
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quite different and higher in energy, since the antisymmetrization of

a symmetrié function.yields zeroe.

| In the ground state the amplitude is largest for configurations
in which the atoms are spaced as well apart as possible, with none of the
'repulsive potentials being violated, Each atom may be pictured as sitting
in a cage* formed by its neighbors; the amplitude falls off as an atom
moves toward the edge of its cage, and goes strongly to zero if any of

the repulsive potentials is violated.

One possible excited state of low energy is a sound wave; the
density fluctuations in such an excitation are periodic in space and
time, and have wavelengths which are large compared with the interatomic
spacing., Standing or running sound waves of nearly the same wave number
(and direction) can be superposed to form localized packets which travel
through the fluid like particles. These are the so=-called "phonons",
though we shall use the term to refer sometimes to the elementary
excitation and sometimes to the packet,

Classically, the normal coordinate for a sound wave of wave
number k is 9 = / £e) eil?gdg, where o2 (r) is the number or
mass density at r. Quantum mechanically, /°(z) is replaced by the
operator ;E: J Q; - ;i), where the index 1 runs over all the atoms;
qg tgi?igcei over into the quantum-mechanical normal coordinate
7: e -1 o When expressed in terms of these normal coordinates, the

Hamiltonian for the phonon field becomes simply a sum of harmonic oscillator

C*

But escape from the cage is posgible, because the mean distance
between neighbors is greater than the size of the atoms,
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Hamiltonians .* one oscillator of frequency W = c|k| being present
for each wé.ve number' g vhich fits the box. When one phonon of wave
number k is present, the corresponding oscillator is in its first

excited state; since the wave function for an oscillator in its first
‘excited state is qff,where @ is the ground state wave function, the

wave function for a single phonon of wave number k is
13.
o #=Le g (5)

**
where @ is the wave function for the liquid in its ground state. The
energy of a phonon is just the energy difference between the ground
state and first excited state of the corresponding oscillator, namely

E =hw =Tek » (5a)

For configurations in which the density is almost uniform throughout

=]

the 1iquid, § has a large amplitude, but 2 e o has just about

as many positive as negative terms; hence the cancellation is almost
complete and the wave function (5) has a small amplitude for such con=
figurationg. But for configurations with a periocdic density fluctuation of

L

ili'
wave number k the terms in Z e add up in phase. Hence (5)

picks out such configurations an& assigns a large amplitude to them,
To understand the 'r3 behavior of the specific heat at very

R
low temperatures, one must not only believe that there are phonons,

T :
Appendix B shows the equivalence of longitudinal sound waves with a
set of harmonic oscillators.

o ‘
The wave function (5) and energy (5a) are exact only if k << 2u/a
where a is the interatomic spacing. When the wavelength of a density
fluctuation becomes comparable with the interatcmic spacing, it is no
longer correct to treat the liquid as a continucus medium.

*
The ‘l‘3 behavior 1s to be expected of a "gas" composed exclusively of
phonong. The theoretical coefficient is predictable from the veloeity
of sound and agrees with the observed one.

*¥
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bﬁt must also underst#nd why nb other excitations of very low‘energy
are possibie. Fbynmﬁn's_argument"on this point, though lacking
méthematical rigor, is physically convincing, especially since it makes
explicit reference to the Bose statistics of the atoms.* The main point
is that any wave function takes on its maximm positive = amplitude for
some configuration a and its maximum negative amplitude for some other
configuratibn /3 « If the two configurations are far apart, then the
wave function can keep its derivatives small while making the transition
from o to /3 , and the energy is lows If a and (3 are close to
each other in configuration space, then the gradients of the wave function
must be large and the energy is highe. With distinguisghable particles it
is easy to make the a and /3 configurations remote from each cther.
One way is to let the sites at which atoms are located in the 2 con~
figuration be the same as the sites.whare atons were located in the «
configuration, but with a different atom now at each site. One can
assign the atoms to the sites in such a way that each atom in the (3 con=
figuration is far from where it was in the a configuration; hence the
energy can be made arbitrarily smalle. For Bose atoms this scheme fails,
since the wave function must be unchanged when the atoms are permuted
among the sites, and hence must be the same for the a and 3 configurations.
As long as a finite fraction of the atoms have to travel a long
distance in getting from the o to the /3 configuration, it is possible
to keep all gradients small and thus to construct a wave function of low
energy which is maximum for o and minimm for 3. With distinguish-

able atoms, the sites where atoms are located in the a and />

* Measurements of the specific heat of the Fermi isotope He3 down to
0.579K (Ref. [12]) seem to indicate the presence of terms much larger
., than 3.
The wave function can be taken real. In order to be orthogonal to the
ground state it‘mnst be somewhere positive and somewhere negative.




configurations could be those indicated in Fig. 2 by the solid and
dotted circles respéctivaly. An arrow between a solid and a dotted
site means that the atom which was on the solid site in configuration
a 1is on the dotted site in configuration /3 . The existence of the
long arrows ensures that the energy can be made low by appropriate
choice of the wave function, This scheme also fails if the atoms obey
Bose statiética. since the wave function must not depend on whigh atom
is on‘which site, and hence the arrows could be redrawn as in Fig. 3
without changing the value of the wave function for the /3 configuration.
Thus, the a and /3 configurations are really quite close, and con~
sequently the energy cannot be very small. As long as the density
distribution of the atoms is uniform in both the a and (3 configurations,
it is impossible to keep the two configurations far apart if the atoms
obey Bose statisticse If the a and (3 configurations do not have a
uniform number density of atome, and if the regions of high density in
the a configuration are remote from the nearest regions of high density
in the (3 configuration, then, regardless of statistics, a finite fraction
of the atoms must travel long distances in going from « %o (3 and
the energy is lowe This type of state is a phonon (or superposition
of phonons)e

On the basis of the preceding arguments, it seems reasonable
to believe that in He™ any excited state other than a phonon must have
an energy greater than some minimum value A. Feynman [11] ccmputes a
value for‘ 4y and in fact computes an entire energy spectrum for the
| excitations, by manufacturing an approximate wave function and putting
it into a var:lationai principle for the energy. If the wave function
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Fige2. a= and /8- sites for a low=onergy wave function
with distinguishable atoms.

Fige3e The same a~ and /g =-sites no longer represent
a lowenergy for Bose atoms,



for an excited state is written in the form ¥ = F, where § 1is
the ground' astate wave f'unction, and if energies are measured relative
to the ground state energy E, (so that HZ = 0), then

5
| m:(%ivi)yﬁ+(v-sc)m
=M-§§Z(¢V‘2F+2V1F0V1¢)
| 2
= g (:%)Zvi- #Y, P .

The energy of the state is

where
2
£=fw*mdng=§_;§:jviﬂ'-Viffﬁzdng (7)
and
d=Jovdr= jr*rﬁzd“’g . (8)

If ve assume that § has the same value in the a and (3 configurations
(L+e+ both configurations have the atoms well=spaced), then F should

be a function whose real part has its maximum positive value when all

the atoms are on a-sites, and its maximum negative value when all the
atoms are on 3 =-sites, and varies smoothly between the two configurations.
The simplest such function is

F=3 £(z,) (9)

‘where f£(r) is a function whose real part varies smoothly from +1 when
r is on an a~site to -1 when p is on a (3 ~site. This function also

satisfies the symmetry requirements for Bose atoms. We require that the
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wﬁve funetion

=2 2(g,) 8 (10)

*
be an eigenfunction of the total momentum operator

_%
p=329,

iker
with eigenvalue Hk. Since P# = 0, it follows that f£(p) = e

and hence
' iker
v=2e g . (11)
For each value of k, substitution of (11) into (6) gives an upper limit
for the energy of the lowest state of momentum k. = The numerator

is NE°k"/2m, where N 1is the number of atoms in the liquid. The

normalization integral is
iker
e LIPS (2

For fixed i &and §, integration of ¢2 over all the other atomic

coordinates yields the probability (in the ground state) that the 1°P

atom is at r, and the J™ atom is at L; o This 1s a function only

»*
If the liquid were confined to a box of side L, with fixed walls,
then the walls could absorb momentum and the energy eigenstates would
not be momentum eigenstates. Instead, we control the density by
requiring the wave function to be periodic in all variables with
period L. With this boundary condition, P commutes with H and the

energy eigenstates can also be taken as momentum eigenstates.

Eigenfunctions of P belonging to different eigenvalues Hhk are
orthogonal. Hence, for different k, the trial functions (11) are
orthogonal to each other and also to the true wave functions which
minimize (6). The entire spectrum E(k) therefore lies above the
true spectrum. In footnote 3 of [11] Feynman mentions that the

wave function Pexp ih N1 k o T which represents translational
motion of the whole liquid, has momefitum k and energy Hh2k2/2aN,
which is certainly lower than any energy we shall compute from

(11).. The periodic boundary condition, however, rules out such
states unless k is as large as H2/g .
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of Tyy (except for the negligible region where one of the two atoms

is near the surface of the liquid); holding r,, fixed, the sum over

i
indices yields the probability that there are a:oms at two sites
separated by a distance r (we replace Tyj by r). This probability

is pop(r). vhere ,°  1is the number density of atoms and p(r) is
the probability per unit volume that there is an atom centered at r
if there is an atom centered at the origin, When r =0, p(r) has a
delta=function singularity (this accounts for terms in (12) where 1 = j);

p(r) is zero out to twice the "radius" of a helium atom, then rises
to a maximum and oscillates with decreasing emplitude to the asymptotic
value A  at r = o (Fig. 4). The oscillations are due to the
existence of some local order in the uquid.*

In (12) we are left with an integral over the coordinates of
two atoms; since the integrand depends only on the relative coordinate
rs the anawer is proportional to V. Thus (12) becomes

iker
J,zﬁovfe p(r) dz
and finally, since VP =N, (6) gives
B(k) = 5%>/2aS (k) ' (13)
where S(k) 4is the Fourier transform of the correlation function p(r),
ikexr
s)= e “plr)ar . (14)

S(k) depends only on k because p(r) depends only on r.

-
One way to understand the order is to think first of the limiting case

of classical hard spheres packed very densely; if the volume per sphere
is small enough, the only way the spheres can fit into the box is by
forming a lattice, If we now allow more volume per sphere and give all
the spheres a zero~point motion, the regular structure begins to
disappear, but some remains,
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S(k) can be determined axperimant.any* from the scgttering
of x-rays [14] or neutrons [15]s For large k it approaches unity
because p(r) contains a delta-function. When 2u/k 1is of the order
of interatomic spacinga, S(k) oscillates, reflecting the structure
of p(r). The highest maximum of S(k) occurs at a wavelength
a.ppioximately equal to the radius where p(r) has its first and
highest maximum, For small k, (5) shows that S(k) is just 1/N
timés the expectation value of qi in the ground state, where qg is
the normal coordinate for sound of wave number k. In Appendix B
the constants are treated carefully and it is shown (eq. (77)) that
the energy of the phonon field is

1 E me [606rt) $*(rt) +2 alort) a*(ot)]

vhere W k= ck and nk = m/Nkz. Since the average potential energy of
an oscillator is equal to half the total energy, the average of

2 , 2
%mkuug qz in the ground state must be %ﬁwg o The average of ql_s
is therefore NRk/2mc; consequently, for small k

S(k) = fk/2me (14a)°
and (13) gives for phonons (small k)
E(k) = hek

which is in agreement with (5a), The agreement of (13) and (5a) at low

energies is of courss to be expected, since the wave function (11) is

* It 1s possible to derive theoretical curves for p(r) and S(k) from

an approximate integral equation (see [13]). In order to get an
unequivocal test of our ideas about the nature of excited states,
however, we use experimental values for S(k).
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the same as (5), and the latter is exact for small k. We now see,
however, that (&) also has some significance when k is not so small.
| The data which we have used for S(k) is essentially that
of Reekle, and is given in Fig. 5. Reekle's data was taken at a finite
‘temperature and therefore does not go to zero as k - G.* We have
extrapolated it linearly to 2ero and have renormalized it slightly.
Fige 6 gives the spectrum E(k) resulting from (13) with the data
of ﬁg. 5. Energies are measured in temperature units (i.e. all energies
are divided by Boltzmann's constant R ) The curve has the form of
Landau's curve (Fig. 1) and the minimum is correctly located, but the
valus of 4 (~ 19,1°) is twice too high. The need for an improved wave
function in the roton  region is evident.

Appendix C contains discussions of the behavior of S(k) for small k
at finite temperatures, our method of normalizing Reekie's data, and
an important identity satisfied by p(r).

™ It 1s not at all obvious that the wave function (1) regresent.s some
type of rotational motion when k 1s in the region 281, We call
the excitations in this region "rotons" simply because that is the
common terminology.
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III. AN IMPROVED ENERGY SPECTRUM

III.1. ARGUMENTS FOR A NEW WAVE FUNCTION

The excitation (11) can be localized in a definite region
by the formation of a wave packet, If h{zr) is a function, like a
Gaussian, which is peaked about some location in the liquid and falls
off smoothly in & distance large compared with 21/k but small
compared with the size of the box, then the wave function

o
v=Tng)e g (15)

represents a localized excitation. The packet will spread in time,
and will drift with velocity 3 V, E(s). Feyaman [11] has computed
the current and density associated with (15). The number density is
very close to o! €ven 1gk the region of the packet, and the current
at apoint g is j(a) = -l-;- |h(g)|2. The wave function (15) there=~
fore leads to the picture of a total current hk/m (assume [ Ih(_a_)lz dg = 1)
distributed over a small region and having everywhsre the same direetionk,
with no appreciablq change in the number density anywhere. Such a
picture clearly cannot represent anything like a stationary state,
since in a stationary state the current is divergence~free and there
would neceséarily be a return flow directed oppositely to k.

One way to incorporate such a backflow into (15) is to mmltiply
the wave function by exp(iig(;i)), obtaining

L

T=exp(3Z gl,))Z big) eik i (15a)

Application of the velocity operator % V, shows that, in addition to

vhatever velocity it had in (15), the i'h atom now has an extra velocity
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‘ %Vg(gi). Feynman computes the energy of (15a) and finds that the
energy is minimized if g(r) satisfies

Ve +§-~er Vg) =0 (15b)
where | 3 1s the current computed from the old wave function (15).
Furthermore, the current arising from (15a) is J = 3 +§€-2 YV g
so that (15b) states that the best backflow g is that which conserves
current. Equation (15b), with the physically reasonable boundary condition
that g + 0 as r =+ «, completely determines ge At large distances
g has the form of the velocity potential for dipole flow, namely

S ;:/x'3 ; the dipole moment is

b Ty ENARIOF =-£;g-”‘;;j1(g)dg_=-,;;37,: k.

(15¢)

The negative sign of M indicates that the direction of the backflow
is opposite to that of k, as expected. We shall refer to the value
of s given by (15¢) as the "classical value", since it is derivable
from the equation of conservation of current plus the assumption that
the momentum density is equal to the current density times the mass.
Feynman shows that the energy of (15a) is only slightly lower than
that of (15), the difference being of the order of the reciprocal of
the volume of the packet. The important point to be learned from his
caleulation is that the energy is lowered if the wave function conserves
current.

The solution of a somewhat different problem tends to support
the same idea. Suppose we want to find the energy of a state in which
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a foreign atom moves through the liquid with momentum hk. The foreign
atom is assﬁmd to have the same mass as He atoms, and also to
experience the same forces, but it is not subject to Bose statisticse
Feynman [11] computed the energy of this situation, using at first the
trial wave function

T=¢e ol g (16)
L, is the coordinate of the foreign atom, and # is the wave function
for the ground state of the entire system (which is the same as if all
the atoms obeyed Bose statistics). With this wave function, equation (6)
gives E = ﬁ2k2/2m. A possible way of lowering the energy would be to
let the neighbors of the moving atom execute some pattern of flow
around it, leaving space in front of it and filling in the hole behind
it. Some such pattern is already contained in (16), since the ground
state wave function @ prohibits atoms from overlapping. But in the
ground state, readjustments are made by pushing a few immediate
neighbors of the forelgn atom out of the way; these neighbors aré
crowded into less than their usual volumes, causing (16) to have a high
kinetic energy. If, instead, room could be made for the moving atom
by the’ similtaneous motion of many atoms, each being crowded only
slightly, the kinetic energy of the state would be lower. In fact,
there is no reason why the crowding cannot be eliminated entirely since
the amount of matter in the system remains constant, Roughly, speaking,
the requirement of no crowding means that the current is divergence-
free, and the no-crowding argument shows physically why it is energetically

advantageous to conserve current. The argument is vague, however, and
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the exact form of the backflow Will be deternined by more accurate
methods.

A wave function of momentum Hhk which includes a pattern
of backflow around the foreign atom is

ig_*r

v=ge > expll [; glgy - )) . (17)
When (17) is substituted into the expression (6) for the energy,
minimization of E leads to a differential equation which determines
g(r)e The solution at large r is proportional to k ° r_/rB. Feynman
then sets the differential equation aside (its accurate numerical solution
is simple but uncertain because of uncertainty in the values of p(r))
and takes g(r) =Ak °* »3, Substitution of (17) into the variational
prineiple (6) gives

ﬁzk

(1418 + (1, + 3 )Az) (17a)

where I, and I, are integrals defined by equation (23) and ].‘5a is an
integral defined by (69). The integrals are evaluated further on; only

the answer interests us here. Equation (17a) becomes

ﬁ2k2

with A measured in 33 o The energy is minimum when A = - 3.833 ; the
"classical® value predicted by (15¢) is A = -1/£mf° = - 3.633. The

- close agreement of the two values seems to indicate that the reduction
in energy is due to the physical effects we have mentioned, and is not

simply the result of allowing an extra degree of freedom in the wave
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function. The improved value for the energy is

*

E = .648 B%/2n . (17c)

Since the wave function (11) for a phonon or roton is Just
what would r esult from symmetrizing (16), one might hope to lower the
energy of (11) by adding terms to represent a backflow around each
moving atom. The resulting wave function would be the symmetrization
of (17), 1.e.

1%r

v=4Z o emltZ glzy)- (18)
1 3#

For large k, when this wave functicn 1s substituted into the energy
and normalization integrals, there is little interference between terms
with different i; the energy is therefore given by (17¢) and is a
definite improvement over (13)s For small k, (18) cannot lead to a
lower energy than (11), because (11) is exact for phonons. At inter-
mediate k, one might thus expect to lower the energy by a factor
between 1,00 and +65. In fact, we do better than this.

The attempt to find the function g(r) which gives the
lovest energy when (18) is substituted into (6) leads to an intractable
equation. We therefore take g(p) = Ak ° ;/rz, where A will be chosen
to minimize the energy. The difficulty of handling integrals which

*

This is somewhat higher than the value obtained by Feynman in [11].
He used & rather inaccurate approximation for I% With our value
for I, we find that the effective mass of a He” atom moving
througﬁ He* is 5.0 atomic mass units, instead of Feynman's 5.8
In the calcu1a§ion it is assumed that the distribution of atoms
arcund the He”’ atom is the same as that around an He4 atom.

The higher zero-point motion of the lighter atom actually pushes
ite neighbors further away. If this effect is taken into account,
the effective mass is raised and comes closer to the experimental
value of 8 or 9 mass units,




involve e 8 1leads one to consider the possibility of replacing oil e

by 1 +4Zg. The average value of Z. geyy) 18/ p@) ele) ax,
A 0

which is zero because g(r) is an odd function. The mean-square value

where /0 3( Iy Iy r3) is the probability in the ground state of find=
ing atoms at the sites L4» Eps and ;;3.% The integral is evaluated
further on; with the classical value for A (which ia close to the
optimal value throughout the interesting range of k) the root-mean-square
value of ¥ g(z;,) turns out to be 0.25k, where k is measured in
inverse Angstroms., Even when k = 28" 1, replacement of ej‘z 8 by

e
1 +31Z g is not unreasonable, and we shall work with the wave function

tkor
v=g 2 1417 ) 19)
¢ : e ( j#i G(I.Ji (

where g(p) = Ak * ;_'/r3 .

*

We can forget the restriction that J #i by imagining g(z) to
become zero when r is very small; otherwise one must remember that
in this integral (?3(zqs £ps r3) contains a term /2 p(rgo) J (2a3)

but does not contain similar terms involving J (;12) and (r, 3).

Of course it would be mathematically legitimate to insert 1 + iZ g
into the variational principle (6) even ifZg were not small, but
there would be little physical reason to expect a good answer. If
exp(1Zg(x; = xy)) 4is replaced by 1+ 1Z7g(r; - r)) in the foreign

atom problem, the resulting integrals are among the ones defined and
evaluated further on, The energy is given by

_ ‘§_2_l_c__ 1+ 1868 + (,0217 : .Og/,ﬁkzl 2
1 + ,0045k%A%

When k = 281, the fraction has the minimm value 684, which is
5.5 per cent higher than the value given by (17c). The associated
value of A is -3.52 Whan k = 2,58 s the fraction is .710,
corresponding to A = =3, OX We conclude that for k < 28~ 1

replacement of e g by 1 +iZg does not seriocusly raise the
energy.
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‘The wave function (19) can also be understood in terms of
Feynman!s argument about o and /3 sitess The most obvlious trouble
with a wave function of the form ¥ =g 0 £(g;) 1is that it rises
just as much when several atoms move toward the same a site as when
‘they move toward different o sites (of course @ will ultimately
cause the amplitude to fall when the atoms begin to encroach on each
other, but, as has already been pointed out, a high kinetic energy is
involved if we count on @ to do all the work of keeping the atoms
apart). The easiest way to straighten out the trouble is to replace
f(l_;i) by f(;i) 1+ %éi h(?-ji))' When all the atoms change their
positions, the change in the wave function due to the motion of the

th

1™ atom now involves a factor which takes into account the correlation

between the displacement of the it'h

atom and the displacements of all
its neighbors. The function h(r) should go to zero for large r,
gince correlations between well-geparated atoms are unimportant. If an
atom 1 happens to have no near neighbors, the change in the wave
function due to its motion should be just the change in f(gi); hence
the extra "i", It is difficult in this picture to see why h(r) is
pure lmaginary and is the potential function for dipole flow. The

requirement that ¥ be an eigenfunction of the total momentum operator
°r

-

implies that f(r) = e .
If one tries to construct a wave function having the next

degree of complexity beyond (10), namely

= Zf » L)
¥ ﬂi,j (Ej_ !J
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the requirement that ¥ be an eigenfunction of P implies that

i‘(;i. gj) =e o s(gu), and we are again led to the form (19).
Fﬁrther arguments, however, are needed to determine the function s(z).



III.2; COMPUTATIONS WITH THE NEW WAVE FUNCTION
We substitute (19) into (7) and (8), remembering that g isa
odde This implies the vanishing of some integrals, like

/g(‘_:;m) f2(Eys ) 4y ér, « The result is E=€/9 where

€ _ 2

+ [V elzyy) * Velzyy) P3(152:3) dxy dr, ag
ik * z
+ J o 'QBVs(r.m)' Velgy3) 235(15243) dz; dr, dr,

- 2% - f Vglzyy) [ o(152) az dr,

i&o

(20)

iker
J = fe 12 p (152) ar ag, - 21[ 12 8(z35)5(1+2,3 )z dx 0z,

iker
+f o 12 3(1:3,) 8(!_42) /14(1.2.3./.) dr, dg, dr; dr, (21)
In all of the above integrals, the integrand is a function only

of therelative coordinates Integration over the last coordinate

£15°
can therefore be replaced by a factor V, If the density functions

£ oy P32 8nd P2, are divided by [’ o» & factor P V=N then appears
in front of each integral. Writing g(r) = Akg, (z)y we finally obtain



mS 2., 2,.2
%{2— =% (14405 + 1) +4%0° 1, + 1, + I, + kI + L))

(22a)

| ..‘%. = Iy + AkIg + Azkzlw (22b)

where -

5 ’%é [T ety pp0102) any
L ="}%;' f‘ik 2 § V() 2 o(152) anyy
| 1= 1-01; { 8y(@y) 8lzgy) 2 5(10243) dryy iy
1, = -%; [T 8,Gpy) * T 8y(Egg) 7 5(10243) dmyy dng,

ik .
fo P Y gy Ve 250023 any anyy

= 1
5P,

_2 ik°£13 ?..

--‘-2--]”""‘3 ) o7 g,(z42) o 2(15253)
=% )¢ V 8 "V gy (ey5) o 5(102:3) dnyy any

r
Iy = [e p(r) dz = S(k) (see eqn. (14))

ik
.aija 12

19 = > 81’(232)' f 3(1 9243) 5221 &231
ped [oE T2 0 ) e o, (23 d dr
10" %7 J° 812317 &1{xyp) /2 4(1020304) dryy dmgy dmyy

(23)
Iis I, and I, are independent of k. In the other integrals it will

prove possible to extract most of the k-dependence rather simply when

k 1is in the roton region, the remaining complicated terms being very small.
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' This means that the computation of the entire roton spectrum will not
be much more difficult than the computation of one point on it.

Some further definitions are helpfuls It was noted earller
that /’2(;;1, z_‘,z) = pop(rm). We now define

pr) = & () + v, (r) (24)
py(r) = /)0(1 +p,(r)) (25)

where ‘pl and p, have no singularities and pz(r) -0 a8 r *w,
Strictly speaking, in the definition of I, we should replace , 2(;1 ’ ;2)
by po(zgrE) =P, d (zy,) since g is always a function of the
relative coordinates of two distinct atoms. To avold unnecessary
confusion, however, it is easier to think of g(r) as becoming zero

for sufficiently small r. Similar remarks apply to /A 3 and /’ 4

when they occur in 12. ese 9 110 o If one does not wish to think of
g(r) as being modified near the origin, then the A 's should be under=
stood as containing delta functions of all coordinate differences except
those which appear as arguments of g in the same integral. The non=-
singular part of L3 which we ecall / 5, is defined by

£ 3®p Tpr 23) = 2 4(eg Tpr B3) 4 o py(yp) (i) + o gpy ()9 ()

No experimental data for pg is aveilable, If any of the mutual
distances, say T, is large, then /:5(;1, Ly 33) = PP (r13) ) (r23).
If any of the interatomic distances becomes leas than 2.48, then ()5 = Q.
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' The approximation.

P 3(&y 2o £3) 2P;(ry,) pylryy) pylry,) | (27)
has these correct limiting featﬁres. Much has been written about the
validity of this approximation; for some, but not all purposes, (27)
is quite sufficient. We shall see that our answer is only slightly
sensitive to the difference between the right and left sides of (27).

11 can be done exactly. We integrate by parts over a volume
bounded by two concentric surfaces, one lying inside the radius where
p(r) = O and the other very far from the origin. The inner surface
contributes nothing, but the integrend g, (z) | (r) falls off only as
r™2, with the result that the outer surface makes a finite contribution,
which is easily computed to be -%g " ﬁ o* We eliminate this contribution
by redefining g(r) to have a small decay factor, say o <, which
makes surface terms vanish at infinity. This procedure is mathematically
legitimate, since we are free to use any weve function we want in the
variational principle, and is in accord with the physical idea that all
the momentum of the backflow should be contained in a finite volume.

It will generally not be necessary to represent & explicitly; the
convergence factor will be used only to Justify certain operations.
After the parts integration, there remains

2k 8np o dp,(r) 8u
Lot [a@vnEa=—2 [ s .
(28)

| ' o &y
In the last integral, the integrand should really be e )

‘but if ¢ is small enough the convergence factor will be unity out to

Thls is sometimes called the Kirkwood approximation or the supere
position approximation.
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radii where dpy/dr becomes negligibles

After performing the angular integrations in 12, we find

(1 + pz(r)‘) .‘1
, = 16n 2,

= 16mp f 3, er + F(k)J- 16mp I, (k)
y

o

(29)
vhere r_ = 1is any radius inside the region where p, (r) =0 (we take
T, T 2.42. the radius where Py (r) first becomes positive) and

@
Fk) = [ 1) 2—ar . (30)

The spherical Bessel functions j‘l and 32 are expressible in terms of
trigonometric functions, and are related to the ordinery Bessel functions

of half-integral order by the equation

&) = A7 T 0.

There is no problem of a convergence factor in 12, since the oscillations
of ei}_c_*_z; provide a natural convergence factor. In order to do integrals
like I 4
Using tabulated [18] values for 1,» we have evaluated F(k) By numerical

and IS' we shall need to know the value of I2a(k) for all k.

integration for 23 values of k between O and 721, The values are
given in Table 1 and are shown as crosses in Fig., 7 and Fig. 7a;

it is evident from the graphs that ﬁhe 23 crosses fully determine the
curve for F(k), except in the region of small k, where F(k) is so
small as to be unimportant compared with Jj, (kr o )/kro. The integrand
in (30) was evaluated at intervals of O.18 for 2.48 < r < 4.4R, and at
intervals of 0,28 for 4.6R <r £ 6. A simple trapezoldal rule was used
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Table 1.

Table of F(k) = j; 3,00 pylr) ‘i,-—’i

k@) P(k)
0.5 «0012
0.8 0037
1.0 +0036
1.2 «0002
104 "00082
1.6 -.0152
1.8 = 0207
2.0 =-.0203
2.2 =.0134
24 =+0038
2.6 ~0058
2.8 #0124
340 0146
3.4 -0078
3.8 -+0031
be2 ~, 0096
4eb ~+0066
5.0 «0023
Seb «0073
5.8 «0044
642 =-.0017
6.6 =+ 0046

7.0 ~-+0030



- 37 -

IZa(k} = J.L(.._‘ik;l . F(k)

; 03‘05859 Micata valuea of F(k)







- 30 =

fo'rv the numerical integratiohs. The general philcosophy used through=
out the numerical work is that the methods should be sufficient to
make full use of the accuracy in the available data for p(r) and
S(k); when the numerical methods become more accurate than this, time
is probably being wasted. The convergence of (30) is best for large k,
since the range of r where J, (kr) is appreciable becomes smaller
as k incréases. The convergence is good far k > 18 1.

One might expect from (23) that lim

L
k-0
approaches zero, F(k) approaches zero and 31 (kr o)/kr o approaches

=-I1. As k

1/3. Comperison of (28) and (29) thus shows that I, approaches 2I,
instead of =-I,+ The reason for the discrepancy is that (29) is wrong
vhen k 1s very small, of the same order of magnitude as ¢&; in this

case we must take account of the term Ve = in V gy and there will
be a correction term which will cause I

2
-8np /3 as k decreases from £ to O,

to change from 16m /’0/3 to

I2 can also be evaluated in momentum space, using data for
S(k) rather than p(r). In momentum space the integrals converge well
for small k rather than large k. The results are not very important
because (29) is useful down to k = O for reascns already mentioned;
but they do provide a check of our numerical work and alsoc of the
consistency of the data for p(r) with that for S(k). Starting with

s

01{'1
gy(r) dr = ~4ni —— (31)

[ e"i.l.‘.‘l ‘E
9

"

and using Fourier's theorem, we obtain

ik.,°r, k'k
gy @) = @n)? (e4ni) [ o 1t 3-'-'-;- dk, » (32)

kk1



Té.king the gradient of both sides with respect to r, and assuming that

g has convergence factors for large and small r, we find

ik, z
Ve = (2m)™> f o 10 Alky) dk, (33)
where k'k, k
Ally) = 4nm E‘E} a— . (34)

S(k) was defined by (14) as the Fourier transform of p(r), where p(r)
includes a delta function at the origin and a constant term o2 o at
infinity. Therefore S(k) »1 as k » o and S(k) includes a term
(2n)3 OJ(E)- We define
= - - 3
8,(k) = 8(k) = 1 = (20)°P 4 (k) (35)

ike

Since /2 p,(r) = (2m)™2 fe =% S, (k) dk, we find

2k 1 (k+e, 5, Jr
=gup + (@) = fe 12T Alky) 54(ky) dk, dk, dz

=gup + (2u)‘3k§~fg(g-k)s (;2)dk

where we have used the identity J (k) = (2w) -3 f dr and the
evenness of A and 81. Teking k as the polar axis, we obtain

_ 2 © ¥ 2 (k/k?:-case)
I, =8np +% o[ i‘[531(,1:2)-1:2 1+(§-—)2-2§-cosesmededk2
2 2
cgnp 42 / %2
=gip += 31(1:)1:2a(k)dl‘:2 (37)
where
1 (-1---'1.1)2 2
_ L 242 -
abc) = f! 1+-15--2£ —%‘%-AXH-X) log H_—f‘
X
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The convergence of the numerical integral in (37) is speeded by defining

b(x) = a(x) -2/3 =5/6 - x2/2 - %; (1 - x2)2-log

}‘;ﬂ . (38)

One easily verifies that

" b(0) =4/3 bx) ~ % -15 (large x).
X
Fige. 8 is a graph of b(x). Taking r =0 in (36), we find
“fo = (2m)3 S 8,0k) 4me® ak (39)
’ [}
and finaglly
=16 p +2
L=2up, nfS(k)k b(J-)dk . (o)

The numerical integral in (40) converges faster than that in (37) because
b(x) » 0 for large xe The integrand was evaluated at intervals of
028! for o< kg < 1487 Voana 24487V < kg < 5.8 Y; in the region
1.53'“1 < k1 < 2.43’1, where 81 varies raﬁidly, the integrand was
evaluated at intervals of 0.13"1. The integral was evaluated for

k= 0.5,1.0,1.5,2.03“1. Convergence is good, and the values are accurate
to within a few per cent. Nevertheless, (40) does not give accirate
values of I, when k > 1.5A-1, because for large k the cancellation
between the two terms of (40) is almost complete (as it must be because

I, >0 as k - =), and hence a 3 per cent error in the numerical integral
méy cause a 30 per cent error in 12' We take the volume per atom of

liquid helium as 4553 ravle 2 compares the value of Iz(k) obtained

from (29) with those obtained from (40).
*

The atomic volume of liguid He under its own saturated vapor pressure

at 0K is 463 but 458 is closer to the value at 2. 06K, where the
structure factor data was taken. Internal inconsistencies would
develop if ,°, and S(k) were taken at different temperatures. One
might ask where the theory takes account of the external pressurs.

The pressure determines the values of /?, and, more important, S(k)e

A? %ncrease in pressure sharpens the maxima and minima of p(r) and
S(kJe






Table 2

x &) | 0 05 1.0 15 2.0 w

L (2) from (29) 372 32 A% W04 0% O

from (40 ) 0372 0326 «200 » 05 0 - %O 0

The discrepancy at k = 28 1 is not serious, for the reasons just
mentioneds and the agreement elsewhere is sufficiently close for our
purposes. The values derived from (29) are used throughout our work.

I, presents no problem if Iza(k) is known for all k.
Using (25) and (26), and Fourier analyzing p2(r23) with (36), we
obtain

I, = [p,(r) (Ve,@)P 6+ (Jp,0)V g, (2) ax)®

4 Py gq\L 1 g4\L

] i! .
o3 fd,l;1 Sy (ky) [fe £2V81(;2) pylr,) 6;2]2 .
(an)’p

(41)
The integral in square brackets is a generalization of 12 to the case
where the k 1in the exponential has a different direction from the k

in gq° The angular integrations are easily performed, yielding

1k, k.
]e 1 £2V 81(.1.‘.2) P1(r2) ar, = 8np, IZa(k‘i) [ 1-::' cos € ~ % gy sin C)
(42)
wherekcoaeandg_1sin6 are the _ -7
1 . ‘ P s' 5in0
components of k/k parallel and perpen= _ Ky - Kk
dicular to k, (see Fig. 9); g, 1s s Fig.9. Definition of the

vectors i )e
unit vector, and © 1is the angle from k, ectars in (42



to k. The equation

(klxk)il‘q
_e_1sin9= 2

is true but not‘uaeml. Siﬁce the average over angles of cos“’2 e + % sin2 ]

is % s (41) becomes

L=enpy [ (eple)) e+ Grp )

@0

+16, o[kf 5, 0ky) (T, (1)) ax,

= 01190 + 00867 = 00790 = 012678 (43)

The convergence in both numerical integrals is very good; f P, (r) r2 dr
2 -5 2

and f K] S, (k1) dk, are already convergent, and r = and {Iza(k1 )|

provide very strong damping factors. The ansver may be in error by

several per cent due to uncertainties in 2 , p,(r), and S,(k,),

but the single numerical integraticns are so easy that no time is lost

. [~}
by retaining an insignificant figure. The magnitude of [ p,(r) r™* dr
w Il ro
is only 1/10 that of  f r * dr; also, Fig. 7 shows that in the
r
o
important range of ki, IZa(kl) is the same as would result if we took

0 r<2.48
p'](r):{; .
PO r>204,8

‘The important point to be learned from this discussion is that the
values of I 4» end of the other integrals which contribute significantly
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" to the cosfficient of 2% in (228.), depend mainly on the gross features
of plr) (i.e. its delta function at the origin, its vanishing for
r < 2,48, and its quick rise to the asymptotic value P 6) and not on
the details of its behavior. The coefficients of A are more sensitive
to the detailed behavior of p(r); it is the detailed behavior which
determines the location of the minimum in the energy spectrum, The
insehsitiviiy of the quadratic coefficients to the exact form of p(r)
can be similarly verified in the computations which follow, and will
not be pointed out explicitly. A rough way of estimating the error
due to the approximation (27) is to imagine P, (r23) replaced by some
other function of Toq which is =1 for Tpg <r, and approaches
Z6TO a8 T,y * @ Of course, in the actual case this function would
also depend on T4o and T30 since the true /95 is not factorable;
but the argument still ought to give orders of magnitude correctly.
The result of this change would be to replace S,(k,) in (43) by
some other function which i8 ~i when k, = O, has the slope h/2me
at the origin, and first becomes zero near k1 = 28. 1. But 90 per cent
of the contribution to a[‘m kf S (k) (Iza(k1))2 dk, comes from the

region k1 < 1.8 1. vhere the behavior of S1 is pretty well determined
by its value and slope at the origin. With any reasonable function in
place of S, (lt:1 )s the integral would probably not be changed by more
than 10 per cent; hence the error in I, due to the spproximation (27)
is almost certainly less than 10 per cent, and probably less than 5 per
cent. More generally, one can argue that the two sides of (27) must
differ by zero whenever any of the mutual distances is less than 2.8

or greater than about AX. This region includes so much of 'phase space



that even if the difference develops sufficiently high derivatives
to become significantly differént from zero, it can do so only over
a emall region.

- The value of I4 and the size of the various terms which
contribute to it can be understood fairly well in terms of some simple
approximations for integrals involving the coordinates of three atoms.
With the help of these approximations we can understand the sizes of
all the remaining integrals; if we know that an integral is small,
it will not be necessary to waste time in evaluating it very accurately.

Suppose we want to do an integral of the form

ff(£21) f(£31) /’3(1: 2, 3) d;z dx_‘3

(in this integral we shall understand 3 ‘%o include a delta function
on coordinates 2 and 3, but not on any other pairs)., If the positions
of 1 and 2 are fixed and 3 is not too close to 2, then 2 ,(1y 2, 3)

can be approximated very closely by , Py (r21) P, (r31). We write

Ve 3(1.2,3) :/>°p1(r21) pl(r:n) . (44)

When 3 approaches 2, this is wrong because ,° 3 goes to zero but

P4 (rm) P4 (r31) keeps a finite value (assuming, of course, that

Ty > 2.48; otherwise both expressions are zero). When 2 and 3 coinéide,
hovever, 2 5 exhibits a delta function and far exceeds

/7 P1(r21) py(rsy)e The strength of the delta function 1s such that
if we integrate the difference between the two sides of (44) over the

positions of 3, the result is exactly zero, i.e.
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The result is easily understood for small or large values of Type
If ry, < 2.48, both sides of (44) are identically zero for all E3e

If 1 and 2 are far apart, then /’3 can be written as

P P1F3) Py(gp) + 25 legy)

and the right side becomes /> ip‘l (r31). If 3 is far from 2, then both
sides are equal. Hence the only contribution to the integral comes
when 3 is near 2; but_then we can set Py (r31) = ﬁo and wve are left
2 o

with [ drgy /24Py (rga)+ 4 (£q,) = fo) which vanishes as a result
of the identity

©

[ @@ =p ) im?ar = (46)

ot

which is proved in Appendix C. At the present time we are unable to
supply a rigorous proof of (45) for all values of Type In Appendix C
we discuss our reasons for believing (45); its physical interpretation
is essentially the same as that of the proven identity (46). Even if
(45) is not rigorously true for intermediate values of ry,s it cannot
fail badly; for when r,, is greater than 2.4, but not very large,
then for any fixed radius T3y the solid angle in which 3 interferes
with 1 is small (less than one quarter of the total solid angle
available to ;23)o

| If £(r) is a slow-varying function, i.e. f(r) does not
change much when r changes by 2.42, then for a fixed value of L2
. the value of f(;;31) is almost constant over the region where the

two sides of (44) differ appreciably. Using (45), we see that the integral
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S 2y [£5(12:3) = o py(rp) (3] g

is very close to zero. We thefefore find
S2(e5) £ 310203 a5 = popy(rg) [ 2(z3y) pyleyy) ey

(unless both integrals are very close to zero) and finally

I

S8y £eyy) p 5(10203) any dxy = oo [ S £) by (o) a)?

(47)
Similarly, if £ or g is slowly-varying,

f f(Ez-l) 8(!31)/’3(102,3) dl_l‘_z (123 >
= pol S £ py() ax) ([ gl@) py(r) dax) o (48)

Actually, our criterion for a slowly=varying function is too stringent.
The behavior of f(r) for r < 2.48 is of no importance, since Py (r)
is zero in that range; hence f may be singular at the origin., The
important question is, how much does f’(g’1 +r,) differ from f(_r_1)
when ) and L, are any two vectors of length 2,482 And even if
the difference is large campared with f(r, }s (47) is still good if
£(z) 1is such that the major contribution to | f£(r) py(r) dr comes
from r > 3 or 48,

Another type of integral which interests us is

f £(zyy) 3(331) h(r_23)/)3(1.2,3) dr, dr, »

where f and g are smooth and h(r) oscillates so rapidly that it

produces almost cemplete cancellation when integrated against Py (r).



/"‘ 3 1s still understood to contain a delta function on 2 and 3, and
on no other pair, In this case, if 1 and 2 are held fixed and 3 is
allowed to vary, the oscillations in h(r__23) make the contribution
to the integral small. The major contribution comes when 3 and 2 are
tied together by the delta function and we find

f £(zyy) 8lzgy) hizyy) 2 3(152,3) dr, dzg
=h(0) [ £(z) gz) py(r) ax . (49)

Ir V gz ) 1is sufficiently smooth, (47) can be used to

estimate I 4°

vhich is the middle term of (43); if Vg, were very smooth, the first

The answer thus obtained is (43t w fo)z = .008673‘6 ’

and third terms would cancel ccmpletely. The first term (.01‘1908‘6 )

is larger than the third term (-.00'7903.6 ) because V g, (r) is preportional
to rm3 and therefore quite strongly peaked for small r; hence the

delta function more than compensates for the "hole" in / 3¢ The

answer given by (47) is 2/3 the correct answer.

With the aid of (47)=(49) we can discuss the remaining
integrals more intelligently. If Landau's energy spectrum is even
qualitatively correct, then the most important points to compute are
those in the neighborhood of the roton minimum, The phonon spectrum
is guaranteed to be correct; and when the temperature is high enough
to excite the portion of the specti-um lying appreciably above the
roton mm, then the picture of the liquid as a gas of independent
excitations has broken down. Thus, even if we knew the exact form of
the high part of the spectrum, we would not know how to do the thermoe

dynamics. Furthermore, the high-momentum end of the spectrum computed
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wiih (18) ‘or (19) is ‘cértainly ﬁrong, since the slope dE/dp exceeds
the velocity of sound when k > 2.287 1; whenever |dE(p)/dp| > c,
thera obviously exist étates with two excitations, one of which is a
phonon, which have total momentum p but energy less than E(pl.
We shall compute the energy at several points in the region
1.62.1 <k < 2.43-1. and also at k = ‘I.ZR‘1 in order to estimate
the height of the hump between the phonon and roton regions.

Since g is smoother than Y g» 13 is a good candidate
for the approximation (47), which predicts I; = 0 because
f p,() g(@) 4z = Os Ve infer that I, is small; but it is important
to know how small, because the factor k° which miltiplies I, in
(22) 1s fairly large. The exact value of I (i.e. no approximations

beyond (27)) can be computed by the method used for I 4° The result is

13"’

= [ [y @)1? py()ar +fe, (tyy Jey (25 oy (g JPy (m5y D, (g )iy sy

IBa + IBb

=rlg [ 4pen T ar +8 JETH MRS
= 13-5‘ (10707 - 10470) = 00053er |

The integral Ig. (k1) is defined by equation (56)s The approximation
(47) 1is based on the idea that I,, end I should cancel each other.
Since I, = Iy 1s only 14 per cent of I, , the idea behind (47)
is good, but (47) tells us nothing about the size of I, because
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If I3 = .00532-1' s then in the roton region the term k213
contributes about half of the total coefficient of A% in (22a)s

Any pbssibility of serious error in 13 ought therefore to be
investigated carefully. The idea that 13 is almost zero is based

on the approximation (47), which in turn is based on the identity (45).
Actnally. the approximete form which we have used for A 3 does not
satisfy (45) exactly. Slight departures from (45) ordinarily would
not affect the validity of (47), were it not for the fact that

f Py (r) g4 (r) dr = 0. In this case the question arises: how much

of the non-zeroness of 13 is real, and how much is due to the

fact that the approximate ,° ; does not satisfy (45 )? Iy 1is

only an approximation to the exact expression

where o ; is defined by (26), In I, we have replaced Ve §(1,2,3)

by Py (rm) Py (r31) P, (r32). An exact expression for I, is

3=l *I3, Tl t Iy - (IBb - IBc)
= 40053 = == [ & (598, (Ey1 1Py (g9 oy (50 D0y ()
= 7 3(142,3)] dz,; dpgy
= .0053 = I, | » (50)

It is worth noting that if
_ : 0 r<r,

p‘l(r):{ﬁo r>r

then I, can be computed analytically. One finds that the difference
of the “two terms is 3/16 of the larger term. Analytic computations
with this artificial form for py(r) may occasionally be useful in

estimating small terms whose more exact gomputation is laboriouse
To satisfy (46), we must take 5’3&. L r°3 =1,



If any of the mutual.disténees is less than 2.48 or more than about
-l

42, then p, (rm) Py (rm) Py (r23) f3(1 92,3) 18 very close to zero.

Consequently, the integrand of .13 a is appreciable only if Toy and

T3 are almost the same and the angle between Ly end L3q is such

that 2.48 < Tog < 48, Since the angular variation of & is slow,

we do not change I,, mich if we replace g (1_"21) g (:31) by [81 (231 )]2;

we obtain
I3d - IBe
where
I

=1 2 ‘
e =57 S lgy (259017 () By (rgq) Bylrpg) = 2 4(15203)] dny, dzy,

Making use of the fact that the true p ; satisfies (45) anq Py
satisfies (46), we obtain

Loy = /o J Pyray) Pylryy) Py(ryp)le, @3N o, ax 4

_ 2 rA) |
5 [ e e e (51)
where
I(r) = { %@ [s,(k)]2 K® dk (52)

IBf(r) was computed for 19 values of r between 2.48 and 5,48,
the namerical integrals converge well, and the results are shown in
Fige 10. Performing the final numaﬁcal integration in (51), ve find
1, = 000818 and finally

I, = L0058, (53)
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| The smallness of the correetioﬁ to I3 shows that the slight failure
of (45) doés not cause ‘a significant error in I« This fact was not
intuitively obvious, howsver, and needed verification.

I, occurS in (22b) as a coefficient of A, rather than Az,
and ought therefore to be treated as accurately as is possibles In
I P 3 includes delta functions on r;, amd r,; » Using (27),

we write
/’3(19293) =Py (1 92)131(1 ’3)P1 (2,3) + [’°P1(2;3)J (1,2) +/‘,0P1 (2’3)J (1,3)
5/)0(1 + p2(1 23)) P1(1 a2)P1(2s3) + ﬁ°P1(293) d (152)
+p P1(2:3) 4 (1,3).
Several terms are zero because of the oddness of gq» and we obtain

ik°ry,
Ty =2t o T2 g(eg) pylryy) By legp) pylryy) dryy any,

ik
21 o 12 g (&yp) pylryy) dnyy o (54)

First we consider the second integral, since we must know its value for
all k in order to do the first integral, The integral, like Iz,
can be performed in coordinate or momentum space; after the angular

integrations are done, the result is

ik z L,k
Jeo ' T g py ) d;=;%—;4u/>o 1 I, (k,) (55)
where
Tog () = 2GAKD 7 8y0) e (56)

=14 Gl [0 s () oliy/k) aky (57)



" and

e(x) =1 +% (x - i—) log {-’-‘"&l
e(0) =2 | e(x) » -2-2- (large X)e
3x
’Fig._ 11 is a graph of ec(x).
We define
Iy (k) = 2{4 py(r) ji(r) ar (58)
L,k) = [ a6 S 0) ele/k) . (59)

o

As before, the coordinate space formula (56) proves sufficient over the
entire range of k. For small k, when the numerical integral Igb(k)
cannot be done acceurately, its valus 1s so small as to be unimportant
compéred with 8in(2.4k)/2.4k . Igb(k) was computed for 16 points
vetween k = 1871 and k =78'. The integrand was evaluated at
intervals of 018 for 2iR <r < 4.48, and at intervals of 0.2 for
LotR £€r < 68. The results are given in Table 3. The values of Iga(k)
computed from (56) are given in Figs. 12 and 12a and are accurate within

less than .02 for k in the neighborhood of 23"1; for large k, the
—

Since [ g (x) | (r) dr = C, one might expect the right side of (55) to
approach zero as k, becomes small, But I%(lr;1 ) aproaches unity for
small ki and consequently the right side of (55) approaches i« ,
depending on the angle between k and _151. The trouble, as before, is
resolved by noting that (55) and (56) are wrong for ky < & (gy should
really have a factor e -~ 4n it). In the correct version of (56) the
term sin(2.4k)/2.4k is replaced by zero when k << &; hence Igg ()
goes as k‘;: vhen-k1 << €, and the right side of (55) approaches zero.
The "error® in (55) and (56) has no effect on our computations, but it
is worth ‘mentioning lest the reader discover it and develop a distrust
of the formulas,
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Table 3

o«

Table of Iy (k) =‘ 2/4 31(1::‘) py(r) dr

L]

k(&) Ig, () (®)

0.5 <0142
1.0 «0040
1.3 =+0430
1.7 - 0609
2.0 -.0119
2.3 +0400
25 517
3.0 .0123
35 ~+0230
40 -+0225
45 «0084
5.0 #0226
545 «0005
6.0 -.0152
65 -+0062

7.0 «0065









sore rapid convergence of the integral Igb(k) gives an accuracy

of 0,1 or iess. For oﬁr purposes, the most important region of k is
near 2877, _ Although the fractional error in Iy (k) 1s sizable here,
I%(k) is probably accurate within 5 per cent. For k > 1&”‘, formula
(57) suffers from the same disease as (40). Although the numerical
integral can be done to within five or ten per cent accuracy, it almost
cancels tha‘ constant term; therefore the fractional error is large, and
is magnified if the value of ,° o is not exactly consistent with the
data for S, (k1 )o In order to check the data computed from (56), I, (k)
was computed for k =.5,1,1¢5, 2, 2.5, and 3871, The values of ‘I9a(k)
derived from (56) and (57) are campared in Table 4.

Table 4

x (&) 0 05 1.0 1.5 2.0 25 3.0
19a (k) (56) 1 .DOO 0782 0285 "'0223 "0240 0082 .1105
Tge (x) (57) 1.000 »788 0245 =222 =251 =005 .142

The discrepancy at k = 1,08 1 is slightly disturbing, since I9e
converges well there and I9b is very small. The sign and magnitude

of the error, which is probablly in the value derived from (57), can be
accounted for by the fact that our curve for S5; does not have the
correct slope at the origin (see Appendix C). The agreement at

k = 1.5, 2.0, and 3.087! s much better than ve have a right to expect;
the disagreement at k = 2.5A71 could easily arise from the fact that the
integral (59) was cut off at a finite value of k.‘. Weadopt the values

given by (56),
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Since py(ry,) = 2 (1 + Pylryp))s the first integral in (54)

becomes

ik-r
Po ,( ? 8y(z55) Py(ry) (14 py(ry))) pylrys) dx ppdn 4

k',
=/o f o gy(Egpley (rypleolrgy) dny dry

iker
= =12
P Joo 2 geyy)p (ry)py(ry,) Bylryy) dnyy dngy - (60)

The first integral on the right in (60) can be done by writing
ey | Hnyp eI
e e and using the new integration variables L34
and L3y o The result is
. fup i
/eil_t. L2 g1(532)131 (r32)P2(r13) d!,21 dl_'g-‘ = ""'E"Q" 51 (k) I%(k)o
(61)

In the second integral on the right in (60) we use the integration

varisbles Ly end K3, 5 Fourier analyzing p, (rw) we obtain

iker
f e 8 (2301 (rp3)py (ry5)p, (ry5) dnyy drgy

«© i) ‘
oj o[ de, 0 ky Sy(ky) S;(lk + ky|) Iy, (k) cos @ sin @
(62)

= 3
"Pa

where & 1s the angle between k and kyo If we let

(x®

u=|1_c.+31|= ~l~1c$+zalck1 cosG)Vg

the right side of (62) becomes
k+k

o dk 1
—4. 1] -1 2
T 2 L E Toala) Sylky) ,k{_k” 5 (@) (@P4%43 ju au (63)
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| Since |
® &, £k,) ?H<) [awe f £
dk, f(k glu) du = du glu £(k,/dk
[ ™ 7k, | 5 k] VY

a numerical‘integral like (63) éan be done in several differentways.
‘One should look for the way which convergés fasteat, is least sensitive
to 1nfonmation which we do not know (like the value of S1(u) for large
u)s and does not involve small differences of big terms. For example,
one should avoid dealing with the indefinite integral of 31(u) n3.
since it oscillates badly for large wu; hence (63) is not convenient

to use as it stands. Probably the best form of (63) is

utk dk
us, () 2k?) @ < 1 (k) s, (k&)
2u/)k [f (u)(w u ]u{ld k, Toa) 510k
« utk ‘
J w8 an @aghﬂ@m&ﬂ}
= —= I (k)-Igg(k)] | (64)

>

In this form, the inside integral acts as a convergence factor for the
integrand of the outside integral, and the answer is not sensitive to
the values of S, (u) for large wu. The inside integral can be tabulated
once and for all as an indefinite integral; thus, the evaluation of (64)
involves only a single numerical integration for each value of k.
We define
= X ak
Igd(x) = 0/.2 T Iga(k) S (k)

X
Igg(x) & f ak k I, (k) S (k) . (65)

(<]



I, and I, are tabulated in Tebles 5 and 6. In evaluating I, (k)

9% %
for 0 <k < 06871, 5 (k) vas taken as -1 + .212k and I, (k) was

taken as sin(2.4k)/2.k. From (58) and (59) there follow immediately
s 2.2
Igplk) = oj 81 () u(@®k®) du ‘[I%(u-&k) - Igd(lu-kl)

L) = [ 8 wenlTg, ) - T (k)L (e)

The integrand of I9f is perfectly well-behaved as u-k, since

1im € log £ = O, The integrand of Igf was evaluated at intervals
2200.12'1, except for k = Ce2 < u £ k + 0.2, where intervals of 0,048 i
were useds Intervals of 0,18~ L were used in evaluating I9g' Both
integrals converge very well, and their values are given in Table 7.

Table 7
k (&1 162 146 1.8 2.0 2.2 244
I (k) (B™4)  =i019 =387 =o40b =u364 =o086 155

Iog (k) B™%) 172 089 J031 =017 =.048 =054

If (48) were used to estimate 19 (k); the result would be

iker
I, (k) z - zije p, () dr_jg1(x_') py(r) dzr = 0.

| As in the case of 13’ the question arises: how much of the non=
zeroness of I9(k) is real, and how much is due to the failure of our
approximate /2 ; to satisfy (45)? The analysis proceeds exactly as
with I,, and we find that the quantity



-6l =
Table 5

Table of I, (x) = 2 & 1, 0) 8, (k)

o2
1 el :
(&) 12; (x) x(B) IEQ (x)
0.04 1.5608 345 -1.1063
0.08 008757 3.6 "'1 01%3
0.12 0,4822 3.7 ~1.1062
0016 0o2083 3.8 -1 01061
" 0uR 0.0000 3.9 “101%1
0.3 ~0.3618 40 -1+1061
004. "0.5984 401 "1 '106‘
0.5 =0,7635 be2 ~1+1062
0.6 =0,8810 Le3 ~1.1063
0.7 =~(C,9675 bely «}e1064
0.8 -1 .0286 4.5 "‘101%5
009 ""1 .0710 1906 “‘1 01066
1.0 =l 00985 1007 -1 01%6
1.1 ‘1-1145 4Le8 "101066
1.2 =1 .1214 : 409 -1 01%5
1.3 ~141215 5.0 ~1+1065
1.4 "'101173 501 "3.1064
1.5 -1.1111 542 "191%4
1.6 -1 01049 563 -1 .1064
107 "'100999 504 "“101%4
1.8 -1 00973 505 ‘1.1064
109 - 009‘77 506 "‘101064
2,0 -1.1002 5.7 -1.1064
2.1 ol 01031 508 "1 01%4
2.2 "101051 509 "‘101064
2.3 -1.1059 6.0 -} 01063
244 ~1.1060 6.1 =1.1063
2.5 ~1.1058 602 -1 o1063
206 -1 01056 ‘ 603 ‘101063
2.7 -1e1054 6edy =-1.1062
2.8 -1 01054 605 -1 01062
209 ""1 -1054 606 -3 01062
3.0 “'101055 6.7 ""1 o‘%2
3.1 ~1.1057 6.8 ~1.1062
362 -1 01059 609 -101%2
303 "1 01%‘ 7.0 -} 01%2

3eb ~1.1062
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Table &

X
Table of Ige(x) = { dk k I%(k) Si(k)

2@ L EE*) x@Y 1, 0E3)
0.0 .OOOOO 306 ".27344
0.1 "00488 3.7 =,27282
0,2 -.01501 3.8 =27182
0.3 e 04125 3.9 =e27090
0.1;. “s %992 4.0 "'027073
005 ".1031&0 401 "027151
0.6 "'.1391&4 402 "027292
0.7 -.17525 43 = 27297
008 T e 20898 404 "027680
009 "023895 405 ".27860
1 o0 "'.26327 4.6 ""o27975
1 01 “‘a28037 4.7 "".28014
1.2 "‘328907 4—.8 -027978
1.3 -.28896 49 -.27879
1 04 ‘0281 08 5 00 "027748
1 [} 5 "’.26798 5 01 "'027622
1.6 =~e25296 5.2 = 27254,
1 07 "‘02394-9 5 -3 “'027456
1.8 -23192 5e4 -.27346
1 09 ot ) 23372 5 05 "027265
2.0 ~e24334 546 27271
201 "025532 507 "’27285
2.2 "026439 5.8 "’027296
24 3 "".26847 5 c9 ""o27290
2.4 "026896 6.0 "027257
2.5 "'026785 601 “'0271 91
2.6 "026631 602 "'027092
2¢7 "026515 603 "‘026973
2.8 -026470 604 "'026846
2.9 "026502 605 "026724,
3.0 -+26600 6.6 =~.26612
3.1 -+ 26761 6.7 ~e26522
3 02 "'026948 . 6.8 "‘026461
303 "027119 6.9 -026430
3.4 "’027257 7.0 "026423

345 =e27339
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=P

| Igy(k) == 21p f"’ 81 (z3p) py(rgy) Py(ryy) py(ry,) dr,, arxy,

= -54/3; ofpt(r) 3g0er) I(r) ar (67)

‘should be subtracted from (54). Table 8 gives values of Igh(k).
Table 8
x (1) 142 1.6 1.8 2.0 2.2 244

I, () (& 2) (0153 =,0005 =40069 =,0094 =+0079 =.0041

Combining equations (54) = (67) we obtain

Sl 1 |
Ig(k) = == I, (k) S(k) + 7 [Tggk) = Topk)] = Igy (k).
(68)
Table 9 gives values of Ig(k).
Table 9

x &N 1.2 16 18 2.0 2.2 24
I9(k) (R‘ 2) 00367 =.,0051 =¢0352 «.0471 =.0267 =.0023
Comparison of Tables & and 9 shows that the correction I is not

%h
negligible. The size of the correction term at k = 2.43_1 indicates

that the fractional error in 19(2.1.) is large. For k > 2.21\"1, however,
the energies which we shall compute are so high as to make that portion
~of the spectrum physically uninteresting.

- Using (27, we can write 15 as
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_ P 2 e ik ) arl?
I = oj py(r) [Veg N ar + [ ofe py(r) V gy(z) dr

+

/ i§'£23' v
e V g (zpq)-V 81 (239 py(ryy)py(r3q)p,y(ryy) dyy dryy

]

I

5a+I

sp ¥ I5e * (69)

_ iker
The oscillatory factor e 23 nakes I, a likely candidate for (49),

which says 15 ~ Iga e« Since 15 is independent of the direction of Kk,
we can average it over the directions; then the exponential is replaced
essentially by (krzj)-1 times some trigonemetric function of r,g. If
2 and 3 do not coincide, then r,, must be at least 2.48, and the most
important value of r,, is about 3 because p,(ry;) is maximum there.
Therefore, when k = 23-1, the term I5a’ vhich arises from the delta
function in 2 5, ought to be at lesst six times as large as Ly, (k415 (k).
In fact the estimate is a pessimistic one, since the radial oscillations
of the trigonometric function further decrease the size of ISb + I5c’
Even when k = 1.28° 1. we probably do not commit an important error
ir ve neglect I5b + ISc’ At the cost of considerable labor we shall
compute I + I, when k= 281 and verify that it can indeed be
neglected.

I, has been evaluated in connection with I,. From (29)
and (23) we obtain

I, () = [enp | 1,62

I5c(k) can be evaluated by the same methods used for Ig. The result is

Compare (49) with the definition of I, in (23).
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1(kHe, )or | 2

(21!)3/36

k+u 2
S X(IZa(x)) dx

54/;0 [1-1:- of S1(u)1idu L

o k+a
3 2,22 2
5 {O/ Sy() u duu®~k*) ’k{u' (I,, (x))* ax/x

a ktu 2 3
+ [81(u)udu '_/' (I, (x)) x” ax
o

K=
; 2 2, Wik 2
-2 0/ S1 (u) v du(u®~k~) 'u'f'kl (IZa(X)) x dx}] (70)

The indefinite integrals

y
T5a) = [ [Ty 0 ax/x

[

y
L) = ] x[ 1, (x)1% ax
= ¥ 3 2
I5f(y) = o[ e [Iza(x)] dx

are tabulated in Tables 10, 11, and 12. For k = 2871, I,, was evaluated

and is equal to ~.00133-6 o Inserting values for I5a and ISb we find

15(28" 1) = 0119 + .0003 = .0013 = .01098°C .

'The smallness of I, and Iy, compared with I, confirms our previocus
statement that for values of k in the roton region, we can neglect
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’16 is estimated by (48) as zeroc. As in the case of I3, it is
important to find out whether 16 is reélly small enough to be neglected.

To obtain a more accurate estimate, we write

16 = Iéa + I6b
whefe ,
: -ik'r k
IL,=2t[e g gV g p)a
k
=21 f > &y(2yy) £ *V y(zy3) Py (raydpy rpy doy (s diryaryy
According to the discussion preceding (48), Iéa and Iéb will cancel

each other almost completely, so 16 is some fraction (probably about
one fourth) of I, Performing the angular integrations in I, we

cbtain
I, =8 CE . ()}[—"’*—"—'@-—+8“”k’
6& n/IO O[ r3 p2 r (kr)Z
+ 18 cos kr _ 18 sin kp ] .
(kr)? (er )%

A rough numerical integration gives
Iéa(zg-1) - "’0032-5

Honos Io(2') = =.0018™, and kI, = =e0028™® when k = 287!, Stnce

2

KT, + I, + I = 04088 near k = 2871, we can neglect kI, without

mich error,
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Table 10

Table of Iy,(x) = 0}; [*.r:m(k)}2 %}

There may be a constant error in the entries, but differences are accurate
within several per cent,

1 -1
x®') 1) x@®") Ly (x)

0.1  .0000000 3.6 422330346
0.2 0815563 3.7 0420
063 1249223 3.8 0671
0uh  +1533629 3.9 0815
0.5 1734620 440 0883
0.6 1880746 4ol 0899
0.7  .1988190 4e2 0905
0.8  +2066684 43 0937
0.9  .2123168 hod 1022
1.0 42163147 b5 1146
1.1 2190579 heb 1274
1.2 42208564 47 1400
1.3 .2219375 4ot 1512
144 o2225223 4e9 1599
1,5 42228040 5,0 1650
1.6 42229109 5.1 1670
1.7 42229347 5.2 1673
1.8 .2229398 543 1689
1.9 2229578 5.4 1750
2.0 4222999 5,5 1885
2.1 ,2230593 5.6 2090
2.2 42231261 5.7 2328
2.3 42231826 5.8 2562
2.4 42232237 5.9 2781
2.5 42232392 6.0 2973
2,6 42232591 6l 3115
2.7 .2232690 642 3211
2.8 .2232729 6.3 3269
2.9 735 bl 3298
3.0 7392 645 3304
3.1 7559 646 3307
3.2 7931, 647 3324
3.3 8426 6.8 3352
3.4 8978 6.9 3407

35 9524 7.0 3462
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Table 11

‘ X
= 112
Table of I (x) = ‘{ (1, (&)1° k ak

x®Y) I @E?) x®H L @E?)
0.0 »00000000 3.6 +04383225
01 00054962 3.7 J04388444
0.2 »00216305 3.8 «04391964
0.3 00473620 3.9 J04394113
0, 00811275 400 04395141
0.5 01208723 4ol L04395398
0.6 401642052 4e2  JOL3BLT8
0.7 02088145 443 04396085
0.8 02522106 heh  <O4397681
0.9 02923726 45 <O4400090
1.0 +03278674 4eb « 0440279/
1.1 .03576189 4T JOUAD54E9
1.2 «03809786 4e8 «04408049
1.3 .03975150 49 J04410139
1 04079331 5.0 14,08
155 04136930 5.1 1899
16 ,041615% 5.2 1980
17 04167813 5.3 2021
1.8 04169464 5.4 2198
1.9 .04175836 5.5 2603
2.0 J04191975 5.6 3236
2.1 .04217258 5.7 3997
22 «0424,7595 5.8 YA /A
2.3 J04279443 5.9 5525
2., J04308585 6.0 6200
2.5 J04330232 6.1 6714
2.6 Q43313 6.2 7080
2.7 J04350026 6.3 7305
2.8 «04352817 6.4 7417
2.9 L3332 6.5 449
3.0 J04353649 6.6 7465
3.1 J04355232 6.7 7536
3.2 J04358839 6.8 7661
3.3 J04364186 6.9 7925
3., <O4370407 7.0 8198

- 345 + 04376895
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Table 12

/:K [1,, (1% & ax

Table of I5f(x) = /

1 1 oA

(@ I, (x) (&%) X&) I . (x) (£%)
0.0 «0000000 3.6 +0388028
Oe1 +« 0000055 3.7 0394949
02 +0000536 3.8 «0399869
03 0002364 3.9 0403033
04 «0006751 4eO +0404616
0e5 0015008 Lel « 0405027
046 0028289 Lol «0405172
0.7 o 0047254, Le3 0406283
De8 0072096 bedy +0409334
0.9 0101470 bed 0414120
1.0 0133334 4eb 0419721
1.1 «0165891 b7 «0525547
1.2 0196456 4.8 0431322
1e3 40221909 4e9 .0436220
1o #0240563 5,0 +0439303
1.5 0252398 5.1 0440542
1.6 0258128 5e2 «QLL0T54
1.7 0259810 5e3 « 0440870
148 « 0260408 54 «0441381
1.9  .0262662 5.5 0442595
2.0 +0268916 5.6 0444538
21 «0279617 57 «0446979
2.2 029368, 5.8 0449542
23 0309810 5.9 «0452114
2., «0325853 6.0 0454497
25 0338725 6.1 0456379
2.6 0347024, 6.2 «045T151
2.7 «0351803 63 +0458628
268 «0353865 VA «0459080
2.9 00354251 645 0459212
3.0  J0354556 6.6 0459289
3.1 0356055 6.7 «0459601
3.2  .0359672 6.8 0460246
3.3 0365341 6.9 0461415
3.,  .0372332 7.0 0462726
3.5 +0380053
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Estimation of I, by‘ (48) gives
Lz-2(-%np ) tup L, k) =1 (@np P 1, ) . (71)

Considerations similar to those used in estimating I, show that (71)
is accin-é.te within about 25 éer cent exéept when k 1is very near
17871, where I, (k) = 0. Since I, is small (about +0038™°) in the
roton region, (71) is sufficiently accurate,
When k is in the roton region, the major portion of I10
comes from the term J (gy,) 2 3(23s4), which is contained in 2, (152,354 )

iker
When i, # 0, the oscillations of e 12 make the contribution to the
R o v
integral very small. If we neglect all of /’ 4 except d (;-_12) /)3(2,3,4),
we are making essentially the approximation which was used in Is and

was shown to be very accurate there. We then obtain
Iig= 13 (72)

and our evaluation of the integrals in (23) is completed.

If the integral |
J(E'lZ) =;l§ [/74(192&94) 81(231) g1 (242) d-IB d£4
o

were to become large compared wit.h 13 as r,, grows large, then the growth
of J might offset the oscillations of exp(ik-r,,) and (72) would

be wrong. It 1s easy to see, however, that as 1 and 2 go farther

apart, J (212) approaches [ f Py (r) g () dg]z, which is zero. Since

the factorization of J 'into a product of two integrals becomes

more nearly exact as T4 increases, it is very plausible that J
decreases with increasing Ty, and is largest when 1 and 2 coincide.

In the latter case J 1is equal to 13.



If one is skeptical about the accuracy of (72), there is a
more rigoroﬁs way of dealing with ‘110. <) 1is a normalization integral
and must therefore be positive for any real value of A, In (22b), <J
is expressed as a second degree polynomial in A, The requirement
that this polynomial have no real root is

2 ,
I9 < 418 110 .

Since 110 and 18 are positive, 1t follows that

R 7%  (72a)
If the right side of (72a) were used as an estimate of ;o0 <ﬂ would
be lowered below its true value and the energy would be raised. The
value of A resulting from (72a) is about 1.3° higher than that
resulting from (72), In the roton region we believe (72) to be much
more accurate than (72a), although a numerical demonstration of this fact
would be very laborious. For very small k, (72) is very inaccurate;
not only does the oscillation argument fail, but I3 Bcomesa much smaller
than the right side of (72a).

For k > 1.23-1, the coefficient of A% 1in (22a) is estimated
well by |
S S RS R NCLV N AT
We have omitted I, I; » and kI., and have approximated I, by (71).

ISc and kI, have both been shown to be very small, and are both difficult
to compute; omission of these terms simplifies the computation of the
energy spectrﬁm, and does not significantly change the location of the
minimum, I5b has been omitted for the sake of consistency, since it is



evén smaller than I e After locating the minimum, we shall reinstate
the omitted terms in our final computation of A, ¥We estimate I10 by
(72). |
With the 'omissions and approximations mentioned in the preceding
paragraph, we obtain
%< 1+ 4(1, +~I;2~L) +A2(k213 +{4+I5§:% (8n 0)2 I,,)
'EF k

5 I
1+ A——2 + A2k2 2
Ig Ig

1+ 40,186 + 1,117y, (k) + 82(.0246 + JO0L5KR + 108I,,, (k)

kI (k) 2.2
0045k A
1+4 s%ki + S%k)
E'
= (73)
Eplk

E(k) is the true lowest energy of a state having momentum i Ep(k)
is Feymman's spectrum; i.e., Eglk) = Kk*/2nS(k); E'(k) is the spectrun
we have computed, subject to the omission and approximations noted above.

For k = 23-‘, (73) becomes
E() . 1+ 1498 + 039042
F 1 = JO7T534A + 01434 ‘
The first attractive feature of (74) is that the coefficients
of A in the numerator and denominator have opposite signs, so that
the denominator increases while the numerator decreases., The optimal

value of A 1is -3.433 s which is very close to the classical value
A 4= 3.6K3. The minimum value of E*(2)/E(2) is %64, corresponding
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to 5—%——-}- = 12.7%.

Computation of the coefficients in (73) and minimization

of the resulting expressions yields the results given in Table 13.

Table 13
k(1) 1.2 1.6 1.8 2.0 2.2 24
A®?) <307 =3.8  =3.6  =3eh  =3.0 =2.5

E! (k)/EF(k) 504 W55 «595 RIIA o736 LT796
E'(k)/8 (°K)125  13.4 12,0 12,7 17.0  31.0

We estimate the minimun value of .E.’.é&l as 12.0%,
corresponding to k = 1485 £ ', 1, If ve estimate I (1 a8 and
16(1.852" 1) by the values of the corresponding integrals at k = 22, 1
we find that the coefficient of A% in the numerator of (73) should
be diminished by .0033-6 when k = 1,858 1. This change lowers the

energy by 0.5°K and we obtain as the final result of this computation

P
5 = 1,858 2=115K . (75)

One might challenge the correctness of the results in Table 13
because %‘-88- appears to decrease with decreasing k. In any correct
theory E'?k )/EF(k) must approach unity for very small k because we
cannot lower the energy of a phonon. By studying the behavior of the
.‘integrals in (23) for very small k, we have verified that our spectrum



doesindeed have the correct limiting behavior.* A more direct way of
seeing the result is to look at (19)(or (18)) ﬁhen k is very small,
The correlation term g(z_'i ;]) is sil%r:iﬁcan‘h Ong’:hen i and j are
fairly close. But in this case e -4 and e = are almost equal
bect_ause k is small, and hence the correlation terms cancel almost
completely because g is odd. Thus, (19) is almost the same as (11)
for small k, and leads to the same energy. The value of k where (19)
and (11) become almost the same, however, is much smaller than 1.28 1,
where Table 13 stops.

For high k, E! (k)/EF(k) approaches unity because the
approximation exp(iZ g(;ji)) ~1+1iF g(!.ji) fails badly. We noted
earlier that if we could compute with the wave function (18), the
interference between terms with different i would vanish when k is
large. If E"(k) is the energy arising from (18), we should find that
for large k

E" (k)/Egk) = 65

as in the foreign atom problem. It is amusing to conjecture on how much

E"(k) might lie below E'(k) when k = 1.88" 1. In view of the

accuracy of the approximation exp(i1Z g) =1 + iZg in the foreign atom prob-
lem when k < 287 1 (see footnote following our discussion of that problem),

we do not believe that the difference would be appreciable.

The energy spectrum E'(k) is shown in Fig. 13 as curve A,

If g(r) falls off sharply at large r, the analysis is simple. In
our case the analysis is complicated by the slowness with which
k°r/r> falls off, but the ultimate result is the desired one.



| We have also plotted
B: Feynman's spectrum 'EF(k),
C: de Klerk, Hudson, and Pellam's spectrum (eqn.(4)),

R
/A= 1.8587! andAchosen

D: spectrum of the form (2), with Po

so that u 1/2 p ‘2 has the same value as in Ce

From tha cuivatures A, Cy and D it is clear that our spectrum

E'(k) predicts too small a value of M+ In a computation of this

sort, however, it is doubtful that the curvature has much significance.
Curve A brings out the fact that the "hump" between the phonon

and roton regions is not nearly so high as one might’expect. Consequently,

when computing the specific heat or normal fluid density at temperatures

high enough to excite rotons, it is probably also necessary to take

into account the deviations of the phonon spectrum from linearity

(and also the deviations of the roton spectrum from pure parabolic

behavior), Qualitatively, it appears that such corrections might improve

the agreement between the theoretical spectrum and the specific heat

and second sound data.
The two major sources of error in our computation are

a) the absence of information about the true form of /03(1,2,3)

and

b) the uncertainties in the data for S,(k) at large k (see Appendix C).
The most important uncertainty occasioned by (a) is in the value

of I‘. Inclusion of the term I9h’ which is 20 per cent of I9 when

9
k = 1.8ﬁ'1, conpensates for most of theerror caused by the approximation,
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] | E' (k) compnted ﬁrom aq. (73)

: n;“‘"Feymmrr*s spau*tmum EF(k)

oLl or 1andau speetrun bith /u..v.mnﬁ ,
B RN N @:23&“ |

e

.»-apeetr\m wi%h r*w"’ 1 Oémﬁ k =} 't58Q1

;
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@1). If. I, were omitted coinpletely, the value of A/# would be
0.7° lower.b We belie‘vev, therefore, that the error in &/ £ due to
(a) is less than 0.3°% |

Considerable pains were taken to arrange the numerical work
in such a way that the answers are insensitive to the behavior of S, (k)
for blarge ke The residual error due to (b) is found mainly in the
cosfficient of A% in the mumerator of (73). This coefficient may
be in error by 5 per cent, and the resulting error in 4/ 4 might
be as much aé 0.5°. _

We consider the value A/R = 11.5° to be accurate within
0.6°, i.e. the lowest energy computable with the wave function (19)
is between 10.9° and 12.1°. In the opinicn of the author, the reduction
of 4/ from 19.1%K to 11.5° removes the major quantitative objection
to Feynman's ideas about the nature of rotons. It is also the author's
opinion that the labor involved in computing with a wave function more
complicated than (19) would be unwarranted until something can be done to

eliminate the errors (a) and (b)e
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APPENDIX Ag PROCF OE NON-DEGENERACY OF THE GROﬁND STATE

It seems to be generally knownvthat the ground state of any
sjstem is non-degenerate, provided the system is deseribed by
Schrodinger’s equation and has no coordinates, such as spin, which do
hot ‘appear in the equation. Although proofs of this theorem undoubtedly
exist in the literature, the difficulty of finding them justifies the
inclusion of a proof hers.

If we can prbve that the ground state wave function never
assumes the value zerc, then it must be non-degenerate. For if ‘I‘1 ()
and ¥,(z) both have energy E, and are linearly independent, then
we can construct a wave function ‘Ifz(go) 12 () = v, (g_o) Wz(g) which
vanishes at any desired position Ly *

We work with the one-dimensional Schrodinger equation
2

-

@-2%+v(x)w=m
dx

Bl

Generalization to three dimensions and many particles is thoroughly
straightforward. It is also assumed that V is finite. The lowest
energy is the minimum value of

3 gﬂgizdx-rfw\y*v(x)dx

-
e TIS e

J JRA LK

Since the real part of the wave function satisfies Schrodingerts equation,

L]

we may assume that € /) ‘takes on its minimum value for some real V.
We now show that if ¥ has a zero, a new function can be constructed

which will give a lower value of € /) .



If ¥ has a vzert_) at ‘x o? Ve construct
the ﬁmatioiz P(x), whiéh is equal to |¥(x)|
exéept in a region of length ¢ near X
where @ is rounded off to give it a smooth
derivative. ¥{x o) is not zero, since ¥ is
agsumed to satisfy Schrodinger's equation and
would be idehtically zero if it vanished
gimultaneously with its derivative, The normal~
ization and potential energy integrals are
changed by a quantity of order € vhen [

is used instead of VY. However, the average

value of |§'(x)]? over the interval

©

Y(x

B

N

fomeme|

(x --g » X + 'g-) issome finite fraction of |¥* (xo)|2 (the exact

fraction depends on the shape of the round=cff); hence the kinetiec

energy integral is decreased by a term of order &, and £ would

have a lower energy than Y,
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APPENDIX B: EQUIVALENCE OF LONGITUDINAL SOUND WAVES WITH A SET OF
OSCILLATbRS
A continuous medium can be described by a vector field x(rst),

where r + x(r,t) is the position at time t of the mass element which
was at r at time t = O, If the gradients of x are small, computation
of the Jacobian of the transformation r - r + X shows that the mass
element which originally occupied a volume dV at r occupies a
voluﬁle dvt =dv(1 + div x) at time t. If the mass density M (z)
originally had the equilibrium value /M o everywhere, then
M AT =u(e) (1 +div x) av, or

pm(e)

/" o

(div x is assumed small, so we can write (1 + div x_)“‘l =1 «div x).

=1 =divg (76)

If the compressibility is given by dp/d/u = 02, then the work done in

compressing (or expanding) dV dinto 4vV' is

L (= pg) (av - av) = 3 pcP(atv x)%av

and the potentisl energy of the medium is % M °c2 f dr(div x(z ,t))z.

In the same approximation the kinetic energy is given by 15 Mo j :f(:_;,t Jare
If periodic boundary conditions are imposed on the liquid in

a box of volume V, x(r,t) can be expanded in a Fourier series

ke
x(z,t) = 2 glk,t) e <
k

where k runs over all the wave vectors which fit the box and
.ik'?—

glot) =1 [ximt) e - dr = grkit)e
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In terms of these new coordinates, the kinetic and potential energies
assume the forms

KeEe =

N =

MoV L 2wl

1 2 112
PE. =1m Ve Z; e+ glest)]? .

We can write X=X + X, where curl x4 =0 and citivg2 = Q.
Ccrresf:ondingly, - + £ where k X g = O, _k_°gz = 0, B & = Oe

The energy can be expressed as
«-l . l 2 2 S l S e B
—zﬂOVZé1é{"'*z/achZkg,!g?{-*zﬁovz_gz g -

No potential energy is associated with the displacement field X0 which
represents pure shear, In section II of this thesis we have reproduced
Feynman's "proof™ that in a Bose liquid any excitation which does not
involve large=-scale changes of density must have an energy greater than
some minimum value. Consequently, at very low temperatures the shear
modes can be omitted from the Hamiltonian, This argument does n;:>t apply
to the Fermi or classical liquid. |

With the omission of the shear modes, the energy is the same
as that of a collection of oscilldtors. For future reference, we re=
express the energy in terms of the coordinsates 9 which are used in
section II. If A (r ). is the number density of ;toms at r, then
M) = m/)(g). If we define

ik'r
alisst) = [ ot e ar,

then (76) implies, for k # O,



a*(k,t) = =ik°g(k,t).

1
v
o

The energy then takes the form

E= %Zk m [406,t) & (6st) +2 allst) a*(kst)]

(77)
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APPENDIX C: DISCUSSION OF S(k) and p(r)

The curve for S(k) given in Fig. 5 is essentially that obtained
from x-ray scattering by Reekie and Hutchison.* The proper normalization
of the data can, in principle, be determined from the fact that S(k) - 1
#s k » o, According to Goldstein and Reekie [14], "limitations inherent
in the very low scattering cross section of liquid helium and the experi-
mental technique have prevented effective exploration (of the range
k> 68 1)". Since S(k) is still oscillating strongly at k = 68 1,
the normalization of S(k) 1is uncertain by a few per cent. For
k> 2,58 1, the per cent error in S(k) -1 is large, and our computations
would be totally unreliable if the integrals had not been set up in such
a way ags to be insensitive to the behavior of S(k) = 1 for large k.

We feel intuitively that S(k) ought to oscillate about its asymptotic
value, and have therefore taken S(k) =1 at a point whose ordinate

is the average of the values of S(k) at the minimum near 3.4%" L
the meximm near 4.6877. With Reekie's normalization, S(k) is unity at
an ordinate much nearer to the minima of the oscillations. Our normal=—
ization maximizes the cancellation at large k when we are performing
integrals whose integrand contains S(k) = 1 as a factor. Since S(k)

is the Fourier transform of p(r), we find (see (36) and (39))

o«

2 2
- = S(k) = 1 7
21:/)0 ék((k) ) dk (78)

‘The relation (78) might serve as a test of the normalization of S(k),

Their conclusions about p(r) are given in Ref. [16], which does not
include their data on S(k). We are indebted to Dr. Reekie for send=-
ing us the data, which is now generally available in Ref. [14].
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| wei'e it not for the faét. ’qhat. the numerical integral gives no sign of
converging if we cut it off at k = 681, The left side of (78) 18
eqﬁal to -.433- 3 o« With our normalization, integration of the right
side out to k = 68 1 gives +.44A'3. but the integrand is still
oscillating wildly and there is a chance of ultimately converging to a
correct answer. With Reekie's normalization, integration of the right
side ot_rl'. to ’k = 68 1 gives a positive value much larger than +.MX. 3,
and the contribution from k > 6871 will also be positive unless the
successive minima of S(k) cease to be closer and closer to the
asympfotic value of unity. At any rate, the consistency of the results
which we have obtained by performing the same integral in céordinate and
momentum space (see, for example, Table 2) convinces us that our 3(k)
is sufficiently accurate for the present computations.

Most of the curve in Fig. 5 represents data taken at 2.06°K,
According to [14), there is very little change in the values of S(k)
for k > 0,981 as the temperature decreases from 2.5% to 1.25°K.
Therefore, in the range k > 0.9g-1 s it is probably safe to represent
the zero~temperature structure factor S(k) by the data taken at
2,06%. For k < 0.93'"1 » the temperature dependence of S(k) is more
important, and it is necessary to extrapolate S(k) linearly to zero
by using (14a), We have dore this, using a slope about 20 per cent
higher than the thecretical value in order to join the experimental
data smoothly. The error thus introduced is small,
| The argument used to derive (14a) also yields the behavior

of S(k) for small k when T # O. In the latter case, the oscillator



répresenting phonong of wave number k is no longer necessarily in its
ground state, but may be in its nth excited state with probability pro=

portional to exp (-E /R T). It follows that (3 = 1/4T)

hk

S(k) = 508 coth 1 8 hek | (79)
= 1, L ?'E'k-z- —_ 79a)
f3’mc2 12 & n S (79

From (79) there follows immediately the famous formula

llciné s(k) = pofé T Xy
where p o is the number density and X‘I’ the lsothermal compressibility
of the liguid. When #hck becomes greater than £ T, (79) becomes
essentially linear in k. Strictly speaking, however, S(k) starts
quadratically from a non-zero value except when T = O, The possibility
of a linear behavior of S(k) for small k, as predicted by (14a) when
T = O, has been sometimes questioned on the basis of (14)s From (14)
it follows that |

S(k) =1 =4n /:0 (p(r)-/o)ﬂ%g?-lrzdr (81)
0

Since p(r) = o approaches zero for large r, it is argued that it is
legitimate to expand sin(kr)/kr as 1 - L-L'- + e++ , Integrating
term by term, one finds

St) - 1=, + 02k2 + oee (81a)

vhere G, /(p(r} L) r? dr and 2 “ Z (p(r) -/)o)rl’
0 ,
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Hence it éppears that S(k) always starts quadratically in k. The
fallacy in the argument lies in the fact that p(r) may not approach
its asymptotic value fast enough, and the expansion may be meaningless.

-3

For example, if p(r) -, o. decreases as r -~ for large r, (81)

converges perfectly well but G1 and C, are infinites Whem T = 0,

2
p(r) = Po falls off slowly enough to invalidate the expansion, and
(14a) is correct; at any finite temperature p(r) - o Wltimately falls
off exponentially and the expansion (81a) is legitimate., One might think
that all the coefficients of (81a)can be determined by comparison with
(79a); this is incorrect because (79) is wrong for large k. Using

(80) and (81), however, we do obtain the important result

1+ 4n A(p(r)"/-’o) Par=p k1Y, (82)
0
and when T =0
1 + 4n [°° (p(r) ~Po) rz dr = 0 (83)
+ .
0

The result (82) can be obtained by rather simple classical
arguments, OSuppose we have a very large volume V of the liquid, and
we consider a large sub-volume Vi in the interior of the liquid.

If p o is the mean density of the liquid, the average number of atoms
in V1 is N = P o V1. Ve are interested in i?’:‘n?fting the fluctuation
of N, the number of atoms in V.’. This is (N—-ﬁ)2 = ;F -7 ( a bar
denotes "average value"). The volume V., can be subdivided into many

v 1
small volumes Ai’ each so small that there is no chance of finding two

atoms both with their centers in the ssme 4, » For the i}

y volume
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we can define a random variable Xi which ig 1 if there is an atom

centered in Ai’ and zero otherwise. The average value of Xi

ii = Po AiA e If the cells Ai are small enough, the distance between

is

an atom in cell 1 and an atom in cell J can be taken as the distance
vri j between the centers of the cells, and the definition of p(r) implies
XX = 8,8; P p(rss) Since N=2X, 1t follows that

N=R )%

oy 2
- =1 + 4u /+ (p(r)-fo)r dr . (84)

0
The largeness of V1 is invoked when extending the r-integration to infinity.
Thus we see that (82) is really a theorem about density fluctuations in a
large sub-volume of a liquid; the latter can be treated by statistical
mechanics. Suppose that the liquid is bounded by a rigid closed cylinder
of volumg V with heat=cenducting walls, the entire container being
immersed in a heat bath at temperature T, If V is very large, we can
mentelly divide the cylinder into two volumes V, and V,, both large but
wiﬁh V2 >> V‘l' The expected number of atoms in ‘Ll is ﬁ1 = /D o V1.
Any deviation of I\T1 from ﬁ‘l represents potential energy, for when we
see such a deviation we can insert a thin piston between the two volumes
and hold it in place while thermal equilibrium is re-established on both
sides of the piston. Since the density of atoms is no longer the same on
both sides, there is a resultant force on the piston and work can be

extracted from it by allowing it to move slowly toward its new equilibrium

| position. If V2 >> V, s a fluctuation n in the number of atoms in V

1

~ produces no density or pressure change in V2. The potential energy
’ 2

contained in such a fluctuation is easily computed to be % 4

iq“l/')ox'l’,
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and Gibbsian statistics states that the probability of such a fluctuation

is proportional to exp (= % n'?/l-\lz1 o X £ T), One readily obtains

Prol

= LR T , (8)

=1
-t

and (82) then follows from (84). The result (85) was obtained by
Smoluchowski [17] in 1908.

A casual observer might think that (83) is a simple consequence
of the definition of p(r)s PFor if an atom is known to be at ,» the

bability that there i % L2y If
roba hat there is an atom at r,. is . r
i d 2 P1Ey) =

is not near the surface of the liquid, then p, (;_1)'.—.- Lo if £ end

L, are both far from the surface, then o 2(Lyr L) = fop(rlz). If
we integrate W- over all locations Iy excluding the point

;s the ansver must be exactly N~i. But if we integrate 2, (r) over

all positions of r, the answer is exactly N. Consequently

S PP yey) - Pyl dmy =1 . (6)
r

1
If we take L, far from the surface, /7 1(z4) can be replaced by o .

Furthermore, the integrand is appreciable only when L, is near z

=1?

,{z,z,)
in which case ‘;-%Ef-yz— -/ 1(;Q) = p(rm) - Po (there are no

complications.at the surface of the liquid since the surface corrections
to both terms of the integrand are identical). Then (86) reduces
exactly to (83).
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‘Something must be wrong with the preceding argument at finite

temperatures, since (83) is false if T ;& O. The difficulty lies in the
2ty 05p)

fact that, at finite T, the limiting value of for large £y

° 2

is not /O o? but is slightly lower by an amount of order 1/N. At high

Ty if there is known to be an excess density of atoms in a certain regicn,
it is most iikely that the excess was caused by a flux of atoms coming
from far away; the most likely configuration of the far away atoms is one
in which the density is uniform, but infinitesimally lowered to account
for the atoms which have flowed into the region of excess density. at
high T it is permissible to think of the atoms as classical hard
spheres. If Ty is the radius of a sphere, then the centers of the
spheres must always be at least 2ro apart; the forbidden volume

around an atom is v, = 5 ﬂ(2r )3. The actual volume per atom

of the liquid, which we call Vo0 is greater than Voe If an atom
is known to be at the origin, then an additional volume v, -V

o

is aveilable for the motions of the other atoms; hence the density

v,~v
far awey is lowered by AN S, Actually, the atoms are not merely

classical hard spheres, but have quantum=-mechanical zero-point motions;
in & classical picture the zero-point motion is equivalent to a soft
repulsive potential outside the hard core. At high temperatures the soft
potential is easily penetrated and can be ignored. As the temperature

ié lowered, the soft repulsife potential becomes more effective in
keeping other atoms away, and the forbidden volume around an atom is

greater than v, by an amount vz(T). If an atom is known to be at
VT, (T)

N *
the atoemic volume of the liquid is completely determined by the zero=

the origin, the density far away is lowered by When T =

point motion (there is no other kinetic energy) and we have
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v, =V, + vz(O)- Then the asymptotic value of F 2/ f o is exactly
2o and (86) reduces to (83)s When T # O, however, there is a finite

negative contribution to (86) from the region of very large Tyo (iee. the
/) 2 (1_'1 722} '

P o

necessarily equal to /?o). Since (86) is rigorously true, the integral
©0

region where has reached its asymptotic value, which is not
4n /+ (p(r) =~ r 0) 2 dr, which represents the contribution toc the left
side 9f (86) from the region where r, 1is not very large, must be greater
than =1; thus we arrive at (82) instead of (83).%

The simple counting argument which the "casual observer" used
to prove (83) is actually correct when T = 0, because there is no change
in the density far away when we localize an atom at the origin. For
the same reason, we believe that any identity based on a counting argument
becomes correct when T = O, We therefore believe in the truth of the
identity

( i sL~s L. )
/ d?.3 [ /’;)?:;(rjz) 2 "f'o] = -2 (87)

LofT, oLy

although we cannot give a rigorous proof of it. Eqns. (83) and (87) are

easily combined to give eqn. (45), which we have used in our work (one

must remember that in (45) ﬁ 3 is defined to include a delta function

Je

on I3
Reekie and Hutchison [16] have computed p(r) for r < 68 by
inverting their data for S(k)e The curve for p(r) which we have
‘given in Fige. 4 is obtained from one of their graphs and, as has been
previously mentioned, seems consistent with our curve for S(k). The

numerical inversion of diffraction data is not unambiguous, since the

The argument in this paragraph is due to R.P, Feynman, See also
ref. [11], p. 266.
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integrand of the relevant numerical integral is not small at the cut=-
off value k = 68'1. Furthermore, an arbitrary cut-—cff procedure must
be used to make p(r) vanish for r < 2.43. More recently, Goldstein
and Reekie [14]‘hawe employed an IBM 701 calculator to compute p(r)
out to ZOX, using the data of Reekie and Hutchison. Their article was
not published until after the completion of the present calculation;
the authors state thﬁt the results out to 68 "fully confirm" the results
of [16). Goldstein and Reekie apply the integral test (82) to their
curves for p(r) and find satisfactory results. Since the integrands
do not become small until r > 138, we found it impossible to apply
the test to the curve in Fig. 4.



-95-&

REFERENCES
1« Le Tisza, C.,R. Paris 207, 1035 and 1186 (1938).
2, L. Tisza, J. de Phys. et Rad. 1, 165 and 350 (1940)s
3. L. Tisza, Phys. Rev. 72, 838 (1947).
4Le Lo Landau, J. Phys. 5, 71 (1941).
54 H.H.v Keesom and A.P. Keesom, Physica 3, 359 (1936).
6s L. Landau, J. Phys. 11, 91 (1947).
7¢ HeCe Kramers, J.b. Wasscher, and C.J. Gorter, Physica 18, 329 (1952).
8, D. de Klerk, R.P. Hudson, and JeR. Pellam, Phys. Rev. 93, 28 (1954).
9« R.P, Feynman, Phys. Rev. 91, 1291 (1953).
10. R.P, Feynman, Phys. Rev. 9}, 1301 (1953).
1. ReP, Feynman, Phys. Reve 94y 262 (1954)e
12¢ Ge de Vries and J.G. Daunt, Physe Rev. 93, 631 (1954).
13.  ReM, Mazo and JoGe Kirkwood, Proc, Nat. Ace Scis 41, 204 (1955).
14 L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).
15¢  DeGe Henshaw and D.G, Hurst, Phys. Rev. 91, 1222 (1953).
- 16.  J, Reekie and T.S. Hutchison, Phys. Rev. 92, 827 (1953).
17. M. v. Smoluchowski, Ann. Phys. 25, 205 (1908).
18+ Mathematical Tables Project, National Bureau of Standards,

Tables of Spherical Bessel Functions, New York, Columbia (1947).



